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The mevalonate pathway provides sterols for membrane structure and nonsterol

intermediates for the post-translational modification and membrane anchorage

of growth-related proteins, including the Ras, Rac, and Rho GTPase family.

Mevalonate-derived products are also essential for the Hedgehog pathway, steroid

hormone signaling, and the nuclear localization of Yes-associated protein and

transcriptional co-activator with PDZ-binding motif, all of which playing roles in

tumorigenesis and cancer stem cell function. The phosphatidylinositol-4,5-bisphosphate

3-kinase-AKT-mammalian target of rapamycin complex 1 pathway, p53 with

gain-of-function mutation, and oncoprotein MYC upregulate the mevalonate pathway,

whereas adenosine monophosphate-activated protein kinase and tumor suppressor

protein RB are the downregulators. The rate-limiting enzyme, 3-hydroxy-3-methylglutaryl

coenzyme A reductase (HMGCR), is under a multivalent regulation. Sterol regulatory

element binding protein 2 mediates the sterol-controlled transcriptional downregulation

of HMGCR. UbiA prenyltransferase domain-containing protein-1 regulates the

ubiquitination and proteasome-mediated degradation of HMGCR, which is accelerated

by 24, 25-dihydrolanosterol and the diterpene geranylgeraniol. Statins, competitive

inhibitors of HMGCR, deplete cells of mevalonate-derived intermediates and

consequently inhibit cell proliferation and induce apoptosis. Clinical application of statins

is marred by dose-limiting toxicities and mixed outcomes on cancer risk, survival

and mortality, partially resulting from the statin-mediated compensatory upregulation

of HMGCR and indiscriminate inhibition of HMGCR in normal and tumor cells. Tumor

HMGCR is resistant to the sterol-mediated transcriptional control; consequently, HMGCR

is upregulated in cancers derived from adrenal gland, blood and lymph, brain, breast,

colon, connective tissue, embryo, esophagus, liver, lung, ovary, pancreas, prostate, skin,

and stomach. Nevertheless, tumor HMGCR remains sensitive to isoprenoid-mediated

degradation. Isoprenoids including monoterpenes (carvacrol, L-carvone, geraniol, perillyl

alcohol), sesquiterpenes (cacalol, farnesol, β-ionone), diterpene (geranylgeranyl acetone),

“mixed” isoprenoids (tocotrienols), and their derivatives suppress the growth of tumor

cells with little impact on non-malignant cells. In cancer cells derived from breast,

colon, liver, mesothelium, prostate, pancreas, and skin, statins and isoprenoids, including
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tocotrienols, geraniol, limonene, β-ionone and perillyl alcohol, synergistically suppress

cell proliferation and associated signaling pathways. A blend of dietary lovastatin and

δ-tocotrienol, each at no-effect doses, suppress the growth of implanted murine B16

melanomas in C57BL6 mice. Isoprenoids have potential as adjuvant agents to reduce

the toxicities of statins in cancer prevention or therapy.

Keywords: isoprenoids, HMG CoA reductase, mevalonate, SREBP, statin, synergy, cancer

INTRODUCTION

Statins are competitive inhibitors of 3-hydroxy-3-methylglutaryl
coenzyme A (HMG CoA) reductase (HMGCR), the rate-limiting
enzyme in themevalonate pathway (Goldstein and Brown, 1990).
Widely prescribed as hypocholesterolemic agents, statins have
been shown to inhibit cell proliferation and induce apoptosis in
preclinical studies (Clendening and Penn, 2012). Clinical data
suggest inverse association of statin use and risk of some, but
not all, cancers. Dose-limiting toxicities of statins attributable
to statin-induced compensatory upregulation of HMGCR and
indiscriminate inhibition of HMGCR in normal and tumor cells
pose constraints on the application of statins in cancer and call
for novel approaches in reducing their side effects.

In this review we first summarize the role of the mevalonate
pathway in cell proliferation and cancer by highlighting
the intertwined relations between the mevalonate pathway
and several key signaling molecules in growth regulation
(Mullen et al., 2016). The multivalent regulation of HMGCR,
including sterol-mediated transcriptional downregulation and
nonsterol-induced enhancement of degradation, in normal
cells contrasts with the sterol-resistant, dysregulated tumor
HMGCR that remains uniquely sensitive to isoprenoid-mediated
downregulation (Mo and Elson, 2004). The mechanisms
underlying the isoprenoid-mediated tumor suppression is
elucidated, followed by studies showing the synergistic effect
of statins and isoprenoids and suggesting the potential of
isoprenoids in adjuvant therapy to reduce the toxicities of statins.

Abbreviations: AMPK, adenosine monophosphate-activated protein kinase; CC-

RCC, clear cell renal cell carcinoma; CDK2, cyclin dependent kinase 2; CHIP,

Hsc70-interacting protein; DMBA, 7,12-Dimethylbenz[a]anthracene; DNAJA1,

DNAJ heat shock protein family (Hsp40) member A1; ERK, extracellular signal-

regulated kinase; FPP, farnesol pyrophosphate; GGA, geranylgeranyl acetone;

GGPP, geranylgeranyl pyrophosphate; Gp78, glycoprotein 78; HIF1α, hypoxia

inducible factor 1α; HMG CoA, 3-hydroxy-3-methylglutaryl coenzyme A;

HMGCR, 3-hydroxy-3-methylglutaryl coenzyme A reductase; HUVEC, umbilical

vein endothelial cell; Insig, insulin-induced gene; JAK2, Janus Kinase 2; JNK, c-

Jun N-terminal kinase; LDL, low density lipoprotein; MAPK, mitogen-activated

protein kinase; MEP/DOXP, 2-C-methyl-D-erythritol 4-phosphate/1-deoxy-D-

xylulose 5-phosphate; MNU, N-methyl-N-nitrosourea; mTOR, mammalian target

of rapamycin; NFκB, nuclear factor kappa B; PI3K, phosphatidylinositol-4,5-

bisphosphate 3-kinase; SCAP, sterol regulatory element binding proteins cleavage

protein; SRE, sterol regulatory element; SREBPs, sterol regulatory element binding

proteins; STAT3, Signal transducer and activator of transcription 3; STOMP, Effect

of Statins on Skeletal Muscle Function and Performance; TAZ, PDZ binding motif;

TNM, Tumor, Node, Metastasis; TRF, tocotrienol-rich fraction; Ubc7, Ubiquitin-

conjugating enzyme E2 7; UBIAD1, UbiA prenyltransferase domain-containing-

protein-1; Ubiquinone, coenzymeQ10; VCP, valosin containing protein; VHL, Von

Hippel-Lindau; YAP, yes-associated protein.

ROLE OF THE MEVALONATE PATHWAY IN
CELL PROLIFERATION AND CANCER

The mevalonate pathway provides the bulk end product,
cholesterol, and nonsterol isoprenoids such as heme-
A, ubiquinone (or coenzyme Q10), dolichol, isopentenyl
adenine, farnesyl pyrophosphate (FPP), and geranylgeranyl
pyrophosphate (GGPP) (Goldstein and Brown, 1990).
Cholesterol is important for membrane structure, whereas
the mevalonate-derived nonsterol compounds play vital roles in
iron-containing cofactors of hemoproteins (e.g., hemoglobin,
myoglobin, catalase, endothelial nitric oxide synthase, and
cytochrome), mitochondrial electron transport and cellular
respiration, N-glycosylation of proteins, transfer RNA (Buhaescu
and Izzedine, 2007), and post-translational prenylation and
membrane anchorage of growth-related proteins, including
the Ras, Rac, and Rho GTPase family (Hentschel et al., 2016;
Wang and Casey, 2016). The prenylated proteins collectively
support cell proliferation and cancer growth (Mullen et al., 2016)
(Figure 1).

The mevalonate pathway is also intertwined with several
signaling pathways with regulatory roles in cancer. The
most frequently altered signaling pathway in cancer, the
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-AKT
pathway, regulates cell survival and proliferation (Mullen
et al., 2016). Through the downstream mammalian target
of rapamycin (mTOR) complex 1 signaling (Duvel et al.,
2010), PI3K-AKT pathway activates the mevalonate pathway
(Ricoult et al., 2016) and concomitantly stimulates glucose

uptake and glycolysis that provide acetyl-CoA and NADPH to
support the mevalonate pathway. Gain-of-function mutations

of p53 (Freed-Pastor et al., 2012), another frequently mutated
gene in cancer, and the oncoprotein MYC (Wu et al., 2016),
upregulate the transcription of mevalonate pathway genes. In
contrast, adenosine monophosphate-activated protein kinase

(AMPK), an energy sensor and central regulator of metabolism,
downregulates themevalonate pathway via phosphorylation (Beg
et al., 1973, 1978) and transcriptional control (Li et al., 2011) of
HMGCR. The tumor suppressor protein RB also downregulates

the mevalonate pathway (Shamma et al., 2009). Conversely, the

mevalonate pathway provides sterols and nonsterol products for
Hedgehog pathway (Eaton, 2008), steroid hormone signaling
(Nguyen et al., 2015), and the nuclear localization of Yes-
associated protein (YAP) and transcriptional co-activator with
PDZ-binding motif (TAZ) (Sorrentino et al., 2014; Koo and
Guan, 2018), all of which have important roles in tumorigenesis
and the cancer stem cell function (Mancini et al., 2018).
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FIGURE 1 | The regulation of the mevalonate pathway and the role of mevalonate-derived metabolites in cell proliferation. When cellular level of sterol is low, Insig

dissociates from the SREBP-SCAP complex, allowing the latter to move to the Golgi apparatus. Following proteolytic cleavage of SREBP, its basic helix-loop-helix

fragment enters the nucleus, binds to the SRE domain of target genes, and initiates the transcription and synthesis of a number of enzymes in the mevalonate

pathway, including its rate-limiting enzyme, HMGCR. The activated mevalonate pathway produces sterols and nonsterols, including FPP and GGPP for protein

prenylation and cell proliferation. Sterols block the transport of the SREBP-SCAP complex to the Golgi apparatus and induce the binding of HMGCR to Insig, leading

to the ubiquitination and degradation of HMGCR. Exogenous geranylgeraniol is phosphorylated and converted to GGPP, which induces the dissociation of UBIAD1

from HMGCR and facilitates the degradation of HMGCR. The statins competitively inhibit HMGCR. Consequently, the lack of sterols and nonsterols results in a

compensatory upregulation of HMGCR. Tocotrienols and potentially other isoprenoids block the processing and nuclear localization of SREBP and enhance the

ubiquitination and degradation of HMGCR. HMGCR is upregulated in tumors but remains sensitive to isoprenoid-mediated downregulation. Synergistic impact of

isoprenoids and statins on tumor HMGCR may offer a novel approach in enhancing the efficacy of statins with reduced toxicity.

REGULATION OF THE MEVALONATE
PATHWAY IN NORMAL CELLS

In non-malignant cells, HMGCR is highly regulated by a
multivalent feedback mechanism mediated by sterols and
nonsterol isoprenoid end products of mevalonate metabolism.
This tight regulatory feedback system, which operates at
transcriptional and post-transcriptional levels, ensures proper
signaling for sufficient sterol and isoprenoid syntheses and
optimal cell growth (Goldstein and Brown, 1990). Transcription
regulation, exerted by sterols and mediated by sterol regulatory
element (SRE), is the dominant feedback mechanism. The
SRE is a promoter sequence in the 5′ flanking region of
more than 30 genes involved in lipid biosynthesis and uptake,
including those of HMG CoA synthase, HMGCR, and low
density lipoprotein (LDL) receptor (Goldstein and Brown, 1990;
Brown and Goldstein, 1997; Horton et al., 2002; Goldstein et al.,
2006). By providing a binding site for the membrane-bound
transcriptional factors called SRE binding proteins (SREBPs), the
SRE domain allows for SREBP-mediated transcriptional control
of all these SRE-containing genes. Another ER membrane-
embedded protein, known as SREBP cleavage activating protein
(SCAP), is coupled with SREBP and plays a critical role in
the intracellular escort and proteolytic processing of SREBP
(Osborne et al., 1985; Gil et al., 1988; Goldstein et al.,

2006). SCAP and HMGCR share an intramembrane sequence
named sterol-sensing domain that detects the concentration
of membrane and intracellular sterols and mediates the
interactions of SCAP and HMGCR with insulin–induced gene
(Insig) proteins during transcriptional and post-transcriptional
regulations (Goldstein et al., 2006; Johnson and DeBose-Boyd,
2018).

When sterol levels diminish in cells, Insig dissociates from
the SCAP-SREBP-Insig complex and undergoes ubiquitin-
mediated degradation (Gong et al., 2006). The liberated
SCAP-SREBP complex is then taken into vesicles coated
by COPII proteins (Sec23, Sec24, and Sar1-GTP) and
transported to the Golgi apparatus (Brown and Goldstein,
1999; Goldstein et al., 2006; Espenshade and Hughes, 2007).
The SREBP is cleaved on the cytosolic surface of Golgi
membrane in a two-step proteolytic reaction by site-1 serine
protease and site-2 Zn2+ metalloproteinase, producing the
transcriptionally active, basic helix-loop-helix fragment of
SREBP. This active motif of SREBP enters nucleus, binds
to the SRE domain, and initiates transcription of target
genes that produce proteins taking part in cholesterol
uptake and biosynthesis, including LDL receptor, HMG
CoA synthase, HMGCR, Insig-1, and FPP synthase (Goldstein
and Brown, 1990; Brown and Goldstein, 1999; Horton et al.,
2002).
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Once intracellular sterol levels are restored by increased
biosynthesis or uptake due to aforementioned SREBP-
upregulated events, a convergent feedback inhibition terminates
the SREBP-directed transcriptional operation. Two of the
SREBP-induced molecules, newly synthesized Insig-1 and newly
biosynthesized or collected exogenous cholesterol, bind SCAP
simultaneously and induce its conformational changes. As a
result, the SCAP-SREBP complex is stabilized and retained in
the ER membrane and prevented from undergoing any further
transcriptional processing (Yang et al., 2002; Goldstein et al.,
2006; Gong et al., 2006). This coordinated process ensures that
cells attain sufficient amounts of both cholesterol and nonsterol
isoprenoids for their growth and metabolic requirements before
the SREBP transcriptional operation is fully halted. Furthermore,
this feedback mechanism precludes overaccumulation of
potentially toxic sterols.

As one of the genes in the mevalonate pathway under the
transcriptional control of SREBP, HMGCR has a secondary
line of regulation on its synthesis and degradation. While
an earlier study postulated that an unknown mevalonate-
derived isoprenoid regulates HMGCR translation via a 5′-
untranslated region of HMGCR mRNA (Nakanishi et al., 1988),
the mechanisms underlying the degradation of HMGCR have
been more clearly elucidated. This post-transcriptional fine-
tuning of HMGCR regulation is mediated by two mevalonate-
derived compounds, a reduced tetracyclic triterpenoid, 24, 25-
dihydrolanosterol, and a nonsterol diterpene, geranylgeraniol
(Sever et al., 2003). 24, 25-Dihydrolanosterol and a less effective
cholesterol induce binding of Insig to the sterol sensing domain
of HMGCR, a process that requires a tetrapeptide sequence
YIYF located in the second transmembrane segment of HMGCR
(Roitelman and Simoni, 1992; McGee et al., 1996; Ravid
et al., 2000; DeBose-Boyd, 2008). This binding is followed by
the ubiquitination and proteasome-mediated degradation of
HMGCR (Sever et al., 2004; Song et al., 2005; Lange et al., 2008;
Nguyen et al., 2009). Addition of HMGCR inhibitors to cultured
cells containing adequate amounts of sterols enhanced HMGCR
protein expression and reduced its degradation, which was
reverted with supplemental nonsterol metabolites (Goldstein and
Brown, 1990), suggesting a nonsterol metabolite also regulates
the expression and degradation of HMGCR. Using SV589
human fibroblasts that lack the monocarboxylate transporter
and consequently the ability for mevalonate uptake, studies
showed that geranylgeraniol is more potent than the 15-carbon
isoprenoid farnesol in accelerating the sterol-induced and Insig-
dependent ubiquitination and degradation of HMGCR (Sever
et al., 2003).

More recent studies have shown that geranylgeraniol might
be phosphorylated and converted to GGPP, which serves
as a potent regulator of HMGCR stability and degradation
(Garza et al., 2009; Schumacher et al., 2016, 2018). Buildup
of GGPP in ER membranes triggers dissociation of UbiA
prenyltransferase domain-containing protein-1 (UBIAD1)
from HMGCR, permitting ER-to-Golgi transport and
maximal degradation of HMGCR (Schumacher et al., 2018).
Additionally, pulse-chase experiments confirmed the synergistic
effects of mevalonate or geranylgeraniol, but not farnesol,

with sterols in enhancing complete HMGCR degradation
(Sever et al., 2003).

The E2 conjugating enzyme Ubc7, E3 ubiquitin ligase
glycoprotein 78 (gp78), and ATPase VCP/p97 facilitate delivery
of ubiquitinated HMGCR from the ER membrane to the
proteasomes for proteolysis and degradation (Espenshade and
Hughes, 2007). A recent study (Hwang et al., 2016) confirmed
that liver employs the samemechanism regulating the accelerated
degradation of HMGCR and cholesterol homeostasis initially
found in cultured cells. This operation safeguards HMGCR
synthesis and stability until the cellular requirements of sterols
and isoprenoids are met (Goldstein and Brown, 1990; Peffley and
Gayen, 2003; Sever et al., 2003; Song et al., 2005; Goldstein et al.,
2006; Lange et al., 2008; Nguyen et al., 2009). It was recently
reported that the monoterpene linalool prevents the binding
of SREBP-2 to HMGCR promoter and enhances the ubiquitin-
mediated degradation of HMGCR (Cho et al., 2011). A second
monoterpene geraniol suppresses the protein level and specific
activity of HMGCR in mouse liver (Galle et al., 2015) and A549
cells (Galle et al., 2014). These findings may add another layer of
complexity to the regulation of HMGCR. It remains unknown
whether GGPP mediates the effect of these monoterpenes on
HMGCR.

UPREGULATION OF HMGCR IN TUMORS

Tumorigenesis has been associated with alterations and
reprograming of energy, carbohydrate and lipid metabolisms
with intertwined relations (Hanahan and Weinberg, 2011;
Pavlova and Thompson, 2016). Activated oncogenes including
ras and myc, for example, have been associated with alterations
in glucose metabolism termed “aerobic glycolysis,” one of the
hallmarks of cancer cells that is also known as the “Warburg
effect” (Warburg, 1956; Hanahan and Weinberg, 2011). Hypoxia
and the Ras oncoprotein that requires mevalonate-derived
FPP for its post-translational modification can independently
stimulate hypoxia-inducible factor 1α (HIF1α) and HIF2α
transcriptional factors, which in turn upregulate glucose
transporters and enzymes of the glycolytic pathway (Hanahan
and Weinberg, 2011).

One of the metabolic adaptations to satisfy accelerated tumor
growth is the upregulation of the mevalonate pathway, which
has been implicated in the origin, progression, and phenotype
of many human malignancies (Mo and Elson, 2004; Mullen
et al., 2016). Tumor cells have augmented demands for nonsterol
isoprenoids required for the prenylation of proteins supporting
their excessive growth and proliferation. In response, tumors
alter the monitory systems of mevalonate pathway that assure
a constant and sufficient intracellular pool of sterols and
nonsterol isoprenoids for non-malignant cell growth. One of the
dysregulations stems from the overexpression and hyperactivity
of tumor HMGCR as a result of its resistance to the sterol-
dependent transcriptional regulation. Since Siperstein and Fagan
(Siperstein and Fagan, 1964) reported the dysregulation of
cholesterol synthesis in tumors and tumor-bearing animals, the
uncoupling of HMGCR activity from sterol-mediated feedback
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regulation has been found in diverse tumors, embryonic and
differentiating tissues and carcinogen-treated and regenerating
liver (Elson et al., 1999).

Table 1 lists the studies showing differential expression of
HMGCR in normal and tumor cells. In various human tissues
including adrenal gland (Lehoux et al., 1984), blood and lymph
(Yachnin and Mannickarottu, 1984; Harwood et al., 1991; Vitols
et al., 1994; Hentosh et al., 2001; Kuzu et al., 2016), brain
(Maltese, 1983; Laezza et al., 2015), breast (El-Sohemy and
Archer, 2000; Celis et al., 2006; Ginestier et al., 2012), connective
tissue (Kuzu et al., 2016), colon (Cerda et al., 1995; Hentosh
et al., 2001; Notarnicola et al., 2004; Caruso and Notarnicola,
2005; Tyagi, 2005), embryo (Engstrom and Schofield, 1987),
esophagus (Shi et al., 2013), liver (Kawata et al., 1990; Tam
et al., 1991; Sohda et al., 2013), lung (Bennis et al., 1993), ovary
(Zheng et al., 2018), prostate (Chen and Hughes-Fulford, 2001;
Ettinger et al., 2004; Krycer et al., 2009; Murtola et al., 2012),
skin (Kuzu et al., 2016), and stomach (Caruso et al., 2002),
HMGCR mRNA and proteins levels are several-fold higher
in tumors than their counterparts in normal tissues. Factors
controlling the expression of HMGCR, including SREBP-1a,
SREBP-2 and SCAP, were found to be overexpressed in prostate
cancer (Krycer et al., 2009), contributing to transcriptional
upregulation of HMGCR. Other enzymes in the mevalonate
pathways, including farnesyltransferase, FPP synthase (Abate
et al., 2017), and GGPP synthase (Wang et al., 2018), are also
upregulated, suggesting a well-concerted regulation in raising the
available metabolites derived from mevalonate. The augmented
biosynthesis of cholesterol observed in tumors is consistent
with the resistance of tumor HMGCR and SREBP-2 (Chen
and Hughes-Fulford, 2001) to the cholesterol-mediated feedback
inhibition that was initially observed in mouse hepatoma BW-
7756 (Siperstein and Fagan, 1964). Several tissues in rodents,
including bone marrow, breast (Rao et al., 1988; El-Sohemy and
Archer, 2000), liver (Kandutsch and Hancock, 1971; Siperstein
et al., 1971; Mitchell et al., 1978; Feingold et al., 1983; Gregg et al.,
1986; Erickson et al., 1988; Azrolan and Coleman, 1989; Coni
et al., 1992; Olsson et al., 1995; Clendening et al., 2010), lymph
(Philippot et al., 1977), and pancreas (Rao et al., 1983), showed
higher HMGCR expression and activity once they become
malignant.

Consistent with these observations is the finding that
exogenous mevalonate or artificially overexpressed HMGCR
promotes growth. Supplemental mevalonate promoted growth of
metastatic human breast cancerMDA-MB-435 cells in xenograft-
bearing mice (Duncan et al., 2004a). Supplemental mevalonate
increased the proliferation of cancer cells by upregulating cyclin-
dependent kinase 2 (CDK2) activity and accelerating entry of
cells into the S phase of cell division cycle (Duncan et al., 2004a).
Ectopic expression of full-length or splice variant of HMGCR
promotes transformation (Clendening et al., 2010). Finally,
overexpression of mevalonate pathway genes is correlated with
poor prognosis of recurrence-free and overall survival in breast
cancer patients (Kimbung et al., 2016).

A recent study found that mutant p53-mediated upregulation
of the mevalonate pathway is both necessary and sufficient for
architectural phenotypes in breast cancer (Freed-Pastor et al.,

2012), offering a new perspective for the role of the mevalonate
pathway in cancer. The correlation between p53 mutation
and highly expressed mevalonate pathway genes likely involves
SREBP-2 and to a lesser extent, SREBP-1, which may assist
the binding of p53 to the promoter of HMGCR gene. The
mutant p53 and the mevalonate pathway also form a feed-
forward loop in promoting cell proliferation. Mevalonate kinase
upregulates DNAJ heat shock protein family (Hsp40) member
A1 (DNAJA1), a type-I Hsp40, which inhibits the ubiquitination
and degradation of mutant p53 mediated by the C-terminus of
Hsc70-interacting protein (CHIP) E3 ubiquitin ligase (Parrales
et al., 2016, 2018). Further implicating the role of the mevalonate
pathway in tumorigenesis is the finding that mevalonate pathway
inhibitors have cytostatic and cytotoxic effects in von Hippel-
Lindau (VHL)-deficient clear cell renal cell carcinoma (CC-RCC)
through an HIF-dependent mechanism (Thompson et al., 2018).
Overall, these findings demonstrate the cancer promoting effects
of excessive mevalonate and HMGCR activity.

EFFECTS OF STATINS ON CANCER
GROWTH WITH DOSE-LIMITING
TOXICITIES

Statins, competitive inhibitors of HMGCR and cholesterol-
lowering drugs, possess anti-cancer properties due to their
ability to suppress the mevalonate pathway (Clendening and
Penn, 2012). Studies have suggested chemopreventive potential
of statins against several types of cancer (Hindler et al.,
2006) including those of blood, brain (Girgert et al., 1999;
Koyuturk et al., 2004), bone (Kany et al., 2018), head and neck
(Dimitroulakos et al., 2001; Knox et al., 2005), liver (Paragh
et al., 2005), ovary (Abdullah et al., 2017; Jones et al., 2017), skin
(Shellman et al., 2005), and thyroid (Chen et al., 2017). Statins
deplete cells of mevalonate-derived isoprene metabolites (FPP
and GGPP) that are essential for the prenylation and activation
of oncoproteins, including Ras and Rho. Consequently, statins
have been shown in preclinical in vitro and in vivo studies
to modulate signaling molecules including H-, K-, and N-
Ras, Raf-1, nuclear factor kappa B (NFκB), mitogen-activated
protein kinases (MAPKs), PI3K/AKT, extracellular signal-
regulated kinase (ERK), mTOR, signal transducer and activator
of transcription 3 (STAT3), Janus kinase 2 (JAK2) and caspases,
suppress cell proliferation and cell cycle progress, and induce
tumor cell apoptosis (Hindler et al., 2006; Pisanti et al., 2014;
Chen et al., 2015; Ahmadi et al., 2017; Beckwitt et al., 2018; Kong
et al., 2018). Furthermore, statins inhibit tumor cell invasion,
migration, and metastasis by attenuating the geranylgeranylation
and activation of Rho oncoproteins (Al-Haidari et al., 2014;
Kato et al., 2018). Conversely, mevalonate and GGPP abolished
statin-induced effects on p-AKT, p-ERK, cell cycle arrest, and
apoptosis in several tumors including human HL-60 leukemia
cells (Chen et al., 2015), ovarian cancer cells (de Wolf et al.,
2017), MiaPaCa-2 pancreatic cancer cells (Gbelcova et al., 2017),
Caki-1 and KTC-26 renal carcinoma cells (Woschek et al., 2016),
and malignant anaplastic thyroid cancer (Chen et al., 2017). By
blocking the synthesis of mevalonate-derived metabolites that
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TABLE 1 | Overexpression of HMGCR and upregulation of mevalonate pathway activities in tumors.

Species Tissues Upregulation in tumors References

Human Adrenal gland Adrenal tumors had >70-fold higher HMGCR activity Lehoux et al., 1984

Blood and lymph Mononuclear blood cells and leukocytes from leukemia patients had several-fold

higher HMGCR activity than those from healthy subjects; HMGCR was upregulated

by up to 50-fold in stimulated lymphocytes; upregulation of mevalonate pathway was

correlated with lower survival of patients with acute myeloid leukemia

Yachnin and Mannickarottu,

1984; Harwood et al., 1991;

Vitols et al., 1994; Hentosh

et al., 2001; Kuzu et al.,

2016

Brain HMGCR activity in metastatic brain tumors was higher than that in primary tumors;

glioblastoma multiforme cell line U343 had higher HMGCR mRNA than normal

human astrocytes; FPP synthase was overexpressed in glioblastoma compared to

tumor-free peripheral brain and normal human astrocytes

Maltese, 1983; Laezza

et al., 2015; Abate et al.,

2017

Breast Upregulation of the mevalonate pathway enzymes including HMGCR was found in

breast apocrine cysts, DMBA- and MNU- initiated mammary tumors, breast cancer

stem cell-derived basal/mesenchymal tumorspheres, and Tamoxifen-resistant breast

cancer

El-Sohemy and Archer,

2000; Celis et al., 2006;

Ginestier et al., 2012

Colon HMGCR mRNA and activity were up to 8-fold higher in colorectal cancer cells than

those in colon epithelial cells, fibroblasts and mucosa; farnesyltransferase and FPP

synthase activities and cholesterol synthesis were also upregulated

Cerda et al., 1995; Hentosh

et al., 2001; Notarnicola

et al., 2004; Caruso and

Notarnicola, 2005; Tyagi,

2005

Connective tissue Upregulation of mevalonate pathway was correlated with lower survival of sarcoma

patients

Kuzu et al., 2016

Embryo HMGCR mRNA in embryonic tumors was higher than that in fetal tissues Engstrom and Schofield,

1987

Esophagus HMGCR in esophageal squamous cell carcinoma was higher than that in esophageal

tissue

Shi et al., 2013

Liver HMGCR activity and cholesterol biosynthesis were several-fold higher in

hepatocellular carcinoma and human HepG2 and Hep3B hepatoma cells than those

in liver, hepatocytes and fibroblasts

Kawata et al., 1990; Tam

et al., 1991; Sohda et al.,

2013

Lung HMGCR activity in A549 lung carcinoma cells was 2 to 4-fold higher than that in

fibroblasts; overexpressed GGPP synthase was found in lung adenocarcinoma

tissues and correlated with large tumors, high TNM stage, lymph node metastasis

and poor prognosis

Bennis et al., 1993; Wang

et al., 2018

Ovary SREBP-2 and HMGCR overexpression in several ovarian cancer cells including the

cisplatin-resistant A2780 epithelial ovarian cancer cells

de Wolf et al., 2017; Zheng

et al., 2018

Prostate PC-3, LNCaP, and VCaP prostate cancer cells had upregulated HMGCR, SREBP-2

and cholesterol biosynthesis in comparison to prostate epithelial cells and fibroblasts;

following castration, LNCaP prostate tumor xenograft in athymic BALB/c nude mice

progressed to androgen-independency with upregulated SREBP-1a,−1c, and−2,

FPP synthase and SCAP in comparison to pre-castration LNCaP; SREBP-2 in human

PrEC prostate epithelial cells and fibroblasts, but not that in DU145 or PC-3 prostate

cancer cells, responds to 25-hydroxycholestgerol-mediated downregulation; patients

with androgen-independent prostate cancer had higher SREBP-1

Chen and Hughes-Fulford,

2001; Ettinger et al., 2004;

Krycer et al., 2009; Murtola

et al., 2012

Skin Overexpression of HMGCR and other mevalonate pathway enzymes in melanoma;

upregulation of mevalonate pathway was correlated with lower survival of melanoma

patients

Kuzu et al., 2016

Stomach Gastric tumor had >2-fold increase in HMGCR Caruso et al., 2002

Rat Breast DMBA- and MNU-induced mammary tumor had 2 to 4-fold higher HMGCR that was

resistant to dietary cholesterol; total cholesterol in neoplastic tissue was 2 to 3-fold

higher; neoplastic cholesterol synthesis was 5 to 6-fold higher

Rao et al., 1988; El-Sohemy

and Archer, 2000

Liver HMGCR activities in hepatoma, carcinogen-induced hepatic nodules and

preneoplastic foci were up to 14-fold higher than that in liver; HMGCR in hepatoma

and preneoplastic foci was less responsive to cholesterol feedback

Siperstein et al., 1971;

Mitchell et al., 1978;

Feingold et al., 1983; Gregg

et al., 1986; Erickson et al.,

1988; Azrolan and

Coleman, 1989; Coni et al.,

1992; Olsson et al., 1995

Pancreas Tumor and fetal pancreas had higher HMGCR activity; fast-growing AT3A tumor had

higher HMGCR activity than the slow-growing AT3B tumor

Rao et al., 1983

(Continued)
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TABLE 1 | Continued

Species Tissues Upregulation in tumors References

Mouse Liver and bone

marrow

Baseline HMGCR activity in liver tumors was 2 to 8-fold higher than that in liver; 1%

dietary cholesterol led to >90% reduction in liver HMGCR but had much less

response in hepatoma; ectopic expression of HMGCR in normal bone marrow or fetal

liver cells increased myeloid colony formation

Kandutsch and Hancock,

1971; Clendening et al.,

2010

Guinea

pig

Lymph L2C leukemic lymphocytes had >30 times higher cholesterol biosynthesis, 8 times

higher HMGCR, and 25 times higher fatty acid biosynthesis than normal lymphocytes

Philippot et al., 1977

hinder the ubiquitination and degradation ofmutant p53 protein,
statins also suppress the growth of mutant p53-expressing cancer
cells (Freed-Pastor et al., 2012; Freed-Pastor and Prives, 2016;
Parrales et al., 2016). A recent study suggest that the anticancer
effect of statins is associated with the epithelial-to-mesenchymal
transition phenotype (Yu et al., 2018).

Clinical efficacy of statins in cancer reduction may be tissue
specific. Statin use was found to be associated with lower risks
of primary liver cancer (McGlynn et al., 2015), hepatocellular
carcinoma (Kim et al., 2018), HPV-negative squamous cell
carcinoma (SCC) of the larynx, hypopharynx, and nasopharynx
(Lebo et al., 2018), and subtypes of non-Hodgkin lymphomas
including diffuse large B-cell lymphomas and plasma cell
lymphomas (Ye et al., 2018), reduced aggressiveness (Allott et al.,
2016) andmortality (Yu et al., 2014) of prostate cancer, and lower
cancer specific and all-cause mortalities in esophageal cancer
(Nguyen et al., 2018). However, statins do not affect survival after
colorectal cancer (Hoffmeister et al., 2015) and small-cell lung
cancer (Seckl et al., 2017), the risk of pancreatic cancer (Hamada
et al., 2018), or the progression of prostate cancer in certain
minority-enriched subpopulations (Allott et al., 2018). The type
and hydrophilicity of statins, length of statin use, and ethnicity,
lifestyle, and preexisting health condition of subjects may have
contributed to the diverse outcome in statin and cancer studies—
with some but not all studies showing the anticancer effect of
statins (Gong et al., 2017).

Reported dose-limiting toxicities of statins may further deter
the use of statins—at least as single therapies—in cancer
treatment. Observations in clinical practices note approximately
20% adverse reaction rates to statins (Bruckert et al., 2005;
Maningat and Breslow, 2011; Zhang et al., 2013, 2017). Possible
adverse effects include diabetes mellitus, hemorrhagic stroke,
cognition decline, tendon rupture, interstitial lung disease, and
muscle problems (Thompson et al., 2016). The Effect of Statins
on Skeletal Muscle Function and Performance (STOMP) study
suggested 5–10% myalgia incidence in statin users (Parker et al.,
2013). Concerned about the potential adverse effects of statins on
cognition, glycemic control, and incident diabetes as well as their
wide range of interactions with other medications, the US Food
and Drug Administration issued and implemented new safety
labeling for statins in 2012.

The dose-limiting toxicities of statins may be at least partially
attributed to statin-mediated compensatory upregulation of
HMGCR. By mimicking and competing with HMG CoA, the
substrate for HMGCR, statins render HMGCR unavailable for
catalyzing the formation of mevalonate and downstream sterols

and nonsterols including FPP and GGPP. Statins also change
the conformation of HMGCR and prevent it from attaining
a functional structure, attaining high efficacy and specificity
in inhibiting HMGCR (Sirtori, 2014). By removing the sterol
and nonsterol products that downregulate HMGCR, persistent
exposure to statins induces compensatory overexpression of
the HMGCR in vitro and in vivo (Roglans et al., 2002).
Elevated HMGCR expression by approximately 6- to 10-
folds has been observed in liver microsomes and fibroblasts
(Bensch et al., 1978; Sirtori, 2014). In our hands lovastatin
also induced upregulation of HMGCR in human DU145
prostate carcinoma cells (Yeganehjoo et al., 2017). Exposure to
rosuvastatin, lovastatin, and atorvastatin caused 6-, 11-, and 15-
fold greater expression of hepatic HMGCR protein, respectively,
and enhanced SREBP-2 processing of some target genes in mice
(Schonewille et al., 2016). Since majority of cholesterol synthesis
occurs in the liver, the significant hepatic uptake of statins
and the limited bioavailability of many statins in extra-hepatic
tissues can cause compensatory induction ofmevalonate pathway
in these tissues. This can, in turn, stimulate overproduction
of isoprenoid metabolites (FPP and GGPP) and downstream
prenylated proteins (Duncan et al., 2005; Brown, 2007; Solomon
and Freeman, 2008). A compensatory increase in HMGCR
expression in extrahepatic tissues following cholesterol-lowering
statin therapy may provide a mechanistic basis for the elevated
risk of statin-related tumorigenesis observed in some studies
(Sacks et al., 1996; Coogan et al., 2002; Shepherd et al., 2002; Beck
et al., 2003).

In summary, preclinical and mechanistic studies support the
anti-cancer property of statins. The indiscriminate inhibition
of HMGCR in tumor and non-tumor cells and the resulted
overexpression of HMGCR may have contributed to dose-
limiting toxicities of statins and mixed outcomes in clinical
investigations. Efforts have been devoted to identifying agents
capable of synergizing with statins in cancer growth inhibition.

ISOPRENOIDS AND THEIR MECHANISMS
OF ACTION

Isoprenoids, also known as terpenoids, are a class of naturally
occurring phytochemicals found in fruits, vegetables, and
unrefined cereal grains. The carbon skeleton of these organic
compounds is assembled from one or multiple copies of the
five-carbon isoprene unit (X), giving rise to hemiterpenoids
(1X, e.g., prenol and isovaleric acid), cyclic monoterpenes

Frontiers in Pharmacology | www.frontiersin.org 7 January 2019 | Volume 9 | Article 1515

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Mo et al. Isoprenoids Reduce Adverse Effects of Statins

(2X, e.g., d-limonene, perillyl alcohol, perillaldehyde, carvacrol,
carvone, and thymol), acyclic monoterpenes (2X, e.g., geraniol),
sesquiterpenes (3X, e.g., cacalol, farnesol), diterpenes (4X, e.g.,
geranylgeraniol), triterpenes (6X, e.g., lupeol), tetraterpenes (8X,
e.g., lycopene), and polyterpenes. Other isoprenoids such as the
tocotrienols, members of the vitamin E family with a farnesyl side
chain, are “mixed” isoprenoids with only part of the molecule
being derived from the isoprene unit (Bach, 1995; Kumari et al.,
2013). Besides the classical mevalonate pathway, an alternative
non-mevalonate 2-C-methyl-D-erythritol 4-phosphate/1-deoxy-
D-xylulose 5-phosphate (MEP/DOXP) pathway also produces
isoprenoid precursors in bacteria, green algae, and some plants
(Lichtenthaler, 1999; Hunter, 2007).

Diverse isoprenoids of plant mevalonate metabolism trigger
post-transcriptional events to regulate the HMGCR expression
and activity. These isoprenoid-mediated modulations include
blockade of HMGCR mRNA translation and induction of
HMGCR degradation in proteasomes.

Despite the demolished sterol-dependent transcriptional
regulation in cancer cells, the isoprenoid-induced post-
transcriptional tuning of HMGCR still exists and, in fact,
becomes more compelling in tumor cells (Mo and Elson, 1999,
2004). Several isoprenoids such as δ-, γ-, and α-tocotrienol
(Parker et al., 1993), farnesol (Meigs et al., 1996), β-ionone
(Jones et al., 2013), geraniol (Houten et al., 2003; Peffley and
Gayen, 2003), and their derivatives (Bradfute and Simoni, 1994;
Pearce et al., 1994) suppress HMGCR activity. The 20-carbon
isoprenoid geranylgeraniol effectively hinders HMGCR activity
in human lung (Miquel et al., 1996) and prostate (Fernandes
et al., 2013) tumor cells. At a concentration (30µM) insufficient
to affect SREBP-2 processing, geranylgeraniol synergized
with sterols in shutting down processing of this HMGCR
transcriptional factor in human SV589 fibroblasts (Sever et al.,
2003). Tocotrienols inhibit mevalonate pathway through an
Insig-dependent ubiquitination and degradation of HMGCR
(Song and DeBose-Boyd, 2006). This regulation of HMGCR by
tocotrienols has endowed these molecules with regulatory effects
on cholesterol production and, thus, their hypocholesterolemic
properties in mammalian cells (Parker et al., 1993). δ- and
γ-tocotrienols, the strongest suppressors of HMGCR (Pearce
et al., 1994; Song and DeBose-Boyd, 2006), were initially
found to mimic nonsterol isoprenoids in accelerating HMGCR
degradation at the post-transcriptional level (Parker et al., 1993).
Subsequent studies revealed the direct recognition of these two
structures by sterol-sensing systems in the ER membrane and
their sterol-like activities in enhancing the Insig-dependent
ubiquitination and degradation of HMGCR (Song and DeBose-
Boyd, 2006). The same study delineated efficient blocking of
SREBP-2 processing by the δ- but not γ- isoform of tocotrienol
(Song and DeBose-Boyd, 2006). Additionally, combination of
mevalonate or a mevalonate-derived nonsterol product (e.g.,
geranylgeraniol) with either δ- or γ-tocotrienol maximally
eliminated HMGCR expression in these experiments (Song
and DeBose-Boyd, 2006). A later study found tocotrienols
suppress SREBP-2 activity by degrading mature SREBP-2 in the
nucleus via a proteasome-independent mechanism in a human
LNCaP-364 androgen-independent prostate cancer cell line

(Krycer et al., 2012). Consequently, tocotrienols downregulate
the HMGCR mRNA level.

By depleting tumor cells of mevalonate-derived intermediates,
such as FPP and GGPP, isoprenoids can interrupt the prenylation
and modification of critical signaling proteins including Ras,
lamin B, and other growth related proteins and, thus,
suppress tumor growth and proliferation (Mo and Elson, 1999,
2004; Yeganehjoo et al., 2017). Numerous studies have been
conducted to unveil the significant outcomes of isoprenoid-
based manipulations of the mevalonate pathway and HMGCR in
cancer cells. γ-Tocotrienol at 0–30µM downregulated HMGCR,
membrane H-, K-, and N-Ras, and Raf-1, p-AKT, and p-ERK in
HL-60 cells (Chen et al., 2015), adding to a long list of in vitro and
in vivo studies showing isoprenoid-mediated suppression of the
growth of cancer cells including those of blood (Shoff et al., 1991;
Melnykovych et al., 1992; Mo and Elson, 1999; Lee et al., 2015),
breast (Iqbal et al., 2004; Pierpaoli et al., 2010, 2013; Gomide et al.,
2013; Ding et al., 2017), cervix (Yazlovitskaya and Melnykovych,
1995; Xu et al., 2017; Potocnjak et al., 2018), colon (Mo and Elson,
1999; Gomide et al., 2013, 2016), liver (Wada et al., 2005; Crespo
et al., 2013; Scolastici et al., 2014; Rodenak-Kladniew et al., 2018),
lung (Mo and Elson, 1999; Wada et al., 2005; Gomide et al., 2013;
Galle et al., 2014), mouth (Liang et al., 2013; Madankumar et al.,
2013), pancreas (Hussein and Mo, 2009; Fernandes et al., 2013),
prostate (Mo and Elson, 2004; Sundin et al., 2012; Fernandes
et al., 2013; Jones et al., 2013; Yeganehjoo et al., 2017), skin (Mo
et al., 2000; McAnally et al., 2007; Chang et al., 2009; Chaudhary
et al., 2013), and stomach (Dong et al., 2013; Liu et al., 2013).
Concomitantly, isoprenoids induce cell cycle arrest and apoptosis
in the tumor cells (Mo and Elson, 1999, 2004; Dong et al., 2013;
Jones et al., 2013; Yeganehjoo et al., 2017; Rodenak-Kladniew
et al., 2018; Sailo et al., 2018).

More importantly, differing from the statin-mediated
indiscriminate inhibition of HMGCR in normal and tumor cells,
the differential responses of HMGCR to isoprenoid-mediated
downregulation render tumor cells more sensitive to isoprenoid-
induced growth suppression (Mo et al., 2013). Non-tumor cells
including aortic epithelial cells (Adany et al., 1994), fibroblast
(Yazlovitskaya and Melnykovych, 1995; Ura et al., 1998; Mo and
Elson, 1999; Smalley and Eisen, 2002; Yano et al., 2005), primary
hemopoietic cells (Rioja et al., 2000), hepatocytes (Pearce et al.,
1992; Ruch and Sigler, 1994; Sakai et al., 2004; Har and Keong,
2005; Yin et al., 2012), mammary epithelial cells (McIntyre et al.,
2000; Duncan et al., 2004b; Shun et al., 2004; Yap et al., 2010; Liu
et al., 2011; Patel and Thakkar, 2014), myeloid cells (Sahin et al.,
1999), pancreatic ductal epithelial cells (Stayrook et al., 1997),
prostate cells (Adany et al., 1994; Srivastava and Gupta, 2006),
and umbilical vein endothelial cells (HUVEC) (Yoshikawa et al.,
2010), are much less susceptible to the isoprenoid-mediated
growth inhibition, suggesting that isoprenoids exert tumor-
targeted growth inhibitory effects (Elson et al., 1999; Mo and
Elson, 2004). Isoprenoid-rich extracts such as tocotrienol-rich
fraction (TRF) of palm oil selectively and significantly inhibit
growth and induce apoptosis of human prostate cancer LNCaP,
DU145, and PC-3 cells with no significant impact on the
viability of normal human prostate epithelial cells (Srivastava
and Gupta, 2006). Similarly, tocotrienol stimulate growth
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TABLE 2 | Differential sensitivities of tumor and non-tumor cells to isoprenoids-mediated HMGCR downregulation, growth suppression and apoptosis.

Isoprenoids Cell lines in comparison Differential impacts References

Carvacrol Human hepatocellular carcinoma HepG2 cells vs. LO2

hepatocytes

Carvacrol (0–0.4mM) suppressed HepG2 cell survival

with no impact on LO2 cells

Yin et al., 2012

L-Carvone MCF7 and MDA MB-231 vs. MCF10A IC50* for MCF10A (20mM) was 20-fold higher than that

those for MCF7 and MDA MB-231 (1mM)

Patel and Thakkar,

2014

Geraniol Human MCF-7 mammary tumor cells vs. MCF-10F

normal breast epithelial cells

Higher impact on MCF-7 cell growth Duncan et al.,

2004b

Perillyl alcohol Viral Ha-ras- and raf-transformed rat liver epithelial cells

WB-ras (200µM) and R3611-3 (250µM) vs.

non-transformed rat liver epithelial cell WB-neo and

RLEC-2

IC50 for epithelial cells (400µM) was higher than those

for transformed cells (200–250µM)

Ruch and Sigler,

1994

Hamster B12/13 pancreatic ductal adenocarcinoma

cells vs. D27 pancreatic ductal epithelial cells

IC50 for D27 cells (270µM) nearly doubled that for

B12/13 cells (150µM); apoptosis and BAK expression in

B12/13 cells

Stayrook et al.,

1997

Murine Bcr/Abl-transformed FDC.P1 and 32D myeloid

cells vs. non-transformed myeloid cells

IC50 values for non-transformed cells were much higher

than those for transformed cells

Sahin et al., 1999

Cacalol Human MCF7 and MDA-MB231 mammary carcinoma

cells vs. MCF10A and HBL-100 epithelial cells

Cacalol (35 and 70µM) induced apoptosis in tumor cells

but not epithelial cells

Liu et al., 2011

Farnesol and derivatives Human HeLa-S3k and C-4-1 cervical carcinoma cells vs.

human CF-3 newborn foreskin fibroblasts and porcine

aortic endothelial cells (PAC); Mouse L5178Y-R

(tumorigenic) lymphoma cells vs. L5178Y-S

(non-tumorigenic) cells; Human DU145 prostate

carcinoma cells vs. normal prostate cells

Tumor cells were several-fold more sensitive than

non-tumor cells to farnesol-mediated growth inhibition

Adany et al., 1994;

Yazlovitskaya and

Melnykovych,

1995

Ki-ras-transformed fibroblasts vs. NIH 3T3 IC50 for farnesylamine was 20-fold higher in NIH 3T3

cells

Ura et al., 1998

Leukemia vs. human primary hemopoietic cells Farnesol induced apoptosis in leukemic blasts from

acute myeloid leukemia patients, but not in primary

T-lymphocytes;

Rioja et al., 2000

Murine B16 melanoma cells vs. NIH 3T3 fibroblasts Farnesylthiosalicylic acid inhibited the growth of B16

melanoma cells with no impact on NIH 3T3 fibroblasts

Smalley and Eisen,

2002

β-Ionone Human Caco2 colon adenocarcinoma cells vs. CCD-18

Co fibroblasts

IC50 was 3-fold higher in fibroblasts Mo and Elson,

1999

Human MCF-7 mammary tumor cells vs. MCF-10F

normal breast epithelial cells

β-Ionone (500µM) inhibited MCF-7 and MCF-10F cell

growth by 80 and 38%, respectively

Duncan et al.,

2004b

Geranylgeranyl-acetone

(GGA)

Human DLD-1 and HT29 colon cancer cells vs. umbilical

vein endothelial cells (HUVEC)

GGA (50 and 100µM) suppressed the proliferation of

DLD-1 and HT29 with no impact on that of HUVEC

Yoshikawa et al.,

2010

Tocotrienols and

derivatives

Human HepG2 hepatoma cells vs. primary rat

hepatocytes

IC50 values were ∼ 100-fold higher in hepatocytes in

inhibiting acetate incorporation into digitonin-precipitable

sterols

Pearce et al., 1992

Highly malignant mammary tumor cells vs. preneoplastic

mouse mammary epithelial cells; MCF-7, MDA-MB231,

and MDA-MB-435 mammary tumor cells vs. MCF10A

mammary epithelia cells

IC50 values were higher for epithelial and preneoplastic

cells; tumor cells had higher apoptotic response

McIntyre et al.,

2000; Shun et al.,

2004; Yap et al.,

2010

Human A549 lung carcinoma cells vs. NIH 3T3

fibroblasts

A549 more sensitive to 6-O-carboxypropyl-a-tocotrienol Yano et al., 2005

Human LNCaP, PC-3 and DU145 prostate tumor cells

vs. human PZ-HPV-7 virally transformed normal prostate

epithelial cells

IC50 values for tocotrienol-rich fraction were 3 to 5-fold

higher in normal cells; induced apoptosis in tumor but

not normal cells

Srivastava and

Gupta, 2006

Rat dRLh-84 hepatoma cells vs. RLN-10 hepatocytes Higher impact on cell viability, caspase activation, and

apoptosis in tumor cells

Sakai et al., 2004

Murine BNL 1ME A.7R.1 liver cancer cells vs. BNL CL.2

normal liver cells

Higher impact on cell viability, caspase-3 activation and

DNA fragmentation in tumor cells

Har and Keong,

2005

*IC50: concentrations of compounds required to inhibit cell proliferation by 50%

inhibition, caspase activity, DNA fragmentation, and apoptosis
in rat hepatoma dRLh-84 cells without affecting normal RLN-
10 hepatocytes (Sakai et al., 2004). Tocotrienols also induce

apoptosis of estrogen-non-responsive MDA-MB-435 and
estrogen-responsive MCF-7 human breast cancer cells with no
or lower levels of impact in normal human mammary epithelial
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TABLE 3 | In vitro and in vivo studies showing that isoprenoids potentiate the tumor-suppressive effect of statins.

Cell lines Compounds Impacts References

Human MCF-7 and MDA-MB-231

mammary tumor cells; +SA highly

malignant mammary epithelial cells

Statins and

γ-tocotrienol/tocotrienol-rich

fraction in lipid nanoemulsion

Synergistic effect on cell viability, cell cycle arrest at G1 phase,

↑p27, ↑Rap1A; ↓cyclin D1, ↓CDK2, ↓pRb, ↓Ki-67, ↓p-p44

MAPK, ↓p-p38, ↓p-p54 JNK, ↓p-p46, ↓p-Akt, ↓Rab6, ↓p-ERK,

↓HMGCR; some of the effects attenuated by mevalonate

Wali and Sylvester,

2007; Wali et al.,

2009a,b; Ali et al.,

2010; Alayoubi

et al., 2012

Human MCF-7 mammary tumor

cells resistant to doxorubicin and

tamoxifen

Simvastatin and γ-tocotrienol Synergistic effect on eliminating cancer stem-like cells,

↓mammosphere formation and pStat-3 signaling; mevalonate

attenuated the effect of the blend

Gopalan et al., 2013

Human HT29 and HCT116 colon

cancer cells

Atorvastatin and γ-tocotrienol Synergistic effect on cell proliferation and membrane RhoA; effects

were attenuated by mevalonate; tocotrienol attenuated

statin-induced upregulation of HMGCR

Yang et al., 2010

Human HepG2 hepatoma cells Simvastatin and geraniol;

pravastatin and d-limonene

Synergistic effect on Ras prenylation, DNA synthesis, cell

proliferation and free and esterified cholesterol

Kawata et al., 1994;

Polo et al., 2011

Human MSTO, H2452, H2052, and

H28 malignant mesothelioma cells

Atorvastatin/simvastatin and

γ-tocotrienol

Synergistic effect on cell viability (attenuated by GGPP and

mevalonate), cell cycle, ↓HMGCR, ↓p-ERK/ERK; ↑caspase-3

Tuerdi et al., 2013

Human DU145 prostate carcinoma

cells

Lovastatin and

γ-tocotrienol/β-ionone

Synergistic effect on cell growth Mo and Elson, 2004;

Jones et al., 2013

Human MIA PaCa-2 pancreatic

carcinoma cells

Lovastatin and δ-tocotrienol Synergistic effect on cell growth Hussein and Mo,

2009

Human A2058 melanoma cells Lovastatin and δ-tocotrienol Synergistic effect on cell growth Fernandes et al.,

2010

Murine B16 melanoma cells Lovastatin and

γ-tocotrienol/β-ionone

/farnesyl-O-acetylhydroquinone

Synergistic effect on cell growth; additive effect on cell cycle

progression

Mo and Elson, 1999;

McAnally et al., 2003

Murine CT26 colon tumor cells Lovastatin and perillyl alcohol Additive effect on cell growth and protein prenylation Broitman et al., 1996

Animal Model Compounds Impacts References

C57BL6 mice Dietary lovastatin and δ-tocotrienol Blend of dietary lovastatin and δ-tocotrienol, but not individual

agents, reduced the growth of implanted B16 melanoma

McAnally et al., 2007

cells and immortalized but non-tumorigenic human MCF-10A
cells (McIntyre et al., 2000; Shun et al., 2004; Yap et al., 2010).
As summarized in Table 2, isoprenoids such as monoterpenes
(carvacrol, L-carvone, geraniol, perillyl alcohol), sesquiterpenes
(cacalol, farnesol, β-ionone), diterpene (geranylgeranyl acetone),
and “mixed” isoprenoids (tocotrienols) and their derivatives
exert tumor-targeted growth inhibition with no-to-minimal
impacts on the viability and morphology of normal healthy cells.

The isoprenoid-mediated degradation of HMGCR
complements the sterol-mediated transcriptional regulation
in normal cells. In tumor cells with HMGCR that is resistant to
sterol feedback, post-transcriptional downregulation of HMGCR
by isoprenoids leads to suppression of cell proliferation and
induction of apoptosis; concomitantly isoprenoids have minimal
impact on normal cells. This unique tumor-targeting property
of isoprenoids affords them potential in adjuvant therapy with
statins.

SYNERGISTIC EFFECT OF STATINS AND
ISOPRENOIDS ON TUMOR GROWTH MAY
REDUCE STATIN TOXICITY

Since long-term use of a single compound requires a relatively
high dose, which tends to be associated with adverse effects,

synergistic effects of therapeutic compounds can provide the
same or enhanced efficacy with lower doses of each agent and
plausibly fewer adverse effects to lesser degrees. Investigations
with blends of isoprenoids have shown favorable outcomes.
Studies using tumor cells of skin (Mo and Elson, 1999;
McAnally et al., 2007), prostate (Mo and Elson, 2004), and
pancreas (Hussein and Mo, 2009) have delineated the synergistic
or cumulative effects of HMGCR suppressors on mevalonate
signaling and tumor cell growth. Geranylgeraniol and d-δ-
tocotrienol synergistically suppressed growth of the murine b16
melanoma cells (Katuru et al., 2011). Dietary γ-tocotrienol (2
mmol/kg) and β-ionone (2 mmol/kg) administered individually
or together also improved survival in mice bearing implanted
melanomas (He et al., 1997).

Isoprenoids have also shown synergistic effect with statins
(Table 3). Figure 2 lists the structures of representative
isoprenoids that potentiate the anti-cancer efficacy of statins
in vitro and in vivo. All three two-way blends of tocotrienols,
lovastatin, and β-ionone synergistically suppressed the
proliferation of murine B16 melanoma and human A549
lung carcinoma, A2058 melanoma, MIA PaCa-2 pancreatic

carcinoma, and DU145 prostate carcinoma cells (He et al., 1997;

Mo and Elson, 1999; McAnally et al., 2007; Fernandes et al.,
2010; Katuru et al., 2011). In human MCF-7 mammary tumor

cells resistant to doxorubicin and tamoxifen, simvastatin and
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FIGURE 2 | Structures of representative isoprenoids that impact tumors or potentiate the statin-mediated tumor suppression. Differing from the monoterpenes

(carvacrol, carvone, perillyl alcohol, geraniol), sesquiterpenes (cacalol, farnesol, β-ionone), and diterpene (geranylgeranyl acetone), the tocotrienols are “mixed”

isoprenoids with only part of their structure derived from the mevalonate pathway. The number and location of methyl group (R1 and R2) on the chromanol ring vary

among the members (α, β, γ, and δ) of tocotrienols.

γ-tocotrienol synergistically eliminated cancer stem-like cells
and reduced mammosphere formation and pStat-3 signaling;
mevalonate supplementation attenuated the effect of the blend
(Gopalan et al., 2013), suggesting that mevalonate depletion
mediates the effect. Treatment of HepG2 hepatoma cells with a
combination of 5µM simvastatin and 50µM geraniol, doses that

cannot inhibit proliferation individually, significantly trapped
tumor proliferation and inhibited cholesterol biosynthesis (Polo
et al., 2011). Co-administration of pravastatin, a HMGCR
inhibitor, and d-limonene, an inhibitor of protein prenylation,
inhibited the growth of human HepG2 hepatoma cells by
blocking post-translational modulation of p21ras rather than
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suppression of cholesterol and dolichol biosynthesis (Kawata
et al., 1994). An additive effect on cell growth and protein
prenylation was shown with d-limonene and lovastatin in
murine CT26 colon tumor cells (Broitman et al., 1996). Farnesyl-
O-acetylhydroquinone, a farnesyl derivative, also synergized with
lovastatin to suppress the proliferation and cell cycle progression
of B16 melanoma cells (McAnally et al., 2003). Blends of
statins and tocotrienols synergistically impacted an array of
signaling molecules regulating cell cycle, cell proliferation, and
apoptosis, including cyclin D1, CDK2, p27, MAPK, ERK, AKT,
c-Jun N-terminal kinase (JNK), Rab, Rap1A, RhoA, caspase-3,
and Ki-67, in human MCF-7 and MDA-MB-231 mammary
tumor cells, + SA highly malignant mammary epithelial cells
(Wali and Sylvester, 2007; Wali et al., 2009a,b; Ali et al., 2010;
Alayoubi et al., 2012), MSTO, H2452, H2052, and H28malignant
mesothelioma cells (Tuerdi et al., 2013), and HT29 and HCT116
colon cancer cells (Yang et al., 2010). Blends of dietary lovastatin
and d-δ-tocotrienol, but not individual agents, reduced the
growth of implanted B16 melanoma in C57BL6 mice (McAnally
et al., 2007).

The effect of tocotrienols on cell viability correlates with
that on SREBP-2 activity, consistent with the finding that
downregulation of SREBP2 and subsequent lipid biosynthesis
effectively suppresses the growth of colon cancer proliferation
and tumor spheroid formation (Wen et al., 2018). SREBP-2
and HMGCR were overexpressed in cisplatin-resistant A2780
epithelial ovarian cancer cells (Zheng et al., 2018). SREBP-
2 promotes the expression of Staphylococcal nuclease and
tudor domain containing 1 gene that is associated with the
progression and malignancy of colon, breast, prostate, lung,
glioma, skin, and liver cancers (Armengol et al., 2017), providing
potential new applications for tocotrienols in cisplatin-resistant
cancers. Mevalonate rescues the effect of statin, but not that
of tocotrienol, on prostate cancer cell viability, consistent with
tocotrienol-mediated increase in the degradation of nuclear,
mature SREBP-2, which maintains cholesterol homeostasis
through transcriptional regulation of enzymes in cholesterol
biosynthesis and uptake beyond HMGCR (Krycer et al., 2012).
The tocotrienol-enhanced degradation of SREBP-2 suggests
that tocotrienol may impact, in addition to HMGCR, multiple
enzymes of the mevalonate pathway, offering another aspect of
synergy with statins, which specifically inhibit HMGCR. Such
suitable and optimal combinations of statins and tocotrienol
could lead to favorable synergistic effects with lower effective
doses of statins with minimized or no side effects. The pair’s
combined lipid-lowering effects have been shown in chickens

(Qureshi and Peterson, 2001) and hypercholesterolemic humans
(Qureshi et al., 2001).

CONCLUSION AND FUTURE DIRECTIONS

The widely prescribed statins, originally designed for
hypercholesterolemia, hold promises for cancer therapy as
the multiple roles of the mevalonate pathway in growth support
and regulation unfold. The repurposing of this class of well-
established drugs for cancer stems from their ability to deplete

mevalonate-derived sterol and nonsterol products essential
for the prenylation of proteins involved in growth regulation
and signaling pathways for cell proliferation. Nevertheless,
the indiscriminate inhibition of HMGCR in normal and
tumor cells and compensatory upregulation of HMGCR
induced by statins may have contributed to their dose-limiting
toxicities and conflicting clinical outcomes. The upregulated
and sterol-resistant tumor HMGCR remains responsive to
the isoprenoid-mediated downregulation, offering isoprenoids
tumor-targeted growth suppression with little toxicity to normal
cells. Isoprenoids also attenuate statin-induced compensatory
upregulation of HMGCR via augmented, proteasome-mediated
degradation of HMGCR, providing a new approach in enhancing
the efficacy of statins with reduced adverse effects associated
with lower statin doses. Most studies on the combination of
isoprenoids and statins, however, are limited to in vitro models.
A major gap hence remains in the lack of clinical data on the
bioavailability, pharmacokinetics, pharmacodynamics, efficacy
and mechanisms of action of the isoprenoids. The activities of
the vast majority of the estimated 22,000 isoprenoids (Bach,
1995) remain unexplored. New formulation including those
employing nanoparticles may improve the bioavailability of
isoprenoids. Isoprenoid derivatives (Jung et al., 1998; Mo
et al., 2000) with improved potencies and lower toxicities may
provide more opportunities for optimal formulations. The
combinations of isoprenoids and statins with complementary
mechanisms and synergistic actions hold promise for
cancer prevention and therapy and warrant further clinical
studies.
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