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Despite the significant achievements in chemotherapy, cancer remains one of the

leading causes of death. Target therapy revolutionized this field, but efficiencies of

target drugs show dramatic variation among individual patients. Personalization of target

therapies remains, therefore, a challenge in oncology. Here, we proposed molecular

pathway-based algorithm for scoring of target drugs using high throughput mutation

data to personalize their clinical efficacies. This algorithm was validated on 3,800 exome

mutation profiles from The Cancer Genome Atlas (TCGA) project for 128 target drugs.

The output values termedMutational Drug Scores (MDS) showed positive correlation with

the published drug efficiencies in clinical trials. We also used MDS approach to simulate

all known protein coding genes as the putative drug targets. The model used was built on

the basis of 18,273 mutation profiles from COSMIC database for eight cancer types. We

found that the MDS algorithm-predicted hits frequently coincide with those already used

as targets of the existing cancer drugs, but several novel candidates can be considered

promising for further developments. Our results evidence that the MDS is applicable to

ranking of anticancer drugs and can be applied for the identification of novel molecular

targets.

Keywords: cancer, DNA mutation, molecular pathways, biomarker, target drugs, tyrosine kinase inhibitors, nibs,

mabs

INTRODUCTION

Globally, cancer is one of the major causes of death (Centers for Disease Control and Prevention,
2017). For several decades, chemotherapy remains a key treatment for many cancers, often with
impressive success rates. For example, its use in testicular cancer turned near complete mortality to
>90% disease-specific survival (Hanna and Einhorn, 2014; Oldenburg et al., 2015). However, most
of the advanced cancers remain incurable and/or unresponsive using standard chemotherapy
approaches, frequently develop resistance to treatments and relapse (Vasey, 2003; Housman et al.,
2014). More recently, a new generation of drugs has been developed that specifically target
functional tumor marker molecules. These medicines termed Target drugs have one or a few
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specific molecular targets in a cell (Druker et al., 2001a,b;
Sawyers, 2004; Spirin et al., 2017). They have greater selectivity
and generally lower toxicity than the conventional chemotherapy
(Joo et al., 2013). Structurally, they can be either low molecular
mass inhibitor molecules or monoclonal antibodies (Padma,
2015). The repertoire of their molecular targets is permanently
growing and now includes receptor and intracellular tyrosine
kinases (Baselga, 2006), vascular endothelial growth factor
(Rini, 2009), immune checkpoint molecules such as PD1,
PDL1, and CTLA4 (Azoury et al., 2015), poly(ADP-ribose)
polymerase (Anders et al., 2010), mTOR inhibitors (Xie et al.,
2016), hormone receptors (Ko and Balk, 2004), proteasomal
components (Kisselev et al., 2012), ganglioside GD2 (Suzuki
and Cheung, 2015), and cancer-specific fusion proteins (Giles
et al., 2005). For many cancers, the emergence of target drugs
was highly beneficial. For example, trastuzumab (anti-HER2
monoclonal antibody) and other related medications at least
doubled median survival time in patients with metastatic HER2-
positive breast cancer (Hudis, 2007; Nahta and Esteva, 2007). In
melanoma, immune checkpoint inhibitors, and anti-BRAF target
drugs like Vemurafenib and Dabrafenib dramatically increased
the patient’s chances to respond to treatment and to increase
survival (Chapman et al., 2011; Prieto et al., 2012). Target drugs
were also of a great advantage for inoperable kidney cancer,
before almost uncurable (Ghidini et al., 2017).

The efficiencies of target drugs vary from patient to patient
(Ma and Lu, 2011) and the results of clinical trials clearly evidence
that the drugs considered inefficient for an overall cohort of
a given cancer type, may be beneficial for a small fraction of
the patients (Zappa and Mousa, 2016). For example, the anti-
EGFR drugs gefitinib and erlotinib showed little advantage in the
randomized trials on patients with non-small cell lung cancer.
However, ∼10-15% of the patients responded to the treatment
and had longer survival characteristics. It was further understood
that these patients had activating mutations of EGFR gene and
that these mutations, therefore, can predict response to the
EGFR-targeting therapies (Gridelli et al., 2011). Interestingly, the
same approach was ineffective in colorectal cancer, where EGFR-
mutated status had no predictive power for the anti-EGFR drugs
cetuximab and panitumumab. In the latter case, it is the wild-type
status of KRAS gene (∼60% of all the cases) that is indicative of
tumor response to these drugs (Grothey and Lenz, 2012).

The price for inefficient treatment is high as it is converted
from decreased patient’s survival characteristics and overall
clinical expenses. There are currently more than 200 different
anticancer target drugs approved in different countries, and
this number grows every year (Law et al., 2014). However, the
predictive molecular diagnostic tests are available for only a
minor fraction of drugs, in a minor fraction of cancer types
(Hornberger et al., 2005; Le Tourneau et al., 2014; Buzdin

Abbreviations: CDS length, Coding DNA Sequence Length; COSMIC, Catalog

Of Somatic Mutations In Cancer; FDA, Food and Drug Administration; ICGC,

International Cancer Genome Consortium; MDS, Mutational Drug Scores; MR,

Mutation rate; nMR, Normalized mutation rate; NIH, The National Institutes of

Health; PAS, Pathway Activation Strength; PI, Pathway instability; TCGA, The

Cancer Genome Atlas; TC, Target Conversion.

et al., 2018). This makes the clinician’s decision on drug
prescription a difficult task somewhat similar to finding needle
in a haystack. The problem of choosing the right medication
for the right patient is currently well understood, so US
FDA(Food and Drug Administration) strongly recommends
any new target drug emerging on the market to be supplied
with the companion diagnostics test1. It is, therefore, of a
great importance to identify robust predictive biomarkers of
target drug efficacy, for as many cancer-drug combinations as
possible. Recently, a new generation of molecular markers has
been proposed involving gene combinations and even entire
molecular pathways (Gu et al., 2011; Li et al., 2014; Toren
and Zoubeidi, 2014). Here, the biomarkers used are not just
a single gene or single locus-based mutation, expression or
epigenetic features, but rather the aggregated combinations of
those, crosslinking the physiologically relevant gene products
(Diamandis, 2014; Sanchez-Vega et al., 2018; Zaim et al., 2018).
The pathway-based approach has been better developed for
the high throughput gene expression data (Khatri et al., 2012;
Buzdin A. A. et al., 2017; Buzdin et al., 2018) where the
Pathway Activation Strength (PAS) may be used as an aggregated
biomarker (Buzdin et al., 2014). The formulas for PAS calculation
may be different; they normally consider relative concentrations
of gene products, internal molecular architecture of pathways
and gene coexpression patterns (Ozerov et al., 2016; Aliper et al.,
2017; Buzdin et al., 2018). PAS was shown to be more efficient
as a biomarker than the individual gene expression data (Borisov
et al., 2014, 2017), and PAS biomarkers were further generated
for a plethora of normal and pathological conditions, including
cancer response to treatments (Kurz et al., 2017; Petrov et al.,
2017; Spirin et al., 2017; Wirsching et al., 2017; Sorokin et al.,
2018).

Furthermore, a method for ranking of more than a 100 of
target anticancer drugs has been recently published based on
the PAS scoring and the pathway enrichments by the molecular
targets of drugs (Artemov et al., 2015). This approach termed
Drug Scoring was experimentally shown promising for drugs
prescription to advanced solid tumor patients (Buzdin A. et al.,
2017; Buzdin et al., 2018; Poddubskaya et al., 2018). However,
good quality expression profiles required for PAS-based Drug
Scoring frequently cannot be obtained due to apparent lack of
biopsy biomaterials and RNA degradation. To our knowledge, so
far there were no published reports on the application of gene
mutation data for Drug Scoring.

In this study, for the first time we proposed and tested
10 alternative pathway-based Drug Scoring algorithms utilizing
mutations data. These algorithms were used for the data from
3,800 published cancer mutation profiles representing eight
tumor localizations and validated using the published clinical
trials data. We showed that several mutation-based Drug Scoring
methods can be used efficiently for predicting the effectiveness of
target drugs. This has been evidenced by statistically significant
positive correlations between Drug Score ratings of individual

1For Consumers - Personalized Medicine and Companion Diagnostics Go

Hand-in-Hand Available at: https://www.fda.gov/ForConsumers/ucm407328.htm

[Accessed October 15, 2018].
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drugs and their therapeutic success reflected by the completed
phases of clinical trials for the respective cancer types. We also
used the best Drug Scoring algorithm to simulate all known
protein coding genes as the potential drug targets. We found
that the algorithm-predicted most efficient targets are highly
congruent with the molecular targets already used by the real
anticancer drugs.

MATERIALS AND METHODS

Mutation Data
The human mutation dataset was obtained from the Catalog Of
Somatic Mutations In Cancer (COSMIC) (Forbes et al., 2017).
COSMIC aggregates and annotates mutation data from various
sources by providing lists of verified somatic mutations. We
downloaded the data from COSMIC website, version 76. The
complete dataset includes 6,651,236 somaticmutation records for
20,528 genes in 19,434 tumor samples of 37 primary localizations.

The Algorithm Validation Dataset
For the validation of drug scoring algorithms, we extracted
mutation data only for the primary localizations containing at
least 100 samples indexed in COSMIC and originally taken from
The Cancer Genome Atlas (TCGA) project (Tomczak et al.,
2015; Forbes et al., 2017) because of the uniform sequencing and
data processing pipeline used there. For the algorithm validation
dataset, we totally took 3,800 tumor mutation profiles from
eight primary localizations: central nervous system, kidney, large
intestine (including cecum, colon, and rectum), liver, lung, ovary,
stomach, thyroid gland (Table 1).

The COSMIC data were processed with script written in R
(version 3.4.3) to obtain mutation profile for each tumor1. The
processed data is available as Supplementary Data Sheet 1.

The Dataset for Prediction of Potential
Molecular Targets
We used the full COSMIC dataset to increase the statistical
significance and to investigate the effectiveness of potential
target drugs for a maximum range of cancer localizations.
However, we excluded the samples related to cell cultures or
tumor xenograft to standardize the analysis.We excluded records
having the followingmarks in the “Sample source” field: organoid

TABLE 1 | The structure of algorithm validation dataset.

Localization (COSMIC

nomenclature)

Number of

samples

Disease, its

abbreviation

Central nervous system 657 Gliomas, GL

Kidney 601 Kidney cancer, KC

Large intestine 620 Colorectal cancer, CRC

Liver 188 Hepatic cancer, HC

Lung 569 Non-small cell lung cancer, NSCLC

Ovary 474 Ovarian cancer, OVC

Stomach 288 Stomach cancer, STC

Thyroid 403 Thyroid cancer, THC

culture, short-term culture, cell-line, xenograft. Thus, the final
dataset included 6,027,881 mutations records in 18,273 in tumor
samples of 35 primary localizations. The COSMIC data were
processed with script written in R (version 3.4.3) to return
mutation rates for all genes2. The processed data is available as
Supplementary Data Sheet 2.

Clinical Trials Data
We extracted clinical trials data from the web sites of NIH
(the National Institutes of Health)3 and US FDA4. They were
processed by manually curation of web data as of July 2017. The
processed clinical trials data used for the correlation studies are
shown on Supplementary Table 1.

Molecular Pathways Data
The gene contents data about 3,125 human molecular pathways
used to calculate mutation drug scores were extracted from
Reactome (Croft et al., 2014), NCI Pathway Interaction Database
(Schaefer et al., 2009), Kyoto Encyclopedia of Genes and
Genomes (Kanehisa and Goto, 2000), HumanCyc (Romero et al.,
2004), Biocarta (Nishimura, 2001), Qiagen5. For drug scores
calculation, we used only the 1,752 pathways including at least
10 gene products because of previously reported poor theoretical
data aggregation effect for smaller pathways (Borisov et al., 2017).
The information about molecular specificities of 128 anticancer
target drugs were obtained from databases DrugBank (Law et al.,
2014) and ConnectivityMap (Lamb et al., 2006).

Data Presentation
The results were visualized using package ggplot2 (Wickham,
2009).

RESULTS

In this study, we developed a molecular pathway-based method
of target drug scoring using high throughput mutation data.

Algorithms of Mutation Drug Scoring
The principle of Mutation Drug Scoring (MDS) methods
proposed here deals with quantization of mutation enrichment
for the molecular pathways having molecular targets of a drug
under investigation. Overall, they are based on the rationale
that the greater is the mutation level of the respective pathways,
the higher will be the expected drug efficiency. The mutation
enrichment of a molecular pathway called pathway instability
(PI) is calculated based on the relative mutation rates (MR) of
its member genes. Under mutations, we meant here the changes
in protein coding sequence understood as such in the Catalog of
Somatic Mutations in Cancer (COSMIC) v.76 database (Forbes
et al., 2016). COSMIC is the world’s largest database of somatic

2Cosmic v76 processing Available at: https://gitlab.com/White_Knight/

cosmic76_processing/tree/master [Accessed October 22, 2018].
3ClinicalTrials.gov Available at: https://clinicaltrials.gov/ [Accessed July 25, 2017]
4US Food andDrugAdministrationHome Page Available at: https://www.fda.gov/

[Accessed July 25, 2017].
5QIAGEN - Sample to Insight Available at: https://www.qiagen.com/us/shop/

genes-and-pathways/pathway-central/ [Accessed September 19, 2018].
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mutations relating to human cancers. We used only Genome-
wide Screen Data to estimateMR correctly. This part of COSMIC
consists of peer reviewed large-scale genome screening data and
data from the validated sources such as The Cancer Genome
Atlas (TCGA) and International Cancer Genome Consortium
(ICGC).

Mutation rate (MR) is calculated according to the formula:

MRn,g =
N mut( n,g)

N samples (g)
,

where MRn,g is MR of a gene n in a group of samples g; N
mut(n,g) is the total number of mutations for gene n in a group
of samples g; N samples (g) is the number of samples in a group
g. The MR values strongly positively correlated with the lengths
of gene coding DNA sequence (CDS; data not shown). In order
to remove bias linked with the CDS length, we took for further
consideration a normalized value termed Normalized Mutation
Rate (nMR) expressed by the formula:

nMRn=
1000 ∗MRn

Length CDS (n)
,

where nMRn is the nMR of a gene n; MRn is the MR of a gene
n; Length CDS(n) is the length of CDS of gene n in nucleotides.
Indeed, normalization of this metric enabled to terminate any
CDS-linked bias (data not shown).

To determine if gene n is included in pathway p, we introduced
a Boolean flag pathway-gene indicator PGn ,p expressed by the
formula:

PGn,p =

{

1, pathway p includes gene n,
0, pathway p doesn′t include gene n;

The Pathway Instability (PI) score is then calculated as follows:

PIp=
∑

n
nMRnPGn,p ,

where PIp is pathway instability score for a pathway p; nMRn
is the normalized mutation rate of a gene n, PGn ,p is pathway-
gene indicator for gene n and pathway p. Pathway instability score
characterizes the mutation enrichment of a pathway (Pathway
instability is an effective new mutation-based type of cancer
biomarkers, 2018, in preparation). To formalize if gene n is
molecular target of drug d, we introduced another Boolean flag
drug target index, DTId,n:

DTId,n =

{

1, drug d has target gene n,

0, drug d doesn
′

t have target gene n

To complete DTI database for this study, we used the data about
molecular specificities of 128 target drugs extracted from the
databases DrugBank (Law et al., 2014) and Connectivity Map
(Lamb et al., 2006).

To link PI scores and estimated drug efficiencies, the following
basic formula was proposed for the calculation ofMutation Drug
Score (MDS):

MDSd =

∑

n
DTId,n

∑

p
PGn,p PIp , (1)

where d is drug name; n is gene name; p is pathway name;MDSd
isMDS for drug d;DTId,n is drug target index for drug d and gene
n; PIp is Pathway Instability of pathway p; PGn ,p is pathway-gene
indicator for gene n and pathway p.

The above basic formula (1) was modified to generate several
alternative methods of drug scoring.

- Pathway size-normalized. Since molecular pathways include
considerably different number of genes varying from dozens
to hundreds, we proposed a modification of the calculation
method (1) where normalization is performed forMDS on the
respective number of genes for each PI member:

MDS_Nd =

∑

n
DTId,n

∑

p
PGn,p PIp/kp , (2)

where kp is number of genes in pathway p.
- Single count-normalized. Impact of each gene participating in
pathways targeted by drug d is counted only once:

MDS_gened =

∑

n
nMRn GIId,n , (3)

where GIId,n – Boolean flag gene involvement index,

GIId,n =
{

1, gene n participates in at least one pathway targeted by drug d

0, gene n doesn′t participate in pathways targeted by drug d

- Number of pathways-normalized. MDS for drug d is
normalized on the number of its targeted molecular pathways.

MDS_md = MDSd/md, (4)

wheremd – number of pathways targeted by drug d.
- Number of pathways-normalized. MDS_N is additionally
normalized on the number of pathways targeted by drug d
(md).

MDS_N_md = MDS_N/md (5)

- Number of target genes-normalized. MDS_bd is additionally
normalized on the number of target genes for drug d, (bd).

MDS_bd = MDSd/bd (6)

- Number of target genes-normalized MDS_N. MDS_N,
normalized on the number of target genes for drug d, (bd).

MDS_N_bd = MDS_N/bd (7)

- Number of target genes-normalized MDS_gene. MDS_gene,
normalized on the number of target genes for drug d, (bd).

MDS_gene_bd = MDS_gene/bd (8)

- Target genes dependent only. MDS2 is calculated considering
only mutation frequencies of target genes.

MDS2d =

∑

p
PGn,p

∑

n
DTId,nnMRn (9)
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- Single count-normalized, target genes dependent only.
MDS2_gene is calculated, considering each target gene for
drug d only one time.

MDS2_gened =

∑

n
DTId,n NMRn GIId,n (10)

For these algorithms of mutation-based drug scoring, we next
compared their congruences with the published clinical trials
data.

Validation of Mutation Drug Scoring (MDS)
Algorithms on Clinical Trials Data
We calculated different versions of MDS according to formulae
(1–10) for 128 anticancer target drugs, for eight cancer types
(Supplementary Data Sheet 3). We examined somatic mutation
profiles for 3,800 samples of the following primary tumor
localizations: large intestine (including cecum, colon and
rectum), lung, kidney, stomach, ovarian, central nervous system,
liver, thyroid (Table 1).

Mutation profiles were extracted from COSMIC v76 database
(Forbes et al., 2016). To validate theMDS algorithms, we selected
only tumor samples related to TCGA project because it was
the largest source of biosamples profiled using a single deep
sequencing and bionformatic pipeline (Tomczak et al., 2015).
Molecular specificities of drugs were obtained from DrugBank
(Law et al., 2014) and Connectivity Map (Lamb et al., 2006)
databases. The information about clinical approval and the
completion of phases of clinical trials for 128 target drugs for
the above eight tumor localizations was taken from the web
sites of NIH and US FDA. To measure completion of clinical
investigations for a drug, we introduced the metric termed
Clinical Status. These values are congruent with the apparent
efficiencies of drugs for the given cancer types. The same drugs
most frequently had different clinical statuses for the different
cancer types.

The Clinical Status varied in a range from 0 to 1 proportional
to the top phase of clinical trials passed by a drug for a given
cancer type. The Clinical Status grows incrementally depending
on the completion of the clinical trials phases 1–4, while
the later phases have a greater specific weight, because they
allow to more accurately determine clinical efficacy of a drug
(Table 2).

TABLE 2 | Clinical Status of drug, according of the top passed phases of clinical

trials.

Phase of clinical trials Clinical status

Phase I ongoing 0.1

Phase I/II ongoing (Phase I completed) 0.2

Phase II ongoing 0.3

Phase II completed 0.4

Phase III ongoing 0.7

Phase III completed 0.85

Phase IV (drug approved and marketed) 1

The complete Clinical Status information for 128 drugs under
investigation is shown on Supplementary Table 1. The major
limitation of this approach is that only the drugs that had been
already clinically investigated for the respective tumor type can
be ranked in such a way.

To investigate the capacities of different versions of Mutation
Drug Scores to successfully predicts clinical efficiencies of
drugs, we analyzed how ranks of MDS values correlated
with Clinical Status of drugs. We calculated correlations
and compared distributions of the Spearman correlation
coefficients. To calculate correlations, we took all cancer
mutation profiles together without separation on cancer types
(Figure 1).

Overall, the markedly better correlations were seen for the
MDS and MDS_N types of drug scoring (Figure 1). We next
analyzed the cancer type-specific distributions (Figure 2). It was
seen that both MDS and MDS_N scores positively correlated
with the drugs clinical efficiencies in all the localizations
investigated, thus confirming their top status among the drug
scoring algorithms. Among those, MDS showed best overall

FIGURE 1 | Correlation between Clinical Status and MDS rank for 10 types of

drug scoring in eight cancer types at once. (A) Distributions of Spearman

correlation coefficients between Clinical Status and MDS rank for 128 target

drugs in 3,800 tumor samples. MDS rank of a drug was calculated as the

individual drug’s position in the rating (from top to low) of all drugs under

investigation. Ten violin plots distributed along X-axis, each represent a

particular type of drug scoring. The Y-axis reflects density distributions of

correlations between Clinical Status and MDS ranks. Boxes indicate the

second and third quartiles of distribution, black dots indicate outliers. (B) The

plot demonstrates the distributions of p-value for the correlation coefficients

between Clinical Status and MDS rank for 128 target drugs in the same tumor

samples. The horizontal green line corresponds to p = 0.05.
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FIGURE 2 | Correlation between Clinical Status and MDS rank for two best

types of drug scoring in eight cancer types separately. (A) Distributions of

Spearman correlation coefficients between Clinical Status and MDS rank for

128 target drugs in eight tumor types. MDS rank of a drug was calculated as

the drug’s position in the rating (from top to low) of all drugs under study. The

drug scoring methods are shown in horizontal lines, and the cancer types are

placed vertically. The violin plots distributed along X-axis, each represent a

particular cancer type. The Y-axis reflects density distributions of correlations

between Clinical Status and MDS ranks. Boxes indicate the second and third

quartiles of distribution, black dots indicate outliers. (B) The plot shows the

distributions of p-value for the correlation coefficients between Clinical Status

and MDS rank for 128 target drugs in the same tumor types. The horizontal

green line corresponds to p = 0.05.

functional characteristics and was, therefore, used in further
analyses.

Application of MDS for Identification of
Possible Target Genes
We next tested the MDS algorithm for its capacity to identify
potentially valuable drug targets. To this end, we modeled a
situation when each gene specifically corresponds to one target
drug. Those simulated, or virtual drugs, also were specific each
to only one gene product. Using the database of 1,752 molecular
pathways, we were able to calculate MDS for 8,736 virtual
drugs specific to the same number of genes included in these
pathways. For this analysis, we used 18,273 full-exome tumor
mutation profiles from the COSMIC v76 database. Top 30
molecular targets with highestMDS values and already clinically
approved cancer drugs specific for these molecular targets are
listed on Table 3. The complete MDS calculation data are given
in Supplementary Table 2.

We next ranked all the virtual drugs according to their
MDS values and compared if the same molecular targets are

TABLE 3 | Top 30 molecular targets sorted by MDS and clinically approved drugs

using these molecular targets.

Potential molecular

targets

MDS Existing relevant drugs

PIK3CA 387.11 Idelalisib

PIK3R1 371.31

MAPK1 354.75

MAPK3 343.81

HRAS 343.66

PIK3CB 313.02 Idelalisib

AKT1 305.54 Perifosine

PIK3R2 302.74

PIK3CD 293.15 Idelalisib

KRAS 291.42

PIK3R3 290.07

MAP2K1 288.80 Binimetinib, cobimetinib, selumetinib,

trametinib

NRAS 287.90

PIK3R5 279.34

RAF1 271.72 Dabrafenib, regorafenib, sorafenib

MAPK8 267.73

MAP2K2 257.33 Binimetinib, cobimetinib, selumetinib,

trametinib

TP53 255.89

GRB2 254.36

SOS1 243.39

RAC1 239.32

MAPK9 233.01

EGFR 232.80 Afatinib, brigatinib, cetuximab, erlotinib,

flavopiridol, foretinib, gefitinib, lapatinib,

masitinib, nimotuzumab, osimertinib,

panitumumab, vandetanib, necitumumab

MAPK14 224.08

MAPK10 222.51

EGF 214.20

RELA 212.43

PRKCA 211.99

NFKB1 211.63 Thalidomide

AKT2 205.38 Perifosine

already exploited by the existing 128 target cancer drugs
(Figure 3).

To do this, we introduced an auxiliary value termed Target
Conversion (TC). It reflects the percentage share of known
molecular targets among predictedmolecular targets.

TC=
number of knownmolecular targets

number of predictedmolecular targets
∗100%

For the overall (complete) list of potential molecular targets,
TC was 2.17%. However, there was an clear-cut incremental TC
growth trend when the potential molecular targets were sorted in
the ascending order ofMDS value (Figure 3A, shown for deciles
of the potential targets). The greater TC value exceeding 10% was
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FIGURE 3 | Dependence of MDS and occurrence of molecular targets in approved cancer drugs. (A) Deciles of potential molecular targets sorted in ascending order

according to MDS value. TC was calculated for each decile, shown on vertical axes. (B) Distribution of MDS values among the potential molecular drug targets. The

color scale on the graph indicates densities of clinically approved cancer drugs exploiting the respective molecular targets.

observed for the decile of molecular targets having the highest
MDS values.

Molecular targets with the highestMDS are clearly enriched by
the existing clinically approved drugs compared to those with low
MDS scores (Figure 3A). On the other hand, target genes with
higher MDS are covered by a bigger number of approved drugs
per target, as many drugs have common molecular specificities
(Figure 3B).

The present algorithm for scoring potential drug targets
considers a cumulative mutation enrichment of molecular
pathways. For the example shown on Figure 4 (Nectin adhesion
pathway), most genes involved in a pathway are mutated
in cancers, see the color scale. The mutation enrichment
of a pathway may characterize its overall involvement in
malignization. According to the present conception of drug
scoring, the maximum efficiency of drug can be obtained by
acting on the most strongly affected molecular pathways.

DISCUSSION

In this study, we report a new bioinformatic instrument of
ranking target anticancer drugs using high throughput gene
mutation data. We proposed here 10 different versions of

molecular pathway-based mutation drug scoring. At least two
types of this scoring could provide output data positively
correlated with the clinical trials data for 128 drugs in all
eight tumor localizations tested. We hope that the pathway-
based mutation drug scoring approach has a potential of helping
clinical oncologists to implement personalized selection of target
drugs based on the individual, the patient’s tumor-specific high
throughput mutation profile.

We showed that the same approach can be applied to identify
potentially efficient molecular targets in experimental oncology.
The educated choice of new drug targets is one of the main tasks
in pharmacology (Schenone et al., 2013). Experimental search
for new efficient drug targets is still time consuming, laborious,
and expensive (Haggarty et al., 2003), so since recently a
credit is frequently given to computational predictive algorithms
(Rifaioglu et al., 2018).

The history of computational prediction of drug targets began
with prediction of druggability based on the structure of targets
and biomedical text mining (Cheng et al., 2007; Zhu et al., 2007).
Several methods have been also proposed based on known links
between drugs and genes (Luo et al., 2017). Further development
of bioinformatic methods allowed to apply for this task a set of
systems approaches based on networks of molecular interactions
(Mani et al., 2008).
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FIGURE 4 | Mutation enrichment of Nectin adhesion pathway. The pathway is targeted by Idelalisib. The pathway structure is taken from the NCI database (Schaefer

et al., 2009). The mutation burden was visualized using Oncobox pathway plot tool. The color scale reflects mutation levels of the corresponding nodes on the

pathway graph. The green arrows indicate activation, red arrow—inhibition, bold black arrow indicates molecular target of Idelalisib.

Our results provide principal evidence that the mutation drug
scoring is applicable to ranking of anticancer drugs. On the other
hand, our data suggest that these drug scoring algorithms can
be applied for the identification of novel molecular targets for
the prospective anticancer drugs. Although many genes with
high MDS already serve as molecular targets of the approved
cancer drugs, there is a number of top MDS genes that are
not yet covered by the existing medications. This latter fraction
of genes, therefore, can be considered a source of potential
targets for new drug developments. For example, the following
top 100 MDS genes can be mentioned that are not yet covered
by approved or experimental cancer or antineoplastic drugs
[according to DrugBank (Law et al., 2014), DGIdb (Cotto
et al., 2018), FDA6, HMDB (Wishart et al., 2018), Tocris7,
GeneCards (Safran et al., 2010) databases]: GRB2, SOS1,SOS2,

6US Food andDrugAdministrationHome Page Available at: https://www.fda.gov/

[Accessed July 25, 2017].
7Tocris Bioscience Available at: https://www.tocris.com/ [Accessed December 21,

2018].

SHC1, GNB1, CREB1, GNG2, GNAQ, GNB5, GNAI2. Three of
them (GRB2, GNG2, CREB1) are the targets of approved non-
oncological drugs (Pegademase bovine, Naloxone, Adenosine
monophosphate, Citalopram, Halothane), thus illustrating MDS
method potential in drug repurposing.

This study can be regarded as proof-of concept trial of MDS
approach exemplified by bigger proportion of real cancer targets
among the genes with higherMDS values. In this application, we
assessed integral MDS for all cancer types. However, in further
applications the same approach can be used for any specific
tumor type or subtype to identify targets that may seem most
promising for this particular disease. This could be valuable, for
example, for drugs repurposing among the different tumor types
and for more effectively identifying the patient cohorts in clinical
trials

The present mutation drug scoring approach scores the
molecular pathway instability caused by accumulation of
mutations and ranks drugs according to a simple rationale—the
higher is mutation burden of a pathway, the greater may
be the efficiency of a drug targeting this pathway. We hope
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these findings will be interesting to those working in the
fields of oncology, drug discovery, systems biomedicine, high
throughput mutation data analysis, personalized medicine and
molecular diagnostics.
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