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The inflammatory airway disease cystic fibrosis (CF) is characterized by airway

obstruction due to mucus hypersecretion, airway plugging, and bronchoconstriction.

The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is

dysfunctional in CF, leading to defects in epithelial transport. Although CF pathogenesis

is still disputed, activation of alternative Cl− channels is assumed to improve lung function

in CF. Two suitable non-CFTRCl− channels are present in the airway epithelium, the Ca2+

activated channel TMEM16A and SLC26A9. Activation of these channels is thought to be

feasible to improve hydration of the airway mucus and to increase mucociliary clearance.

Interestingly, both channels are upregulated during inflammatory lung disease. They are

assumed to support fluid secretion, necessary to hydrate excess mucus and to maintain

mucus clearance. During inflammation, however, TMEM16A is upregulated particularly in

mucus producing cells, with only little expression in ciliated cells. Recently it was shown

that knockout of TMEM16A in ciliated cells strongly compromises Cl− conductance and

attenuated mucus secretion, but does not lead to a CF-like lung disease and airway

plugging. Along this line, activation of TMEM16A by denufosol, a stable purinergic ligand,

failed to demonstrate any benefit to CF patients in earlier studies. It rather induced

adverse effects such as cough. A number of studies suggest that TMEM16A is essential

for mucus secretion and possibly also for mucus production. Evidence is now provided

for a crucial role of TMEM16A in fusion of mucus-filled granules with the apical plasma

membrane and cellular exocytosis. This is probably due to local Ca2+ signals facilitated

by TMEM16A. Taken together, TMEM16A supports fluid secretion by ciliated airway

epithelial cells, but also maintains excessive mucus secretion during inflammatory airway

disease. Because TMEM16A also supports airway smooth muscle contraction, inhibition

rather than activation of TMEM16A might be the appropriate treatment for CF lung

disease, asthma and COPD. As a number of FDA-approved and well-tolerated drugs

have been shown to inhibit TMEM16A, evaluation in clinical trials appears timely.
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INTRODUCTION

The inflammatory airway disease cystic fibrosis (CF)
is characterized by airway obstruction due to mucus
hypersecretion, mucus plugging, and bronchoconstriction.
The cystic fibrosis transmembrane conductance regulator
(CFTR) chloride channel is dysfunctional in CF, leading to a loss
of fluid secretion and probably impaired bicarbonate transport,
along with Na+ hyperabsorption (Boucher, 2007; Stoltz et al.,
2015). Dehydration of the airway surface (periciliary) fluid layer
(ASL) covering the airway epithelium is thought to be the crucial
factor leading to abnormal rheological properties of the mucus
and occlusion of smaller airways (Boucher, 2007). Independent
of the underlying precise molecular defect, tremendous effort
was put into identification of small molecules, and natural
compounds that would correct the basic defect by restoring
CFTR function (Amaral and Kunzelmann, 2007; Verkman and
Galietta, 2009). This, however, turned out to be a long and stony
path that has finally provided effective drugs that correct and
potentiate mutant CFTR. Moreover, the search is on to identify
compounds that inhibit salt hyperabsorption in CF, and to
find molecules that activate alternative Cl− secretory pathways.
What has not been in the minds of CF researchers is to look for
inhibitors of certain types of Cl− channels as a treatment for
inflammatory airway disease (Li et al., 2017).

STILL UNRESOLVED: THE PATHOGENESIS
OF CF

Lack of appropriate Cl− secretion due to defective CFTR
was long regarded as the essential, if not only cause for CF
lung disease. However, a pathogenic concept proposing Na+

hyperabsorption relative to attenuated Cl− secretion, leading
to airway dehydration and mucus plugging, has also been put
forward in a number of studies (Boucher et al., 1986; Grubb
et al., 1994; Mall et al., 1998a, 2004). We detected enhanced
Na+ conductances in nasal ex vivo tissue and freshly isolated
intestinal cells from CF patients (Mall et al., 1998a, 2000).
Along this line, reduced ASL would lead to thickened airway
mucus, airway plugging and impaired mucociliary clearance
with subsequent chronic bacterial infections. Yet, this concept
has been questioned by Welsh and collaborators as well
as other investigators, who did not find evidence for Na+

hyperabsorption. In contrast, reduced airway Na+ absorption
in CF was claimed, leading to salt accumulation in the ASL,
which under normal conditions might be even hypotonic
when compared with the interstitial fluid. Thus, hypertonic
ASL was blamed to inactivate ß-defensins, thereby causing a
predisposition toward bacterial infections (Zabner et al., 1998;
Chen et al., 2010; Itani et al., 2011). In contrast, the Boucher
team and others found neither evidence for a hypotonic ASL
under normal conditions, nor any salt concentration (hypertonic
ASL) in CF airways (Matsui et al., 1998). Given the fact that the
airway epithelium is relatively leaky and has a large hydraulic
conductivity, it appears somewhat unlikely that it maintains a
large transepithelial osmotic gradient.

A similar controversy arose around the pH value of
the ASL. It had been shown that CFTR is permeable for
bicarbonate (HCO−

3 ), or contributes to HCO−
3 transport as a Cl−

recycling pathway in a number of epithelial organs [reviewed in
(Kunzelmann et al., 2017)]. To what extend HCO−

3 is conducted
by CFTR or rather operates indirectly as a Cl− recycling channel
that drives HCO−

3 secretion by Cl−/HCO−
3 exchangers, is still

a matter of debate. At any rate, Smith and Welsh were among
the first to show defective cAMP-induced bicarbonate secretion
in airways of CF patients (Smith and Welsh, 1992), while others
showed that CFTR is permeable for HCO−

3 (Poulsen et al.,
1994; Tang et al., 2009). It should be noted that patch clamp
and other types of experiments with isotonic concentrations
of HCO−

3 are not trivial and may be compromised by pH
fluctuations (Kunzelmann et al., 1991). Attenuated fluid/HCO−

3
secretion in CF airways was shown to have adverse effects on
the biophysical properties of airway mucus (Trout et al., 1998).
Quinton and others provided further evidence that bicarbonate
transport is essential for proper mucus release and viscosity
(Choi et al., 2001; Quinton, 2001). In fact, HCO−

3 transport is
impaired in a number of different epithelial tissues derived from
CF patients (Kunzelmann et al., 2017). Importantly, human lung
pathology was brilliantly reproduced in a CF pig model. Using
this CF pig model, reduced airway surface liquid pH, impaired
bacterial killing, and mucus abnormalities were demonstrated
(Pedersen et al., 1999; Stoltz et al., 2010; Pezzulo et al., 2012;
Hoegger et al., 2014). Interestingly, Hoegger et al. demonstrated
abnormal mucociliary transport in CF in submerged epithelia,
which somewhat questions the role of surface dehydration in CF
(Hoegger et al., 2014). In sharp contrast to these results, Schultz
and coworkers found no evidence for acidic airway surface liquid
pH in lungs of CF children, using a novel optical pH probe and a
specialized bronchoscope (Schultz et al., 2017).

Stick and Schulz claimed that only a small fraction of infants
diagnosed early with CF through the Australian AREST CF
early surveillance program, present lower airway infection (Stick
and Schultz, 2018). This may support the “inflammation first”
concept, proposing that inflammation in CF lungs is present early
in life and clearly before airway infection (Khan et al., 1995;
Doring and Worlitzsch, 2000). Thus, CF epithelia appear to be
in an inflammatory, pro-proliferative, and constantly remodeling
state, even without any bacterial infection (Hajj et al., 2007;
Rottner et al., 2007, 2009; Martins et al., 2011). CF epithelial cells
were also shown to have a compromised anti-oxidant defense
by superoxide dismutase (Rottner et al., 2011). Notably, some
CFTR knockout mouse models do show signs of lung/airway
inflammation even in the absence of mucus obstruction (Tirkos
et al., 2006; Wilke et al., 2011). Moreover, airways of newborn
CF pigs demonstrate developmental defects, such as cartilage
abnormalities, muscle bundles, and smaller airways, which may
support progression into a CF lung disease (Chen et al., 2010;
Stoltz et al., 2010; Klymiuk et al., 2012). Considerable insight into
epithelial ion transport and its defect in CF, was also obtained
in studies with wt and transgenic mice, although mouse airways
show differences in structure, distribution of submucosal glands
and contribution of CFTR to Cl− transport. While identical ion
channels and transporters are expressed in human and mouse
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airway, intestinal epithelium, and other epithelial organs, the
course of lung disease is mild in CF mice and airway plugging
is not observed (Wilke et al., 2011). Nevertheless, because of the
available broad range of tools in mouse genetics, valuable insights
into organ physiology and pathological changes in CF have been
gained in the different mouse CF models.

IS ABNORMAL ION TRANSPORT
RELEVANT IN CF OR ONLY AN
EPIPHENOMENON?

Others argue that airway inflammation is second to the transport
defect and to bacterial colonization (Ribeiro et al., 2005). At any
rate, the most impressive clinical symptom in CF lung disease
is accumulation of large amounts of airway mucus. Yet, are
low pH, Na+ hyperabsorption, or lack of Cl− secretion are
truly the cause for mucus plugging and obstruction of airways?
If we compare the changes in absorptive and secretory ion
transport present in ßENaC-overexpressing mice (Mall et al.,
2004), with the changes in ion transport in kcne3 knockout
mice (Preston et al., 2010), or mice lacking TMEM16A in
ciliated epithelial cells (Benedetto et al., 2017), the contribution
of ion transport appears less clear. In the three mouse models
we find a shift toward enhanced net absorptive transport:
(i) pronounced increase in Na+ absorption with unchanged
Cl− secretion (Mall et al., 2004), (ii) milder increase in Na+

absorption but strongly reduced Cl− secretion (Preston et al.,
2010), (iii) partial reduction in Na+ absorption but pronounced
inhibition of Cl− secretion (Benedetto et al., 2017) (Table 1).
Only the ßENaC mice develop a CF like lung phenotype,
which may suggest that indeed Na+ absorption by ENaC is rate
limiting and determines the direction of net flux of ions and
water through an otherwise relatively leaky airway epithelium
(Cotton et al., 1983; Donaldson and Boucher, 2007). This may
explains why loss of Cl− secretion in the airways of adult kcne3
and tmem16A knockout mice does not lead to a CF like lung
phenotype.

As discussed below, basal airway mucus secretion is
attenuated in mice lacking TMEM16A in ciliated epithelial
cells. This leads to mucus accumulation in secretory epithelial
cells (Benedetto et al., 2019) (Figure 1). The mechanism of
crosstalk between the two cell types is currently unclear.
However, it is likely that ciliated cells secrete a factor that is
required to release mucus from club cells. This factor could be
ATP, which is found in the airway surface liquid, and which
is assumed to control basal mucus secretion. Evidence has
been presented that TMEM16A supports vesicular/granular
exocytosis and subsequent insertion of transmembrane proteins
into the plasma membrane. Moreover, it was also shown to
control paracrine release of inflammatory mediators (Benedetto
et al., 2016, 2017, 2019; Cabrita et al., 2017). We would
favor a pathogenic mechanism that initiates the disease by
intrinsic inflammation caused by dyslocalization/dysfunction
of CFTR, and in the absence of bacterial infection. Intrinsic
inflammation is followed by upregulation of TMEM16A,
particularly in mucus producing cells, with consecutive mucus

hyperproduction/hypersecretion. Accordingly, inflammation
and mucus hyperproduction/hypersecretion should be
pharmacologically targeted. Along this line it appears noteworthy
that treatment with the anti-inflammatory drug ibuprofen was
able to rescue trafficking mutant F508del-CFTR (Carlile et al.,
2015).

CORRECTING AND POTENTIATING CFTR

Pharmacological restoration of defective CFTR chloride
transport has been the primary goal over the past decade and
has led to considerable success in correcting the gating mutant
G551D-CFTR by the potentiator compound VX-770 (ivacaftor,
kalydeco) (Van Goor et al., 2009; Accurso et al., 2010). G551D
accounts for only a small fraction (about 5%) of all CF cases
(De Boeck et al., 2014). Thus, US-based Vertex developed
the small molecule CFTR-corrector VX-809 (lumacaftor), a
compound that is able to rescue a fraction of the class two
mutant F508del-CFTR in vitro (Van Goor et al., 2011; Pranke
et al., 2017). Large phase 3 studies demonstrated a moderate
improvement in the percentage of predicted FEV1 between 2.6
and 4.0% (Wainwright et al., 2015). Studies with next generation
compounds, e.g., VX-661 (Tezacaftor), reported improvement
in FEV1 in the range of 7% (Rowe et al., 2017; Taylor-Cousar
et al., 2017; Donaldson et al., 2018). Recent clinical trials
reported great therapeutic success with triple combinations
of the corrector VX661 with VX-445 or VX-659, together
with the potentiator VX-770. The combinations increased
the percentage of predicted FEV1 by more than 10% (Davies
et al., 2018; Keating et al., 2018). Despite such great success in
correcting mutant CFTR, critical voices were raised regarding
a combinatorial drug treatment. For example, adverse effects of
VX-770 were reported on VX-809-corrected F508del-CFTR in
the combinatorial preparation Orkambi. Moreover, long-term
effects of these drugs on CFTR expression could be negative
(Cholon et al., 2014; Veit et al., 2014; Chin et al., 2018). Finally,
the costs for treatment by these drugs are often prohibitive
(Ferkol and Quinton, 2015). Thus, there is a need for alternative
drug treatments.

A number of other strategies to correct biosynthesis of
misfolded CFTR are currently under investigation Recent
screening efforts identified the translation initiation factor
3a (eIF3a) as a potentially druggable central hub for the
biogenesis of CFTR (Hutt et al., 2018). FDA-approved histone
deacetylase (HDAC) inhibitors such as panobinostat (LBH-
589) and romidepsin (FK-228) can help to correct misfolded
CFTR, particularly in combination with other correctors
such as VX809 (Angles et al., 2018). Promising results
were also obtained with combinations of pharmacological
chaperones with different sites of action, such as VX-809,
RDR1, and MCG1516A (Carlile et al., 2018). All these
recent results are rather encouraging, however, as not every
CFTR mutation is accessible to such a CFTR-based therapy,
activation of other airway epithelial Cl− channels was proposed
to compensate for defective CFTR (De Boeck and Amaral,
2016).
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TABLE 1 | Ion transport assessed by the measurement of short circuit currents in different adult mouse models [wild type (wt) littermates vs. transgenic (trans) mice].

Mouse model Amiloride-sensitive Isc (µA/cm2) cAMP-activated Isc Ca2+-activated Isc Phenotype

wt trans %↓↑ wt trans %↓↑ wt trans %↓↑

ßENaC overexpressing mouse (Mall et al., 2004) 22 59 ↑168 25 27 ↑11 79 84 ↑6 CF-like lung disease

Kcne3-knockout mouse (Preston et al., 2010) 48 84 ↑ 75 83 17 ↓80 294 50 ↓83 No lung phenotype

FOXJ1-Cre-TMEM16Aflox/flox mice (Benedetto et al., 2017) 104 49 ↓ 47 99 58 ↓42 176 74 ↓58 No lung phenotype

Shown are approximate Isc values. %↓↑, percent decrease or increase in unidirectional ion transport.

FIGURE 1 | Accumulation of mucus in airways of TMEM16A−/− mice. Mucus staining (PAS) in bronchi of wild type littermates (TMEM16Aflox/flox; TMEM16A+/+ )

and mice with an airway epithelial-specific knockout of TMEM16A (FOXJ1-Cre-TMEM16Aflox/flox; TMEM16A−/− ). Strong accumulation of mucus in airway epithelial

cells is observed in TMEM16A−/− mice. Bars indicate 20µm (Benedetto et al., 2019).

AIRWAY CHLORIDE CHANNELS: SLC26A9

Apart from CFTR, there are two other major Cl− channels
present in human and mouse airways, namely SLC26A9 and
TMEM16A. How much both Cl− channels quantitatively
contribute to production of the ASL and support mucociliary
clearance is currently not known (Figure 2). SLC26 proteins
typically operate as anion exchangers, but for SLC26A9 it was
shown to function as a Cl− channel (Mount and Romero, 2004;
Ousingsawat et al., 2011b; Bertrand et al., 2017). In contrast
to CFTR, SLC26A9 is spontaneously active, once inserted into
the apical membrane of airway epithelial cells. However, it is
also regulated by Cl− feedback/WNK kinases and surprisingly
is controlled by the Cl− channel CFTR (Dorwart et al., 2007;
Bertrand et al., 2009). SLC26A9 is likely to provide the basal
Cl− conductance that is found in airways in the absence of
any secretagogue (Bertrand et al., 2017). Absence of basal Cl−

secretion in airways of CF patients carrying the type II mutation
F508del-CFTR (De Boeck and Amaral, 2016), is probably due
to the lack of expression of SLC26A9 in the apical membrane
(Figure 2B) (El Khouri and Toure, 2014; Bertrand et al., 2017).
SLC26A9 and CFTR form a complex with the help of PDZ
scaffold proteins such as NHERF1 (Figure 3). When coexpressed
with wtCFTR, SLC26A9 is co-trafficked together with CFTR
from the ER to the plasma membrane. However, if coexpressed
with F508del-CFTR, SLC26A9 will remain intracellularly and
will be degraded (Bertrand et al., 2017). As shown recently, also

CFTR and TMEM16A do interact via PDZ-domain proteins, and
TMEM16A has an impact on plasma membrane expression of
CFTR (Benedetto et al., 2017).

Furthermore, SLC26A9 may be regulated by the R domain
of CFTR through STAS domain interaction (Chang et al.,
2009). Indeed, SLC26A9 has been demonstrated to be a genetic
modifier in CF (Sun et al., 2012; Miller et al., 2015), and the
CFTR corrector VX-809 partially rescued SLC26A9, probably
by facilitating trafficking of F508del-CFTR to the plasma
membrane (Strug et al., 2016). Similar to TMEM16A, SLC26A9
is upregulated during airway inflammation and exposure of the
airway cells to IL-13 (Anagnostopoulou et al., 2012). It will
be interesting to learn more about the regulation of SLC26A9
expression, and whether SLC26A9 is upregulated in CF airways
in ciliated or in mucus secreting cells. Taken together, SLC26A9
could potentially serve as an alternative Cl− channel in CF, but
compromised biosynthesis of CFTR carrying type two mutations
need to be corrected. Identifying small molecules that would
interfere with the formation of the F508del-CFTR/SLC26A9
complex could be an interesting therapeutic option in CF.

AIRWAY CHLORIDE CHANNELS:
TMEM16A

TMEM16A is a Ca2+ activated Cl− channel (CaCC) that belongs
to a larger family of 10 paralogous proteins (TMEM16A-K), also
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FIGURE 2 | Ion channels contributing to fluid/mucus balance in non-CF and

CF airways. (A) In non-CF airways, CFTR is expressed in ciliated epithelial cells

and ionocytes (not shown). Ca2+ activated Cl− channels are sparsely

expressed in both ciliated and secretory club and goblet cells. SLC26A9,

TMEM16A and CFTR located in ciliated epithelial cells and probably in

ionocytes are in charge of fluid secretion, while TMEM16A expressed in

secretory club/goblet cells support mucus secretion. Epithelial Na+ channels

reabsorb Na+ thereby causing fluid absorption. (B) In inflamed CF airways,

CFTR is dysfunctional and often dislocated intracellularly together with

SLC26A9 and TMEM16A in ciliated epithelial cells. TMEM16A is upregulated in

secretory cells strongly contributing to mucus secretion. Na+ absorption by

ENaC is augmented. Inflammation and transport abnormalities lead to

excessive mucus production/secretion, airway plugging, and reduced water

secretion, strongly reducing mucociliary clearance.

called anoctamins (ANO1-ANO10) (Kunzelmann et al., 2011;
Pedemonte and Galietta, 2014). The majority of these double-
barreled channels are operating as phospholipid scramblases,
i.e., they transport phospholipids from one site of the bilayer
membrane to the other, once activated by a strong increase
in intracellular Ca2+ (Suzuki et al., 2010). TMEM16A and
B are solely CaCCs, whose structure and gating has been
largely uncovered in cryo-EM studies (Paulino et al., 2017a,b).
TMEM16A is typically localized in the apical plasma membrane
of epithelial cells. However, it is also found to be expressed
basolateral and in intracellular compartments (Schreiber et al.,
2010, 2014). TMEM16F is a phospholipid scramblase that also
conducts Cl− and other ions (Yang et al., 2012; Grubb et al.,
2013; Shimizu et al., 2013; Kunzelmann et al., 2014; Ousingsawat
et al., 2015; Scudieri et al., 2015; Drumm et al., 2017; Schreiber
et al., 2018). Although endogenous TMEM16 proteins are
mostly localized intracellularly, overexpression of these proteins
together with purinergic receptors allows partial trafficking to the
plasma membrane (Tian et al., 2012a). TMEM16A is clearly the

epithelial airway CaCC (Benedetto et al., 2017), but a number
of other TMEM16 paralogues are also coexpressed in mouse
airways and in human large and small bronchi, bronchiole and
alveoli, such as TMEM16C, F, J (Kunzelmann et al., 2012).
Particularly TMEM16F may participate as well in epithelial Cl−

transport.

UPREGULATION OF TMEM16A DURING
INFLAMMATORY LUNG DISEASE: GOOD
OR BAD?

TMEM16A is strongly upregulated during inflammation,
a fact that was utilized to identify the molecular nature of
CaCC (Galietta et al., 2002; Caputo et al., 2008). TMEM16A
is strongly upregulated in CF and asthma, which parallels
goblet cell metaplasia and mucus hypersecretion (Huang
et al., 2012; Kondo et al., 2017), and is also upregulated by
bacterial components (Caci et al., 2015). Upregulation of
TMEM16A is predominant in mucus producing cells and
to a much lesser degree in ciliated epithelial cells (Huang
et al., 2012; Scudieri et al., 2012). Expression of TMEM16A
is almost undetectable by immunocytochemistry in normal
adult human and mouse airways; although CaCC is clearly
present (Huang et al., 2009, 2012; Benedetto et al., 2017).
While this may be explained by the limited sensitivity
of the available antibodies, it also raises questions as to
what degree other members of the TMEM16 family might
participate in CaCC. As mentioned above, TMEM16C,
F, and J are also expressed in mouse airway epithelium
(Kunzelmann et al., 2012). On the other hand, knockout
of TMEM16A completely abolished CaCC activated by
purinergic stimulation (Benedetto et al., 2017). We will discuss
below that TMEM16A has a strong impact on intracellular
Ca2+ signals triggered by stimulation of G-protein coupled
receptors (GPCRs), which then activate phospholipase
C, increase inositol trisphosphate and intracellular Ca2+

(Kunzelmann et al., 2016).
As mentioned above, expression of TMEM16A in normal

adult airways is hardly detectable by immunohistochemistry
(Ousingsawat et al., 2009; Benedetto et al., 2017)
(Figure 4). However, induction of airway inflammation
in an ovalbumin asthma model induced a pronounced
upregulation of TMEM16A in mucus producing
club/goblet cells, but induced little expression in ciliated
epithelial cells (Benedetto et al., 2019) (Figure 4). Ciliated
epithelial cells, and particularly the recently identified
ionocytes express CFTR and are in charge of fluid
secretion (Montoro et al., 2018; Plasschaert et al., 2018).
Expression of TMEM16A is low in ciliated cells when
compared to mucus producing club and goblet cells.
The contribution of TMEM16A to overall fluid secretion
by the airway epithelium might therefore be limited,
while it plays a central role for basal mucus secretion
(Benedetto et al., 2019). This will be further outlined
below.
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FIGURE 3 | Molecular and functional relationship of CFTR, SLC26A9 and TMEM16A. Both SLC26A9 and TMEM16A interact with CFTR via their C-terminal PDZ

(PSD-95/Discs-large/ZO1) -binding domains with the help of the PDZ-protein NHERF1 (Na+/H+ exchanger regulatory factor 1).

FIGURE 4 | Predominant expression of TMEM16A in mucus producing cells. Distal airways of a control mouse and an ovalbumin-sensitized (asthmatic) mouse.

Expression of TMEM16A (green fluorescence) is hardly detectable in control airways, but is clearly detectable in mucus producing club/goblet cells (G) of asthmatic

mice with inflamed airways. Little expression of TMEM16A is found in ciliated epithelial cells (C). Blue, DAPI staining of nuclei. Bars indicate 20µm (Benedetto et al.,

2019).

F508DEL-CFTR ATTENUATES
EXPRESSION OF TMEM16A IN THE
APICAL MEMBRANE

A functional coupling between TMEM16A and CFTR
has been described in a number of previous publications
(Kunzelmann et al., 1997; Wei et al., 1999; Ousingsawat et al.,
2011a). Subsequent studies reported attenuated expression of
TMEM16A in the apical membrane of airway epithelial cells
by coexpressed F508del-CFTR (Ruffin et al., 2013; Benedetto
et al., 2017). We demonstrated that TMEM16A and CFTR
directly interact through PSD-95/Dlg/ZO-1 (PDZ) domain
proteins, similar to SLC26A9 (Figure 3). The functional
interaction between TMEM16A and CFTR is also demonstrated
by a crosstalk of intracellular Ca2+ and cAMP-dependent
signaling. This compartmentalized crosstalk is facilitated by
exchange protein directly activated by cAMP (EPAC1) and
Ca2+ -sensitive adenylate cyclase type 1 (ADCY1). Assembly

of such a local signalosome was shown to depend on the
number of phospholipase C coupled GPCRs (Lerias et al.,
2018).

These studies suggest a significant overlap of cAMP- and Ca2+

activated Cl− currents. Along this line, our early studies also
showed that epithelial cAMP-dependent and Ca2+-activated Cl−

currents cannot be easily separated based on apparently specific

ion channel inhibitors (Kunzelmann et al., 1992; Benedetto
et al., 2017; Lerias et al., 2018). Moreover, in both airway

and intestinal epithelium, most of the Ca2+ activated Cl−

secretion is in fact through CFTR and not through TMEM16A

Cl− channels (Mall et al., 1998b; Namkung et al., 2010a;
Billet and Hanrahan, 2013; Benedetto et al., 2017). The actual
purinergic (ATP-activated) Cl− secretion via TMEM16A is very
transient, as TMEM16A deactivates quickly within 1–5min after
activation by ATP when examined in Xenopus oocytes (Faria
et al., 2009), HEK293 cells (Tian et al., 2012b), mouse trachea
(Kunzelmann et al., 2002), and human airways (Mall et al.,

Frontiers in Pharmacology | www.frontiersin.org 6 January 2019 | Volume 10 | Article 3

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Kunzelmann et al. TMEM16A as a Target in Cystic Fibrosis

FIGURE 5 | Impact of TMEM16A on intracellular Ca2+, exocytosis, and

mucus secretion. (A) TMEM16A is colocalized with purinergic P2Y receptors

and CFTR within the apical membrane. Stimulation of purinergic receptors

leads to endoplasmic reticulum (ER) Ca2+ store release through IP3 receptors

(IP3R). Ca2+ not only activates TMEM16A (T16A) but also stimulates

adenylate cyclase type 1 (ADCY1) to produce cAMP and to activate CFTR via

protein kinase A (PKA). TMEM16A binds to IP3 receptors and tethers the ER

to the apical membrane, thereby facilitating effective compartmentalized Ca2+

signaling. (B) Effective apical Ca2+ signaling by TMEM16A leads to activation

of the exocytic SNARE machinery insertion and improved expression of CFTR

in the apical plasma membrane. (C) Effective apical Ca2+ signaling by

TMEM16A leads to fusion of mucus containing granules, exocytosis, and

release of mucus.

2003). Analysis of freshly isolated human nasal epithelial cells
demonstrates ATP-induced steady-state secretion only in non-
CF cells, but not in CF nasal cells. Thus, the direct contribution
of TMEM16A to the epithelial secretory Cl− transport is small.
However, the non-transient steady component of purinergic
Cl− secretion that is produced by CFTR is essential for fluid
secretion (Mall et al., 2003; Benedetto et al., 2017). The traffic
mutant F508del is by far the most common mutation in CF
that also compromises biosynthesis of TMEM16A. Therefore,
the pro-secretory function of TMEM16A in CF is probably
limited, and inhibition of TMEM16A may not much reduce
Cl− secretion in CF (Ruffin et al., 2013; Benedetto et al.,
2017).

UPREGULATION OF TMEM16A IN AIRWAY
SMOOTH MUSCLES

Upon induction of asthma, we also observed an upregulation
of TMEM16A in mouse airway smooth muscle (ASM) cells
(Benedetto et al., 2017; Miner et al., 2019) (Figure 4). This has
already been described in a number of previous studies (Huang
et al., 2009, 2012; Gallos et al., 2013; Danielsson et al., 2015).
Inhibitors of TMEM16Awere shown to induce hyperpolarization
of ASM and airway relaxation (Yim et al., 2013; Danielsson et al.,
2017; Miner et al., 2019). Airway inflammation is well-known
to induce hyperresponsiveness of ASM (Brightling et al., 2002;
Galli et al., 2008). Inflammatory mediators binding to GPCRs
activate TMEM16A channels; depolarize the membrane voltage
and cause airway contraction, a process that is upregulated in
asthma (Wang et al., 2018). Expression of TMEM16A is not
only upregulated in allergic asthma, but also in airway epithelial
cells and probably ASM of CF patients (Caci et al., 2015).
Moreover, the signaling cascade comprising GPCR - TMEM16A
- intracellular Ca2+ is further augmented by inflammatory
mediators and cholinergic stimuli.

TMEM16A CONTROLS Ca2+ SIGNALS,
MEMBRANE EXOCYTOSIS AND MUCUS
SECRETION

As pointed out above, membrane expression and activity
of CFTR strongly relies on TMEM16A (Benedetto et al.,
2017; Lerias et al., 2018). We showed that augmentation of
apical Ca2+ signals in the presence of TMEM16A activates
adenylate cyclase type 1, enhances local cAMP levels and boosts
CFTR activity (Figure 5A). The enhanced plasma membrane
expression of CFTR in the presence of TMEM16A may be
caused by enhanced Ca2+ levels in the apical submembranous
compartment, which triggers the exocytic machinery and
membrane insertion of CFTR in ciliated epithelial cells and
possibly ionocytes (Benedetto et al., 2017) (Figure 5B). A similar
exocytic mechanismmay apply to the process of mucus secretion
by club and goblet cells. We found that ATP-induced mucus
secretion by secretory cells is strongly compromised in the
absence of TMEM16A. Without TMEM16A, intracellular Ca2+

concentrations in the apical pole of club and goblet cells
are attenuated. These Ca2+ ions are required for basal and
acute ATP-activated mucus release (Benedetto et al., 2019)
(Figure 5C). ATP-dependent mucus secretion is characterized by
Ca2+ dependent single granule docking to the apical membrane
which requires Munc13 proteins and the SNARE (soluble N-
ethylmaleimide–sensitive factor attachment protein receptor)
machinery (Fahy and Dickey, 2010). Taken together, in healthy
non-CF airways TMEM16A may support CFTR-driven fluid
secretion in ciliated cells and possibly ionocytes, and supports
basal mucus release by club and goblet cells. In inflammatory CF
airway disease, the function of TMEM16A may be marginal in
ciliated cells and ionocytes, but may be pronounced in secretory
cells due to strong upregulation of expression.
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FIGURE 6 | Activation of TMEM16A leads to mucus release and airway contraction. Control mouse airways show very little mucus (alcian blue). In contrast, airways

from ovalbumin-sensitized mice show pronounced mucus accumulation. Acute exposure of an ovalbumin-sensitized mouse to the known activator of TMEM16A,

Eact (4.8 µg, tracheal instillation), induced a rapid mucus release and airway contraction (Benedetto et al., 2019). Bars indicate 20µm.

According to this, pharmacological activation of TMEM16A
in CF and asthma patients could have adverse effects on
lung function due to its prosecretory effect on mucus
release. Correspondingly, we found in OVA-sensitized asthmatic
mice that activation of TMEM16A by the compound Eact
(Namkung et al., 2011b) induced massive mucus release and a
considerable expiratory stridor, suggesting airway contraction.
Airway narrowing was confirmed by analysis of the airway
cross section (Benedetto et al., 2019) (Figure 6). It may be
argued that Eact raises intracellular Ca2+ and therefore induces
adverse effects independent of TMEM16A. However, increase
in intracellular Ca2+ by Eact is expected. As outlined below,
activation of TMEM16A is known to increase intracellular
Ca2+ (Cabrita et al., 2017). Activation of TMEM16A by Eact
depolarizes the membrane voltage, which leads to an increase in
intracellular Ca2+. Notably, increase in intracellular Ca2+ by Eact
was inhibited by 1µM of the TMEM16A blocker niclosamide
(Benedetto et al., 2019).

INHIBITORS AND ACTIVATORS OF
TMEM16A

Meanwhile a larger number of inhibitors of TMEM16A has
been identified, but there is only one published group of
N-aroylaminothiazole “activators” (Eact) (Namkung et al.,
2011b), apart from some herbal compounds like Ginsenoside
Rb1 and Resveratrol, which apparently activate TMEM16A
in a Ca2+ independent manner (Chai et al., 2017; Guo et al.,
2017) (Table 2). Enterprise therapeutics (Sussex, UK; http://
www.enterprisetherapeutics.com/) is currently working on
potentiators of TMEM16A, but details on potentiating molecules
are not yet available. Silurian pharmaceuticals (Oakland, US;
http://www.silurianpharma.com/index.php) reported brevenal
to activate Ca2+ activated Cl− channels, possibly in a Ca2+

independent fashion. Denufusol was developed by Inspire
pharmaceuticals (later taken over by Merck). Denufosol is a
deoxycytidine-uridine dinucleotide with enhanced metabolic
stability, to activate purinergic P2Y2 receptors which stimulate
TMEM16A (Yerxa et al., 2002) and inhibit ENaC (Kunzelmann
et al., 2002) (c.f. below). An interesting group of lipids
was identified originally to uncouple GPCR-mediated Ca2+

increase from inactivation/desensitization of Ca2+ activated

Cl− channels. These D-myo-inositol 3,4,5,6-tetrakisphosphate
[Ins(3,4,5,6)P4] (Vajanaphanich et al., 1994) were synthetically
modified to result in the membrane permeable analog INO4995,
which was shown to inhibit ENaC (Moody et al., 2005) and
to activate TMEM16A (Tian et al., 2012b). INO4995 did
not increase intracellular Ca2+. It activated overexpressed
TMEM16A directly, but potentiated ATP-dependent activation
of TMEM16A expressed endogenously. Preliminary data
suggested enhanced membrane localization of TMEM16A
induced by INO4995 (Tian et al., 2012b) (Table 3).

BIOLOGICAL EFFECTS OF INHIBITORS
AND ACTIVATORS OF TMEM16A

TMEM16A is broadly expressed in many epithelial and non-
epithelial tissues. It is therefore expected that inhibition or
activation of TMEM16A through systemic drug application
might have a number of side effects. Apart from inhibiting
mucus production and mucus secretion, TMEM16A-inhibitors
will induce bronchorelaxation by blocking TMEM16A in airway
smooth muscle (Huang et al., 2012; Gallos et al., 2013; Zhang
et al., 2013; Danielsson et al., 2015; Wang et al., 2018; Miner
et al., 2019). Another desired lung-specific effect of TMEM16A-
inhibitors is the inhibition of release of inflammatory mediators
(Knight, 2004; Danielsson et al., 2017; Benedetto et al., 2019).

Some inhibitors of TMEM16A have additional beneficial
effects, such as protection from reactive oxygen species
(idebenone, Villalba et al., 2010), and general inhibition of
inflammation (Knight, 2004; Schreiber et al., 2018). Many studies
demonstrate inhibition of proliferation and anti-cancer effects
by blocking TMEM16A (Wanitchakool et al., 2014; Wang et al.,
2017). General anti-hypertensive effects are likely (Namkung
et al., 2010b; Heinze et al., 2014), as well as inhibition of
nociception, itching, and heat perception (Cho et al., 2012;
Lee et al., 2014; Pusch and Zifarelli, 2014; Deba and Bessac,
2015). Inhibition of saliva production and dry mouth may occur
mediation with TMEM16A-inhibitors (Ousingsawat et al., 2009;
Catalan et al., 2015). Inhibition of TMEM16Amay also attenuate
intestinal contraction and abdominal peristalsis (Sanders et al.,
2012; Singh et al., 2014), and therefore could have antidiarrheal
effects (Tradtrantip et al., 2010; Namkung et al., 2011b; Jiang
et al., 2016). Finally, inhibition of renal TMEM16A could
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TABLE 2 | Inhibitors of TMEM16A.

Inhibitor IC50 (µM) Structural formula References

10bm 0.03 Truong et al., 2017

Monna 0.08 Oh et al., 2013

Niclosamide 0.7 Miner et al., 2019

Ani9 0.1 Seo et al., 2016

Tannic acid 0.323 Namkung et al., 2010b

T16A-A01 1.1 Namkung et al., 2011a; Fedigan et al., 2017

Dichlorophen 5.49 Huang et al., 2012

Idebenone 5.52 Seo et al., 2015

Shikonin 6.5 Jiang et al., 2016

Benzbromarone 9.97 Huang et al., 2012

CaCC-A01 10 de La Fuente et al., 2007; Gianotti et al., 2016; Fedigan et al.,

2017

(Continued)
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TABLE 2 | Continued

Inhibitor IC50 (µM) Structural formula References

9-Phenanthrol 12 Burris et al., 2015)

Niflumic Acid 12 Hogg et al., 1994

Flufenamic acid 28 White and Aylwin, 1990

Talniflumate – Walker et al., 2006

A9C 58 Baron et al., 1991

Dehydroandrographolide 20–30 Sui et al., 2015

DIDS 10–100 Kubitz et al., 1992

NPPB 15–150 Kubitz et al., 1992; Yang et al., 2008

Rice bran extract Sharm et al., 2017

Matrine 28µM Guo et al., 2018

(Ani9 derivative) 5f 22 nM Seo et al., 2018

potentially lead to proteinuria and acidosis (Faria et al., 2014;
Schenk et al., 2018). For activators of TMEM16A, opposite effects
are possible, which is why local application via aerosol may be
recommended for the treatment of CF lung disease. Nevertheless,
oral application of a TMEM16A-blocker was shown to increase
survival of CFTR-knockout mice (Walker et al., 2006).

ACTIVATING OR INHIBITING TMEM16A?

Under physiological conditions, airway mucus represents an
innate defense mechanism against pathogens. It traps inhaled

pathogens and particles and is part of the mucociliary clearance
(Knowles and Boucher, 2002). However, mucus becomes a
serious problem when hypersecreted in inflammatory lung
diseases, such as asthma, COPD, and CF (Dunican et al., 2018).
Despite many pathological findings and pathogenic mechanisms
proposed for CF lung disease (c.f. above), the single most
prominent finding is the excessive overproduction of highly
viscous mucus with adhesive and cohesive properties in CF
patients (Button et al., 2018). It causes airway obstruction and
a reduced mucociliary clearance, and it thereby drives chronic
inflammatory lung disease (Fahy and Dickey, 2010). Thus,
inhibition of mucus production/secretion is likely to be the most
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TABLE 3 | Activators of TMEM16A.

Activator IC50 (µM) Structural formula References

Brevenal –
http://www.silurianpharma.com/index.php

Eact 3 Namkung et al., 2011b

INO-4995 5 Tian et al., 2012b

Denufosol 10 Yerxa et al., 2002

Cinnamaldehyde 10 Huang et al., 2018

Ginsenoside Rb1 38.4 Guo et al., 2017

Resveratrol 47.9 Chai et al., 2017

A9C 100–1000 Ta et al., 2016

effective treatment of CF lung disease, normalizing the imbalance
between excessive mucus secretion and reduced ASL (Figure 7).
Our recent data show that TMEM16A and other TMEM16
proteins are essential for mucus production and basal secretion
of mucus in airways and intestine (Benedetto et al., 2019). These
findings open up a new avenue for the therapy of inflammatory
airway diseases, and particularly for the treatment of airway
mucus plugging and CF lung disease.

In contrast, activation of TMEM16A in CF to facilitate fluid
secretion may be rather ineffective due to the reasons outlined
above (Figure 7A). An earlier clinical trial was performed using
stabilized dinucleotides (Denufosol) to induce purinergic Ca2+

dependent Cl− secretion and to restore ASL with the goal of

improving lung function in CF. However, the clinical trial failed
to demonstrate any benefit of denufosol (Ratjen et al., 2012;Moss,
2013). As an adverse effect, the aerosol induced cough in 52%
of all patients. It may be speculated that denufosol may have
induced additional mucus secretion and even additional airway
obstruction. Being strongly upregulated in inflammatory airway
disease in secretory cells and in ASM, activation of TMEM16A
could induce adverse effects by augmenting mucus secretion and
bronchoconstriction (Figure 7B).

Inhibition of TMEM16A in CF may appear counterintuitive
in the first place (assuming a potential inhibition of fluid
secretion), however, the available data suggest otherwise. As
outlined above, in CF TMEM16A membrane expression is
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FIGURE 7 | Activation of inhibition of TMEM16A in airways of CF patients. (A) Activators of TMEM16A (green arrow, +) will find only few TMEM16A channels in the

apical membrane of ciliated epithelial cells, which could enhance fluid secretion by ciliated epithelial cells. (B) In contrast, activators of TMEM16A will prominently

activate TMEM16A strongly upregulated in mucus producing cells and airway smooth muscle cells during airway inflammation. This leads to hypersecretion of mucus

along with airway contraction. (C) Inhibitors of TMEM16A will have an only limited (adverse) effect on TMEM16A channels expressed (fluid secreting) ciliated epithelial

cells. In contrast, inhibition of TMEM16 channels in mucus producing cells and airway smooth muscle cells will inhibit mucus production/secretion and induce

bronchodilation. (D) Inhibition of TMEM16 channels are likely to restore the balance between mucus and fluid in CF airways.

compromised (Ruffin et al., 2013; Benedetto et al., 2017), Cl−

secretion through CFTR is missing (Namkung et al., 2010a;
Billet and Hanrahan, 2013; Benedetto et al., 2017; Lerias et al.,
2018), and most TMEM16A is expressed in mucus secreting cells
(Benedetto et al., 2019). Therefore, inhibition of TMEM16A may
not substantially lower fluid secretion. In contrast, interfering
with mucus and cytokine secretion by blocking upregulated
TMEM16A is likely to improve mucociliary clearance and to
improve lung function (Figure 7C). Along this line, talniflumate,
the anti-inflammatory pro-drug of the common TMEM16A-
inhibitor NFA that was originally developed by Argentinian
Laboratorios Bago, increased survival of CF mice remarkably
(Walker et al., 2006). Talniflumate had been further developed
by the former company Genaera, as a mucoregulator for cystic
fibrosis, chronic obstructive pulmonary disease, and asthma.
Sadly, phase II trials have never been finished due to the
shutdown of the company (Knight, 2004). In a large number
of studies, mucus production, and secretion, as well as airway
constriction were inhibited by niflumic acid and other inhibitors
of TMEM16A (Kondo et al., 2012; Yim et al., 2013; Lin et al.,
2015; Danielsson et al., 2017; Miner et al., 2019). The inhibitors
niflumic acid, CaCCinhAO1, T16Ainh-A01, 17 benzbromarone,
or niclosamide have been examined in vivo as well as in vitro
in the low micromolecular range. Despite voltage dependence
of TMEM16A-inhibition by NFA and other inhibitors, in vivo

application to airway epithelial cells maintaining their intrinsic
hyperpolarized membrane voltage demonstrated remarkable
biological effects. Similar has been observed when TMEM16A
inhibitors were applied to tracheal ring preparations ex vivo.
Presumably TMEM16A is partially active in the airways, as low
levels of ATP in the airway surface liquid maintain a basal activity
of TMEM16A.

Because TMEM16A currents are blocked by niflumic acid,
the published reports suggest that TMEM16A is in charge
of both production and secretion of mucus. Niflumic acid,
however, is a rather non-specific drug that inhibits a number
of ion channels and blocks intracellular Ca2+ signals (Cabrita
et al., 2017). Suppression of Ca2+ signals by niflumic acid is
probably due to inhibition of TMEM16A. Other TMEM16A
inhibitors such as CaCCinhAO1, T16Ainh-A01, benzbromarone,
or niclosamide also inhibit intracellular Ca2+ and mucus release
(de La Fuente et al., 2007; Kondo et al., 2017; Miner et al.,
2019). It is important to note that other TMEM16 paralogues
are also blocked by inhibitors of TMEM16A (Sirianant et al.,
2015; Wanitchakool et al., 2016). Because several TMEM16
paralogues are expressed in airway epithelial cells, the possible
contribution of other TMEM16 proteins to Ca2+ signaling
and mucus production/secretion is currently unknown. Using
different TMEM16 knockout mice and TMEM16 knockout cell
lines, we found that most TMEM16 paralogues affect intracellular
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Ca2+ signals (Kunzelmann et al., 2016; Cabrita et al., 2017).
It is currently assumed that at least two TMEM16 members,
TMEM16A and TMEM16F control mucus production and
mucus secretion (Benedetto et al., 2019).

CONCLUSION

Despite significant progress in the development of CFTR–specific
treatments for CF lung disease, it appears reasonable to search
for alternative drug targets in CF. Potentiators and correctors
of mutant CFTR show benefit in patients carrying the common
F508del mutation. Improvement of lung function by the recent
combinatorial drugs can be as high as 13%. Insight into mode
of action of these compounds is still limited, and the costs for
treatment may exclude some patients from therapy (Ferkol and
Quinton, 2015). Moreover, a fraction of patients with particular
CFTR mutations [type 1,5,6,7 mutations (De Boeck and Amaral,
2016)] will not respond to such a treatment.

Restoration of the mucus/liquid balance has been the
driving force behind the search for novel openers of secretory
Cl− channels (SLC26A9 and TMEM16A) and basolateral
pro-secretory K+ channels, as well as for inhibitors of
reabsorptive Na+ channels. The counterintuitive idea of
using inhibitors of TMEM16 channels is based on their role
for mucus production and mucus secretion, which were

uncovered only recently. Overwhelming mucus production
and mucus plugging is the central problem in CF lung
disease. Therefore, potent and well-tolerated TMEM16-
inhibitors, which have FDA-approval for other diseases, should
be further examined in preclinical and clinical studies to
be use in CF lung disease and other inflammatory airway
diseases.
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