
fphar-09-01561 January 11, 2019 Time: 17:5 # 1

MINI REVIEW
published: 15 January 2019

doi: 10.3389/fphar.2018.01561

Edited by:
Salvatore Salomone,

Università degli Studi di Catania, Italy

Reviewed by:
Marcia Hiriart,

Instituto de Fisiología Celular (IFC),
Mexico

Jiri Jiracek,
Institute of Organic Chemistry

and Biochemistry (ASCR), Czechia

*Correspondence:
Thierry Coppola

coppola@ipmc.cnrs.fr

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to
Experimental Pharmacology

and Drug Discovery,
a section of the journal

Frontiers in Pharmacology

Received: 20 September 2018
Accepted: 21 December 2018

Published: 15 January 2019

Citation:
Blondeau N, Béraud-Dufour S,

Lebrun P, Hivelin C and Coppola T
(2019) Sortilin in Glucose

Homeostasis: From Accessory
Protein to Key Player?

Front. Pharmacol. 9:1561.
doi: 10.3389/fphar.2018.01561

Sortilin in Glucose Homeostasis:
From Accessory Protein to Key
Player?
Nicolas Blondeau†, Sophie Béraud-Dufour†, Patricia Lebrun, Céline Hivelin and
Thierry Coppola*

Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université
Côte d’Azur, Valbonne, France

The pharmacological properties and physiological roles of the type I receptor sortilin,
also called neurotensin receptor-3, are various and complex. Sortilin is involved in
important biological functions from neurotensin and pro-Nerve Growth Factor signaling
in the central nervous system to regulation of glucose and lipid homeostasis in the
periphery. The peripheral functions of sortilin being less extensively addressed, the focus
of the current review is to discuss recent works describing sortilin-induced molecular
mechanisms regulating blood glucose homeostasis and insulin signaling. Thus, an
overview of several roles ascribed to sortilin in diabetes and other metabolic diseases
are presented. Investigations on crucial cellular pathways involved in the protective effect
of sortilin receptor on beta cells, including recent discoveries about regulation of cell
fate, are also detailed. In addition, we provide a special focus on insulin secretion
regulation involving complexes between sortilin and neurotensin receptors. The last
section comments on the future research areas which should be developed to address
the function of new effectors of the sortilin system in the endocrine apparatus.
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SORTILIN RECEPTOR

The protein sortilin, composed of 833 amino acids in human, is a high affinity receptor (Kd ≈
0.3 nM) for NT (Mazella et al., 1989, 1998). It was first identified in 1997 as a receptor-associated
protein (RAP) (Petersen et al., 1997). Sortilin belongs to the Vps10p family of type I receptors,
with SorLA and SorCS1-3 receptors (Jacobsen et al., 1996; Hermey et al., 1999). The members of
this family are characterized by a single transmembrane domain framed by an extracellular domain
rich in cysteines (comparable to that of the Vps10p trivalent vacuolar protein of yeast), and a short
intracellular end (C-terminal domain) involved in its internalization (Petersen et al., 1996, 1997;
Mazella et al., 1998). Sortilin is widely expressed in the central nervous system, particularly in the
hippocampus, dentate gyrus and cerebral cortex (Hermans-Borgmeyer et al., 1999). It is also present
in the spinal cord, skeletal muscle, testes, heart, placenta, pancreas, prostate, and small intestine

Abbreviations: AKT, RAC-alpha serine/threonine-protein kinase; BDNF, brain derived neurotrophic factor; DIO, diet
induced obesity; ERK, extracellular signal-regulated kinases; GPCR, G protein coupled receptor; IPGTT, intra peritoneal
glucose tolerance test; K2P, two-pore-domain background potassium channel; Ldlr, low-density lipoprotein receptor;
NGF, nerve growth factor; NT, neurotensin; NTSR2, neurotensin receptor-2; NTSR3, neurotensin receptor-3; p75NTR,
neurotrophin receptor of 75 kDa; PKC, protein kinase C; PM, plasma membrane; STZ, streptozotocin.
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(Petersen et al., 1997). Sortilin distribution in the cell is highly
regulated. While it is very poorly present at the PM (5–10%),
the bulk of the protein localizes in intracellular compartments
(vesicles and trans-golgi network) (Morris et al., 1998). If three
NT receptors (NTSRs) NTSR1, NTSR2 and NTSR3 (or sortilin)
mediate the effects of NT, the NTSR1 and NTSR2 receptors
belong to the large GPCR (G Protein-Coupled Receptor) family
in contrast to sortilin that is a sorting receptor with a single
transmembrane domain (Mazella et al., 1989, 1998).

Sortilin is synthesized in an immature form, prosortilin.
Prosortilin convertion to its mature receptor occurs in the Golgi
apparatus through removal of its N terminal domain by the pro-
convertase furin. This leads to the release of a peptide of 44
amino acids (SDP for sortilin derived propeptide: Gln1-Arg44,
also known as PE). While such maturation process is a general
mechanism to control receptor or enzyme activation, in the
present case, the canonical furin cleavage leads also to the release
of a new active peptide. Indeed, SDP binds to mature sortilin and
TREK-1 channel with a high affinity (Kd∼5nM) (Munck Petersen
et al., 1999; Mazella et al., 2010). Several groups have also largely
documented that sortilin is a co-receptor of the prodomain of
proNGF and proBDNF (Nykjaer et al., 2004; Teng et al., 2005;
Arnett et al., 2007).

Even though the binding properties of each sortilin ligand
have not been clearly unraveled, data suggest that binding
sites are similar for most of them (Quistgaard et al., 2009).

FIGURE 1 | Sortilin structural model. Sortilin complexed with NT structural
model PDB 3F6K. The extracellular domain of sortilin, receptor for NT was
crystallized and the tridimensional structure at 2A resolution was determined.
Peptides binding (two sites) relates to the restricted space inside the tunnel of
the b-propeller (Quistgaard et al., 2009, 2014). Sortilin is shown in gray and
NT in red.

As illustrated by Figure 1, NT (in red) binds to sortilin (in
gray) in a tunnel of a ten-bladed β-propeller domain. The
structural properties of sortilin suggests that NT is completely
contained inside the tunnel of the β-propeller, firmly bound by
its C-terminus and further attached by its N-terminal part at a
low affinity site on the opposite side of the tunnel (PDB: 3F6K).

SORTILIN IS ASSOCIATED TO
DISTINCTS NTSRs TO MODULATE
NT-MEDIATED ENDOCRINE CELL
FUNCTIONS

Physiological studies performed during the first years following
the discovery of NT in 1973, revealed some interesting results
concerning the potential involvement of the peptide in glucose
homeostasis and lipid absorption. Indeed in human, NT is
released in the blood circulation after a meal, and lipid absorption
stimulates NT release from the rat small intestine (Leeman and
Carraway, 1982). In addition, NT is released from pancreas
in STZ-diabetic rats (Berelowitz and Frohman, 1982) and is
co-localized with glucagon in the endocrine human fetal pancreas
(Portela-Gomes et al., 1999). Interestingly, NT exerts a dual effect
on the rat endocrine pancreas: at low glucose concentration,
the peptide stimulates insulin and glucagon release whereas at
high glucose concentration, it has the opposite effect (Dolais-
Kitabgi et al., 1979). Furthermore, NT administration increases
pancreatic weight and DNA content indicating a prominent
proliferative effect of the peptide on pancreatic cells (Feurle et al.,
1987; Wood et al., 1988).

As involvement of NT in glucose homeostasis become
clearer, understanding the mechanisms of its action on insulin-
secreting cells is crucial, especially because RT-PCR and
Western blot analyses have demonstrated that all NTSRs are
expressed in rat and mouse islets and in insulin-secreting
beta cell lines (Coppola et al., 2008; Beraud-Dufour et al.,
2009). Functionally, NT can modulate various biological
responses both in insulinoma derived cell lines and in isolated
pancreatic islets (Khan et al., 2017; Figure 2) suggesting the
possibility of differential activation pathways by NT. In this
area, some studies indicated that the PKC proteins play a
key role in the direct effect of NT on insulin secretion
from beta cells (Beraud-Dufour et al., 2010; Khan et al.,
2017).

Clinical data, by showing that circulating NT levels are
increased in human diabetes and obesity (Melander et al., 2012;
Chowdhury et al., 2016) identified NT regulation as a promising
therapeutic target in these most prevalent and challenging health
conditions. This was correlated by in vivo studies showing that
NT (NT-/-) and sortilin KO mice (Sort1-/-) share some common
phenotypes, especially by protecting from obesity, hepatic
steatosis, and metabolic disorders. Indeed, sortilin deficiency
induces a beneficial metabolic phenotype in liver and adipose
tissue against high fat diet (Rabinowich et al., 2015).

Furthermore, studies on double knockout mice for the
low-density lipoprotein receptor (Ldlr-/-, an atherosclerosis
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FIGURE 2 | Cellular and molecular processes involving sortilin as receptor or co-receptor. Sortilin (in purple) as NT regulation via the complex of GPCR/sortilin; the
complex p75NTR/sortilin promotes apoptosis inducing JNK dependent pathway, spadin inhibition of TREK-1 K+ currents potentiate insulin secretion and as sorting
partner is a part of the machinery necessary for insulin dependent translocation of GLUT4 storage vesicles (GSV); insulin receptor (IR).

model) and sortilin (Sort1-/-) have confirmed the previous
observations showing that sortilin is crucial for lipid homeostasis
by suppressing intestinal cholesterol absorption mostly in female
mice (Hagita et al., 2018). It is important to note that some
contradictory results were obtained using another so-called
sort1-/- model (Li et al., 2017a). It was observed that suppression
of sortilin gene does not affect diet-induced obesity and glucose
uptake from adipose tissue and skeletal muscle. A closer look of
both Sort1-/- model mice used showed that the first studies were
performed using a mouse in which the exon 14th of the sortilin
gene was deleted, leading to the expression of a soluble sortilin
receptor (Rabinowich et al., 2015; Hagita et al., 2018).

The other deletion was done on the second exon deleting
almost all of the sortilin protein (Li et al., 2017a). Similarly
to the first Sort1-/- model described (Rabinowich et al., 2015;
Hagita et al., 2018), NT-deficient mice are resistant to DIO,
hepatic steatosis and insulin resistance (Li et al., 2016). In
order to explain such differences between sortilin deficient mice
models, it is possible to argue that the expression of a circulating
soluble form of the receptor, is able to buffer the NT in the
blood stream and also potentially the other sortilin-interacting
peptides (Quistgaard et al., 2014). Thus, we can postulate that
the truncated receptor depletes circulating NT, similarly to a NT
KO- phenotype. In addition, the metabolic improved phenotype
(protection from obesity, hepatic steatosis, and insulin resistance)
observed in NT-deficiency suggests an involvement of sortilin in
NT-regulation of glucose homeostasis.

In correlation with this postulate, it has been shown that NT
has a potent anti-apoptotic effect against IL-1bβ or staurosporine
(Coppola et al., 2008). This protective effect of NT is mediated
by sortilin in combination with NTSR2 (Beraud-Dufour et al.,
2009). Sortilin as a co-receptor with NTSR2 is necessary for the
anti-apoptotic NT function and also for the peptide modulation
of insulin secretion (Beraud-Dufour et al., 2010). This receptor
heterodimer exerts a protective effect against apoptosis by
stimulating PI-3 kinase activity which in turn phosphorylates Akt
(Coppola et al., 2008). Importantly, recent works performed in
rodent and human beta cells, showed that NT was also produced
inside the islets and regulates adaptation to environmental stress
(Khan et al., 2017).

These results, all together, underline that sortilin, as receptor
or co-receptor for NT, may have a dual and beneficial role:
protecting endocrine cells from stress induced apoptosis and/or
controlling lipid absorption from the intestine.

SORTILIN, A SORTING PROTEIN FOR
GLUCOSE TRANSPORTER GLUT4, IS A
KEY MODULATOR OF METABOLISM

As largely documented, sortilin and the glucose transporter
GLUT4 are co-expressed in differentiated adipocytes and
myotubes (Figure 1; Bogan and Kandror, 2010), and are
necessary for glucose storage. Fine-tuning of the expression level
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of both proteins is crucial in order to maintain insulin mediated
glucose transport inside the cells (Figure 2). For example,
formation of Glut4 storage vesicles in adipocytes and skeletal
muscle cells correlates with the expression of sortilin (Ariga et al.,
2008; Shi et al., 2008; Ariga et al., 2017). In addition, insulin
dependent translocation of Glut4 is clearly correlated with the
presence of sortilin in adipocytes (Huang et al., 2013). It has been
hypothesized that defect in peripheral glucose transport, related
to insulin resistance observed in obesity and diabetes, could be
correlated in vivo, with modification of the expression level of
sortilin (Kaddai et al., 2009).

In addition, sortilin expression is decreased in several
physiopathological conditions such as obesity and this repression
is TNF-alpha dependent. Interestingly, a link between chronic
low-grade inflammation, sortilin expression and insulin
resistance has been postulated (Kaddai et al., 2009). Indeed,
sortilin expression is differently altered in insulin resistance
models induced by TNF-alpha or dexamethasone treatments. In
presence of TNF-alpha the expression of sortilin is drastically
decreased and can be associated with insulin resistance; on the
opposite dexamethasone dependent insulin resistance is not
accompanied by sortilin downregulation (Hivelin et al., 2017;
Li et al., 2017b). TNF-alpha combined with hypoxia was most
able to mimic in vivo DIO-induced adipose insulin resistance
(Lo et al., 2013). Also, sortilin gene expression is decreased in
white adipose tissue of obese mice when PI3K/AKT signaling is
inhibited (Li et al., 2017b).

TNF-alpha and dexamethasone are inducers of insulin
resistance, respectively inhibiting insulin receptor tyrosine
kinase activity (Hotamisligil et al., 1996; Rui et al., 2001) or
inducing whole body insulin resistance without affecting GLUT4
translocation machinery (Qi et al., 2004). All together these
results show that down regulation of sortilin expression may be
one of the events leading to insulin resistance.

SORTILIN, ACTING ON TREK-1
CHANNEL, REGULATES CELL
EXCITABILITY

With respect to insulin resistance and secretion, potassium
permeability by controlling the beta cell membrane potential
regulates insulin secretion. Indeed, insulin granule exocytosis is
induced by membrane depolarization that is a direct consequence
of the inhibition of ATP dependent potassium channels by the
increased ATP production from glucose metabolism. Other types
of K+ channels including TREK-1, a two-pore-domain (K2P)
background potassium channel are known to be involved in the
control of the resting membrane potential and the regulation of
depolarizing stimulus (Kim and Kang, 2015).

This is part of the K2P(s) general properties. Background
K+ outward currents could adjust the membrane potential,
low hyperpolarization or depolarization (Kim, 2005). Therefore,
interfering with TREK-1 plasma conductance could play an
important role in the electrophysiology of insulin secretion.
TREK-1 channel could be thereby, a potential target for
pharmacological agents designed to modulate this secretion. This

has to be underlined, as we have recently reported that the TREK-
1 channel is inhibited by SDP (propeptide: Gln1-Arg44), as well
as by its shorter analog spadin (Mazella et al., 2010).

Since structure function studies determined that SDP region
Gln17-Arg28 was as efficient in binding affinity (Kd∼5nM) than
the entire peptide, we generated a TREK-1 inhibitory peptide
called spadin (Sortilin Peptide AntiDepressive in) which has
amino acids 17–28 preceded by sequence 12–16 (APLRP) to
maintain conformational stress (Mazella et al., 2010). Results
clearly demonstrated the capacity of spadin and SDP for blocking
TREK-1 currents (Mazella et al., 2010). The bioactivity of SDP
is of interest as a specific SDP dosing assay revealed that its
circulating level is of significant concentrations (10 nM) in the
mouse serum (Mazella et al., 2010). In addition, TREK-1 and
sortilin are co-expressed in pancreatic islets, only in aα and β cells.
At a cellular level TREK-1 and sortilin co-localize in intracellular
compartments (Hivelin et al., 2016). Therefore we explored the
inhibitory effects of spadin on endogenous TREK-1 current
in β pancreatic cells (Hivelin et al., 2016). We could observe
changes in resting membrane potential in MIN6B1 pancreatic
beta cell line incubated in the presence of 10nM spadin. The
mild depolarization observed (delta = 12.84 mV), although not
sufficient to induce insulin secretion by itself, potentiates the
effect of secretagogues such as 16.7 mM glucose or 30 mM KCl
(Hivelin et al., 2016). This PM depolarization likely facilitates
the exocytosis process through the enhancement of intracellular
calcium concentration. Moreover, we reported that during in vivo
IPGTT experiments, glucose level is always lower in mice treated
with spadin, suggesting a direct action of spadin on glycaemia
(Hivelin et al., 2016).

Interestingly most of the consequences of spadin inhibitory
action on TREK-1 channel were primarily documented in
neurons, and among them some interesting features could be
relevant for beta cell mass retention. Spadin as specific inhibitor
for TREK-1 channel currents induces survival pathways, such
as Akt and Erk pathways in primary cultured neurons
(Devader et al., 2015). Accordingly, this was associated with
an anti-apoptotic effect, associated with an increase of the
phosphorylation of CREB. In vivo, spadin induces a rapid onset
of neurogenesis (Mazella et al., 2010). Therefore, it is tempting to
postulate that such protective and modulation of the proliferation
pathways (Abdelli et al., 2009; Beeler et al., 2009), could be
observed in endocrine pancreatic cells that shear common traits
with neurons. These traits are required for insulin secretion
(Abderrahmani et al., 2004a,b).

SORTILIN AND proNGF PARTNERS IN
DEATH FATE: SORTILIN DEPENDENT
APOPTOSIS

Since several years, a link between NGF and diabetes has been
showed. For example, the NGF/proNGF expression ratio is
decreased in the brain of diabetic rats (Soligo et al., 2015) and
in STZ-induced diabetic rats (Sposato et al., 2007). Furthermore,
these rats present an up-regulation of the p75NTR expression
in the pancreas (Sposato et al., 2007), suggesting a role of this
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receptor in the higher apoptosis rate observed in the endocrine
pancreas of these animals. The role of the sortilin/p75NTR
receptor complex in the induction of death described in neurons
(Nykjaer et al., 2004) has also been identified in lymphocytes
(Rogers et al., 2010). It has been demonstrated that proNGF, when
TrkA expression decreases, switches PC12 cells from growth to
apoptosis (Ioannou and Fahnestock, 2017). Interestingly, NGF
receptors (p75NTR and TrkA) are expressed in human and
rodent pancreatic islets (Miralles et al., 1998; Rosenbaum et al.,
1998; Pingitore et al., 2016) and NGF is expressed and secreted
by adult beta cells, suggesting an autocrine effect (Rosenbaum
et al., 1998).Thus, it is tempting to postulate that a decreased
maturation of proNGF, as observed in the brain of diabetic rat
(Soligo et al., 2015), could represent a major cause of beta cell
apoptosis. In that perspective, it would be of great importance to
carefully analyze the role of sortilin, TrkA, p75NTR, and NGF as
pro- or anti-apoptotic promoters in beta cells.

CONCLUSION/PERSPECTIVES

The reviewing of the literature undoubtedly identifies the high
affinity NT receptor, sortilin, as involved in key regulatory
mechanisms of glucose homeostasis. Although it is generally
accepted that the results obtained on cells from Langerhans
islets are preferable to any other, most of the data showing a
specific role of sortilin in beta cell comes from tumor-derived
cell lines Nevertheless, work on tumor lines, that retain much
of the properties of differentiated cells (Merglen et al., 2004)
is useful in understanding the role of sortilin. We cannot, at
this stage, give a complete and perfectly defined role for sortilin
in beta cell. However, it is possible to say, with caution, that
sortilin could play a role in survival and function maintenance of
beta cell, when associated with an NT receptor, or pro-apoptotic
role when associated with p75NTR (Figure 2). These seemingly
contradictory functions are not informed so far by in vivo studies
emphasizing the usefulness of work on the endocrine pancreas of
sort-/- mice.

In addition to the various drugs interfering with insulin
secretion, design of new drugs targeting sortilin should be
considered. Antagonism against proneurotrophin action, for
example, could represent a possible pharmacological approach
for beta cell mass preservation, which is regarded as crucial in
the prevention and treatment of type 2 diabetes. Demonstration
of the implication of K+ outward currents as target for
insulin exocytosis potentiation by spadin is crucial for new
pharmacological perspectives. However, the “druggability” of
the sortilin-underlying pathways is complicated because of
multiplicity of sortilin intricated functions and its large-scale
inhibition could have deleterious effects on general metabolism.
Further research is then required to provide evidence of the
effectiveness and feasibility of sortilin pathways targeting for
therapeutic intervention in obesity and type 2 diabetes.
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