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Macrophages are one of the most abundant immune cells in the solid tumor and
their increased density is associated with the specific pathological features of cancers,
including invasiveness, metastasis, immunosuppression, neovascularization, and poor
response to therapy. Therefore, reprogramming macrophage behavior is emerging
as a promising therapeutic modality for cancer treatment. RNA interference (RNAi)
technology is one of the powerful strategies for the regulation of macrophage
activities by silencing specific genes. However, as polyanionic biomacromolecules, RNAi
therapeutics such as small interfering RNA (siRNA) cannot readily cross cell membrane
and thus specific delivery vehicles are required to facilitate the cytosolic siRNA delivery.
Herein, we developed a robust nanoparticle (NP) platform for efficient siRNA delivery
and gene silencing in macrophages. This NP platform is composed of biodegradable
poly (ethylene glycol)-b-poly (ε-caprolactone) (PEG-b-PCL), poly (ε-caprolactone)-b-poly
(2-aminoethyl ethylene phosphate) (PCL-b-PPEEA), and PCL homopolymer. We chose
CC-chemokine ligand 18 (CCL-18) as a proof of concept therapeutic target and our
results demonstrate that the CCL-18 silencing in macrophages can significantly inhibit
the migration of breast cancer cells. The successful regulation of the macrophage
behavior demonstrated herein shows great potential as an effective strategy for cancer
therapy.

Keywords: macrophages, RNAi, nanoparticle, cancer therapy, siRNA delivery

INTRODUCTION

Macrophages are important cells of immune system with two major phenotypes, i.e., pro-
inflammatory phenotype (M1) and anti-inflammatory phenotype (M2) (Mantovani et al., 2008;
Noy and Pollard, 2014; Ostuni et al., 2015). In solid tumors, tumor-associated macrophages (TAMs)
are one of the most abundant cell types (up to 50% of the tumor mass) and are present at all

Frontiers in Pharmacology | www.frontiersin.org 1 December 2018 | Volume 9 | Article 1465

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2018.01465
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphar.2018.01465
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2018.01465&domain=pdf&date_stamp=2018-12-14
https://www.frontiersin.org/articles/10.3389/fphar.2018.01465/full
http://loop.frontiersin.org/people/634474/overview
http://loop.frontiersin.org/people/650735/overview
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01465 December 12, 2018 Time: 14:19 # 2

Liang et al. Cancer RNAi Therapy

stages of tumor progression (Caillou et al., 2011; Ginhoux
et al., 2015; Parayath et al., 2018). Numerous clinical and
epidemiological studies have demonstrated that TAMs
are primary M2-like macrophages (Gordon and Martinez,
2010; Sica and Mantovani, 2012; Bronte and Murray, 2015)
and their increased density is associated with the specific
pathological features of cancers, including invasiveness,
metastasis, immunosuppression, neovascularization, and poor
response to therapy (Qian and Pollard, 2010; McAllister
and Weinberg, 2014; Bronte and Murray, 2015). Therefore,
macrophages represent an important therapeutic target and
strategies that can effectively regulate undesirable macrophage
activities are always pursued for future cancer therapy.

One of the promising strategies for the regulation of
macrophage activities is using RNA interference (RNAi)
technology to silence specific genes (Aouadi et al., 2009;
Kortylewski et al., 2009; Yu et al., 2013). Since its discovery in
1998, RNAi technology has demonstrated significant potential for
disease treatment by silencing the expression of target gene(s),
especially those encoding “undruggable” proteins (Melnikova,
2007; Burnett and Rossi, 2012; Kanasty et al., 2013; Zuckerman
and Davis, 2015). The key challenge is the safe and effective
delivery of RNAi therapeutics such as small interfering RNA
(siRNA) to aberrant macrophages (e.g., TAMs). Due to its
polyanionic and macromolecular characteristics, naked siRNA
cannot readily cross the cell membrane and thus requires specific
delivery vehicles to facilitate its intracellular uptake and cytosolic
delivery for bioactivity (Whitehead et al., 2009; Zhang et al.,
2012; Shi et al., 2017; Xu et al., 2017b). Over the past decade,
nanoparticles (NPs), which present the advantage of preferential
and selective accumulation at tumor sites via the enhanced
permeation and retention (EPR) effect, have been widely used
for cancer treatment (Chen et al., 2017; Zeng et al., 2017;
Liu et al., 2018; Xiao et al., 2018). Up to now, numerous
innovative NPs have been developed to enhance the siRNA
delivery efficacy (Tseng et al., 2009; Xu et al., 2016, 2017a;
Cheng et al., 2017; Saw et al., 2018). However, a substantial
number of these NPs are designed to directly target tumor
cells. At present, modest effort has been made to develop
RNAi NPs for the modulation of undesirable macrophage
activities.

Herein, we developed a robust RNAi NP platform for
the efficient regulation of macrophage activities. This NP
platform is composed of biodegradable poly (ε-caprolactone)-b-
poly (2-aminoethyl ethylene phosphate) (PCL-b-PPEEA), poly
(ethylene glycol)-b-poly (ε-caprolactone) (PEG-b-PCL), and PCL
homopolymer (Figure 1). Through optimizing the NP size by
adjusting the formulation, we demonstrated that larger size NPs
can deliver siRNA and silence target gene in macrophages with
higher efficacy. As a proof-of-concept, we chose CC-chemokine
ligand 18 (CCL-18) as a therapeutic target and evaluated the
influence of CCL-18 silencing on the macrophage activities.
CCL-18 is a key factor secreted by TAMs to induce cancer cell
epithelial-mesenchymal transition (EMT), enhance breast cancer
metastasis, and reduce patient survival (Chen et al., 2011; Su
et al., 2014; Nie et al., 2017). Our results show that the optimal
NP platform can efficiently silence the CCL-18 expression in

macrophages, leading to significant inhibition of breast cancer
cell migration (Figure 1).

MATERIALS AND METHODS

Materials
Methoxyl-poly (ethylene glycol) (Meo-PEG114-OH, Mn = 5000),
phorbol myristate acetate (PMA), N-2-hydroxyethylpiperazine-
N′-2-ethanesulfonic acid buffered saline (HEPES), stannous
octoate [Sn (Oct)2], RNase A, and heparin sulfate were acquired
from Sigma-Aldrich and used directly. ε-Caprolactone (CL)
was provided by Sigma-Aldrich and distilled before use. The
poly (ε-caprolactone) homopolymer with 34 repeating units
(PCL34) and polydispersity of 1.21 was synthesized according to
the previous report (Wang et al., 2006). The block copolymers,
methoxyl-poly (ethylene glycol)-block-poly (ε-caprolactone)
(mPEG114-b-PCL41) and poly (ε-caprolactone)-block-poly
(2-aminoethyl ethylene phosphate) (PCL25-b-PPEEA17), were
synthesized according to our previous reports (Wang et al.,
2013; Liang et al., 2015). The degree of polymerization
of each repeating unit was calculated based on proton
nuclear magnetic resonance (1HNMR) analysis. Dulbecco’s
modified Eagle’s medium (DMEM), 3-[4,5-dimethylthiazol-
2-yl]-2,5-diphenyltetrazoliumbromide (MTT), fetal bovine
serum (FBS), and trypsin were purchased from Gibco BRL.
Lipofectamine 2000 (Lipo) RNAi MAX transfection kit and
DAPI were provided by Invitrogen Corp. Fluorescent dye
(Cy5) labeled CCL-18 siRNA (Cy5-siCCL-18) and negative
control siRNA (siNC) were acquired from Suzhou Ribo Life
Science Co., The siRNA sequences are as follows: siNC,
5′-TTG GGA AAA TGA GTG GTT dTdT-3′ (sense) and
5′-AAC CAC TCA ACT TTT TCC CAA dTdT-3′ (antisense);
siCCL-18, 5′-ACA AGU UGG UAC CAA CAA ATT-3′
(sense) and 5′-UUU GUU GGU ACC AAC UUG UGC -3′
(antisense). The fluorescent dye was labeled at the 5′-end
of the sense strand of siCCL-18. All other organic solvents
or reagents were analytical grade and used without further
purification.

Methods
Preparation and Characterizations of Nanoparticles
(NPs)
The NPs with different sizes were prepared by using the
classic nanoprecipitation method. The polymers, mPEG-b-PCL
(10 mg), PCL-b-PPEEA (10 mg), and PCL (50 mg) were,
respectively, dissolved in 1 mL of acetonitrile and methyl
alcohol (v/v, 1:1). Subsequently, mPEG-b-PCL and PCL-b-
PPEEA were mixed in a molar ratio of 1.5:1 and then added
dropwise to 10-fold volume of deionized water which was
under vigorously stirring. After stirring for another 20 min,
the NP suspension was transferred into a rotary evaporator
to remove the organic solvent. The final NP suspension
was dispersed in deionized water at a concentration of
1 mg/mL. To adjust the NP size, different amount of PCL
was mixed with the mixture of mPEG-b-PCL and PCL-
b-PPEEA (molar ratio, 1.5:1) and the resulting NPs were
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FIGURE 1 | Chemical structures of the polymers (PCL, Meo-PEG-b-PCL, and PCL-b-PPEEA) and schematic illustration of the self-assembly of the polymers into
nanoparticles (NPs) for small interfering RNA (siRNA) delivery and CCL-18 silencing in macrophages to inhibit breast cancer migration. The amphiphilic
Meo-PEG-b-PCL and PCL-b-PPEEA can spontaneously self-assemble into NPs with hydrophobic PCL chains embedded in the cores and hydrophilic PEG and
PPEEA chains positioned on the surface (a). After siCCL-18 loading via the electrostatic interaction (b) and then internalized by macrophages (c,d), the siCCL-18
can knock down CCL-18 expression (e) and thus CCL-18 secretion from the macrophages would be blocked (f), leading to the inhibition of tumor migration (g).

prepared according to the same method described above.
The size distribution and zeta potential of the NPs were
examined by dynamic light scattering (DLS, Malvern Instruments
Corporation). The morphology of the NPs was observed by
transmission electron microscopy (TEM, Tecnai G2 Spirit
BioTWIN).

Gel Retardation Assay
The NPs prepared above were mixed with the siCCL-18
aqueous solution (20 mM) at different N/P ratios.
After incubating at room temperature for 20 min, the
formed NP/siCCL-18 complexes were electrophoresed
on a 1% agarose gel at 120 mV for 10 min in pH 8.3

Tris/borate/EDTA buffer (89 mM Tris, 89 mM boric acid,
2 mMEDTA). The siRNA bands were visualized with
ethidium bromide staining under a UV transilluminator
at a wavelength of 365 nm. Naked siCCL-18 was used as
control.

In vitro siRNA Release
The NP/Cy5-siCCL-18 complexes at an N/P ratio of 10:1 were
prepared according the same method described above and then
suspended in pH 7.4 PBS solution at a siRNA concentration of
200 nM. Subsequently, the siRNA loaded NP suspension was
transferred to a dialysis device (MWCO 100 kDa) that was
immersed in pH 7.4 PBS solution at 37◦C. At a predetermined
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FIGURE 2 | (A) Transmission electron microscopic (TEM) images and (B) size distribution of the NP-40, NP-90, NP-130, and NP-180.

interval, 5 µL of the NP suspension was withdrawn and mixed
with 20-fold DMSO. The fluorescence intensity of Cy5-siCCL-18
was determined by a microplate reader.

Evaluation of the Stability of NP/siRNA Complexes
The NP/siCCL-18 complexes were prepared at an N/P ratio
of 10:1 and then dispersed in DMEM containing 10% FBS at
37◦C. At a predetermined interval, the size distribution of the
NP/siCCL-18 complexes was examined by DLS.

Cell Culture
THP-1 cells (human monocytic leukemia cell line) and human
breast cancer cells (MDA-MB-231 cell line) were obtained from
the American Type Culture Collection (ATCC) and incubated
in DMEM medium with 10% FBS at 37◦C in a humidified
atmosphere containing 5% CO2.

Construction of M2-Like Macrophages
THP-1 cells were incubated in DMEM medium containing 10%
FBS and PMA (10 ng/mL) at for 8 h. Subsequently, the medium
was replaced by fresh DMEM medium containing interleukin-4
(IL-4, 20 ng/mL). After 48 h incubation, the cells will differentiate
into M2-like macrophages and the mRNA level of CCL-18 was
examined using quantitative reverse transcription real-time PCR
(qRT-PCR).

Confocal Laser-Scanning Microscope (CLSM)
After successful construction of the M2-like macrophages, the
cells (50,000 cells) were seeded in round disks and incubated
in 2 mL of DMEM medium containing 10% FBS. After
24 h incubation, the medium was replaced and the NP/Cy5-
siCCL-18 complexes were added to the disks at a siRNA
concentration of 200 nM. After 4 h incubation, the medium
was removed and the cells were washed with pH 7.4 PBS
solution thrice. Finally, the nuclei were stained with DAPI
and the cells were viewed under a Carl Zeiss LSM 710
CLSM.

Flow Cytometry
The M2-like macrophages were seeded in six-well plate (50,000
cells per well) and incubated in 2 mL of DMEM medium
containing 10% FBS. After 24 h incubation, the medium was
replaced and the NP/Cy5-siCCL-18 complexes were added at
a siRNA concentration of 200 nM. After 4 h incubation, the
medium was removed and the cells were washed with pH 7.4 PBS
solution thrice. Finally, the cells were collected for flow cytometry
analysis using a BD FACSCalibur flow cytometer.

Cytotoxicity
The cytotoxicity of the NPs was evaluated by using MTT assay.
The M2-like macrophages were seeded in 96-well plates at 5,000
cells per well and incubated in 100 µL of DMEM medium
containing 10% FBS. After 24 h incubation, the medium was
removed and different amounts of the NPs suspended in the
culture medium were added. After 48 h incubation, the medium
was removed and the cell viability was examined using the MTT
assay according to the manufacturer’s protocol.

CCL-18 Silencing
The M2-like macrophages were seeded in six-well plate (50,000
cells per well) and incubated in 2 mL of DMEM medium
containing 10% FBS. After 24 h incubation, the medium
was replaced and the NP/siCCL-18 complexes were added at
different siRNA concentrations. After 48 h incubation, the
medium was removed and the cells were washed with pH
7.4 PBS solution thrice. The intracellular mRNA was isolated
and the mRNA level of CCL-18 was examined using qRT-
PCR.

Inhibition of Migration
MDA-MB-231 cells (50,000 cells) were seeded in round disks and
incubated in 2 mL of DMEM medium containing 10% FBS. After
24 h incubation, the cells in the predesigned area of the disks
were removed using tips. After washing the cells with PBS thrice,
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FIGURE 3 | Gel retardation analysis, size, and zeta potential of the complexes formed between siCCL-18 and the NP-40 (A), NP-90 (B), NP-130 (C), or NP-180 (D).

the cells were incubated with the conditioned medium from the
macrophages, in which the CCL-18 has been silenced by the NP-
180/siCCL-18 at a siRNA concentration of 400 nM. After 48 h
incubation, the medium was removed and the cells were viewed
under optical microscope after washing with PBS thrice.

RESULTS AND DISCUSSION

Preparation and Characterizations of
Nanoplatform
Starting from the commercial available mPEG-OH and
ε-CL, we employed ring-opening polymerization (ROP)

to synthesize the mPEG-b-PCL and PCL homopolymer
(Sun et al., 2008). The amphiphilic polymer PCL-b-PPEEA
was also prepared by ROP method (Sun et al., 2008), in
which the cationic PPEEA segment was used to complex
siRNA via electrostatic interaction. By mixing these three
polymers in acetonitrile and methyl alcohol (v/v, 50:50)
followed by the addition to deionized water, well-defined
NPs can be formed with spherical morphology (Figure 2A).
In this self-assembly system, the amphiphilic PEG-b-PCL
and PCL-b-PPEEA can spontaneously self-assemble into
NPs with hydrophobic PCL chains embedded in the cores
and hydrophilic PEG and PPEEA chains positioned on the
surface that can, respectively, stabilize the NPs and complex
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FIGURE 4 | Size of the complexes formed between siCCL-18 and NP-40,
NP-90, NP-130, or NP-180 incubated in DMEM medium containing 10% FBS
for different times.

negatively charged siRNA. Moreover, with the increasing
feed amount of PCL homopolymer, the average size of the
resulting NPs increases from ∼40 to 180 nm (Figure 2B).
The possible reason is that the increased percentage of PCL
homopolymer in the NPs induces the size increase of their
hydrophobic inner cores (Mao et al., 2014; Liang et al.,
2015). In this work, we prepared four types of NPs with
the size of 40, 90, 130, and 180 nm (respectively, denoted
NP-40, NP-90, NP-130, and NP-180) to evaluate their ability
to deliver CCL-18 siRNA (siCCL-18) for gene silencing in
macrophages.

We next used gel retardation assay to evaluate the siRNA
loading capacity of the NPs. As shown in Figure 3, due to the
presence of cationic PPEEA segment on the surface, all the NPs
can effectively load siCCL18 at an N/P ratio of 10:1, without
apparent size change after siCCL18 loading. Furthermore, all
the siCCL18 loaded NPs show good stability in 10% FBS-
containing cell culture medium (Figure 4). More importantly,
in comparison with the naked siCCL18, the use of the NPs
can protect the siCCL18 from degradation by RNase. As shown
in Figure 5A, with the protection by the NPs, the addition of
RNase does not induce the siRNA degradation and the loaded
siRNA can still bind with the NPs even under electric field.
In contrast, without the NP protection, the naked siRNA has
been degraded by the RNase and thus no siRNA band can
be observed in the gel retardation assay experiment. All these
results demonstrate the NP platform developed in this work
shows a strong ability to load and protect the siCCL-18, which
would thus ensure its bioactivity when used for regulation of
macrophage activities. Notably, since we only varied the feed
amount of hydrophobic PCL homopolymer to adjust the NP
size, while the other two polymers (Meo-PEG-b-PCL and PCL-
b-PPEEA) remain constant in the NP formulations, all the
NPs showed the similar ability to load and release the siRNA
(Figure 5B).

Evaluation of CCL-18 Silencing
After validation of the siRNA loading ability of the NPs,
we next examined whether these NPs can deliver siRNA
to macrophages for gene silencing. THP-1, a human
monocytic leukemic cell line, was used to construct M2-
type macrophage-like cells through treatment with PMA
and interleukin-4 (IL-4) (Liang et al., 2015). As shown in
Figure 6A, the high expression of CCL-18, a well-known
chemokine generated by M2-type macrophages (Chen et al.,
2011), demonstrated the success of THP-1 cells differentiation
from monocytes to M2-type macrophages (denoted THP-1-
originated macrophages). With this encouraging result, we
subsequently encapsulated dye-labeled siCCL-18 (Cy5-siCCL-
18) into the NPs and investigated their cellular uptake by
the differentiated THP-1 macrophages obtained above. From
the flow cytometry (FACS) analysis shown in Figure 6B, the
THP-1-originated macrophages show higher uptake of the
Cy5-siCCL18 loaded NPs compared to the naked siRNA.
The intracellular mean fluorescence intensity (MFI) is at
least 1.3-fold stronger than that of the macrophages treated
with the naked siRNA. Among these NP formulations, the
uptake of NP-180 is highest and the possible reason is that
macrophages are apt to internalize foreign materials with
large size (Tabata and Ikada, 1988; Champion et al., 2008).
Figure 6C shows the fluorescent images of macrophages
incubated with the Cy5-siCCL-18 loaded NP-180. Similar
as the results of FACS analysis, the THP-1-originated
macrophages show strong ability to internalize the siRNA
loaded NP-180 as seen with bright red fluorescence and these
NPs are mainly dispersed in the cytoplasm where siRNA
functions (Whitehead et al., 2009). Although the THP-1-
originated macrophages show higher cellular uptake of the
NP-180, these NPs do not induce apparent cytotoxicity
(Figure 7A).

Based on the results of FACS analysis and toxicity assay,
the NP-180 shows higher uptake by the THP-1-originated
macrophages with negligible toxicity. Therefore, we chose this
NP platform as siCCL-18 delivery tool to examine its gene
silencing efficacy in macrophages. As shown in Figure 7B,
the NP-180 can indeed transport siCCL-18 into the THP-1-
originated macrophages and thereby down-regulate CCL-18
expression. Compared to the macrophages without any treatment
(Control), the mRNA level of CCL-18 is down-regulated by
20% at a siCCL-18 concentration of 100 nM and more than
70% of CCL-18 is suppressed at a siCCL-18 concentration of
400 nM.

Evaluation of the Inhibition of Migration
It is known that CCL-18 is an important factor secreted
by TAMs that can enhance breast cancer metastasis and
therefore reduce patient survival (Chen et al., 2011; Su et al.,
2014). Previous reports demonstrate that CCL-18 released
by TAMs in breast cancer promotes the invasiveness of
cancer cells by triggering integrin clustering and enhancing
their adherence to extracellular matrix and silencing the
CCL-18 expression can inhibit the consistent activation
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FIGURE 5 | (A) Gel retardation assay of the siRNA loading capacity of the NP-40, NP-90, NP-130, and NP-180; (B) Cumulative siRNA release profile of the
complexes formed between Cy5-siCCL-18 and the NP-40, NP-90, NP-130, or NP-180.

FIGURE 6 | (A) The mRNA level of CCL-18 in the THP-1 cells treated with PMA and IL-4. (B) MFI determined by FACS analysis of the THP-1-originated
macrophages incubated with the Cy5-siCCL-18 loaded NPs for 4 h at a siRNA concentration of 200 nM. (C) Fluorescent images of the macrophages incubated with
the Cy5-siCCL-18 loaded NP-180 for 4 h at a siRNA concentration of 200 nM. The nuclei and macrophages were staining with DAPI as blue fluorescence and
anti-CD68 as green fluorescence, respectively. ∗∗P < 0.01; ∗∗∗P < 0.001.
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FIGURE 7 | (A) Cell viability of the macrophages incubated with the siCCL-18 loaded NPs at various concentrations for 48 h. (B) The mRNA level of CCL-18 in the
macrophages treated by Lipo/siCCL-18 complexes (Lipo/siCCL-18), negative control siRNA loaded NP-180 (NP-180/siNC), and siCCL-18 loaded NP-180
(NP-180/siCCL-18). (C) Optical images of MDA-MB-231 cells incubated with the conditioned medium from the macrophages that treated with Lipo/siCCL-18,
NP-180/siNC, and NP-180/siCCL-18 at a siRNA concentration of 400 nM. ∗∗∗P < 0.001.

of downstream signal pathways to prevent the migration
of breast cancer (Chen et al., 2011). Therefore, we finally
simulated tumor microenvironment in vitro by incubating
breast cancer cell line (MDA-MB-231) with the medium that
was obtained from THP-1-originated macrophage (denoted
conditioned medium), and examined the influence of CCL-
18 silencing on the behavior of MDA-MB-231 cells. As
shown Figure 7C, due to presence of secreted CCL-18 by
macrophages, the addition of conditioned medium to MDA-
MB-231 cells can enhance their migration compared to the
cells incubated in normal medium. In contrast, after using
siCCL-18 loaded NP-180 to suppress CCL-18 expression
in macrophages, the migration of MDA-MB-231 cells is
significantly inhibited when incubated with the conditioned
medium. This result is consistent with our previous reports
(Chen et al., 2011; Su et al., 2014; Nie et al., 2017), and

highlights the importance of CCL-18 to the breast cancer cell
migration.

CONCLUSION

We have developed a robust RNAi NP platform for efficient
gene silencing in M2-type macrophages. Through varying the
percentage of hydrophobic PCL homopolymer in the NP
formulation, we successfully constructed four types of NPs
with different sizes and systemically evaluated their siRNA
loading ability and gene silencing efficacy. Experimental results
demonstrate that the NP platform with larger size (NP-180)
shows higher cellular uptake and efficient CCL-18 silencing in
macrophages, leading to efficient inhibition of the breast cancer
cell migration. Notably, this NP platform may passively target the
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tumor tissues via the EPR effect. However, the NP size is very large
(∼180 nm) and will affect the therapeutic effect if used for in vivo
regulation of macrophage behaviors. We are currently optimizing
the NP formulation and small size NPs will be developed in the
future for in vivo regulation of macrophage behaviors and cancer
treatment.
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