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Prostate cancer (PC) is one of the most frequently diagnosed cancers and a leading
cause of cancer-related deaths in Western society. Current PC therapies prevalently
target the functions of androgen receptor (AR) and may only be effective within short
time periods, beyond which the majority of PC patients progress to castration-resistant
PC (CRPC) and metastatic disease. The role of estradiol/estradiol receptor (ER) axis in
prostate transformation and PC progression is well established. Further, considerable
efforts have been made to investigate the mechanism by which somatostatin (SST) and
somatostatin receptors (SSTRs) influence PC growth and progression. A number of
therapeutic strategies, such as the combination of SST analogs with other drugs, show,
indeed, strong promise. However, the effect of the combined treatment of SST analogs
and estradiol on proliferation, epithelial mesenchyme transition (EMT) and migration of
normal- and cancer-derived prostate cells has not been investigated so far. We now
report that estradiol plays anti-proliferative and pro-apoptotic effect in non-transformed
EPN prostate cells, which express both ERα and ERβ. A weak apoptotic effect is
observed in transformed CPEC cells that only express low levels of ERβ. Estradiol
increases, mainly through ERα activation, the expression of SSTRs in EPN, but not
CPEC cells. As such, the hormone enhances the anti-proliferative effect of the SST
analog, pasireotide in EPN, but not CPEC cells. Estradiol does not induce EMT and
the motility of EPN cells, while it promotes EMT and migration of CPEC cells. Addition
of pasireotide does not significantly modify these responses. Altogether, our results
suggest that pasireotide may be used, alone or in combination with other drugs, to
limit the growth of prostate proliferative diseases, provided that both ER isoforms (α and
β) are present. Further investigations are needed to better define the cross talk between
estrogens and SSTRs as well as its role in PC.

Keywords: prostate cancer, estrogens, somatostatin analogs, somatostatin receptors, apoptosis, EMT, migration

Abbreviations: ADT, androgen deprivation therapy; AR, androgen receptor; BC, breast cancer; CRPC, castrate resistant
prostate cancer; EMT, epithelial mesenchymal transition; ER, estrogen receptor; PC, prostate cancer; PSA, prostate specific
antigen; SST, somatostatin; SSTR, somatostatin receptor.
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INTRODUCTION

Prostate cancer represents the most common type of cancer
among males in Western society and it is commonly considered
a “hormone-dependent cancer”. Sex steroids, mainly the
androgens, control, indeed, its initiation and progression. PC
is initially an androgen-dependent disease and the ADT still
represents the major pharmacological option at this tumor stage
(reviewed in Ryan and Tindall, 2011). ADT, however, frequently
fails, and the disease progresses to an androgen-independent
state, also known as CRPC. At this stage, current therapies scantly
improve patient’s survival. New pharmacological approaches are,
therefore, needed to limit or inhibit PC growth and spreading
(reviewed in Castoria et al., 2017).

Estrogens are involved in PC etiology and progression.
Epidemiologic and clinical evidence links the sustained
exposure to estrogens with increased risk of developing PC.
Nevertheless, the mechanism by which estrogens induce prostate
cancerogenesis and foster PC progression has not been fully
identified (reviewed in Di Zazzo et al., 2016). As it occurs in
BC (Huang et al., 2007) and benign prostatic hyperplasia (Shao
et al., 2014), estrogens might control EMT, thereby leading to PC
invasiveness and metastasis.

ERs, α or β, mediate the estrogen effects in target cells
and normal human prostate expresses both ER isoforms. It is
generally accepted that ERα mediates the adverse effects (i.e.,
proliferation and inflammation) induced by estrogens, while ERβ

mediates the protective and anti-apoptotic estrogen effects in
PC. However, the concept that ER α and β mutually antagonize
their action in PC is debated, since cellular responses might
depend on the cross talk between the two receptors occurring
at transcriptional (Madak-Erdogan et al., 2013; Karamouzis
et al., 2016) or non-transcriptional (Rossi et al., 2009) level.
Furthermore, the ratio between the two ER isoforms, the
fluctuations in ligand concentration, the presence of endogenous
inhibitors and the availability of transcriptional co-regulators
might differently modulate the ERα- or β-mediated responses in
target cells (Warner et al., 2017). Conflicting findings on the role
of ERα or β in PC continue to emerge (Di Zazzo et al., 2018).
High ERβ protein levels are associated, for instance, with EMT
in PC cells and a worse prognosis in PC patients (Nanni et al.,
2009). In contrast, specific activation of ERβ seems to maintain
an epithelial phenotype and represse PC cell invasiveness (Mak
et al., 2010). It seems clear that additional studies are needed to
disclose these discrepancies as well as the exact role of ERα or β

in EMT and PC progression (reviewed in Montanari et al., 2017).
The regulatory neuropeptide, SST induces the growth arrest

and apoptosis in neuroendocrine and inflammatory cells (Patel,
1999). By acting on both pituitary hormone release and prostate
gland, SST exerts a pro-apoptotic effect in prostate cells.
Moreover, SST analogs exhibit a potent anticancer activity in
cultured cells as well as in vivo models. As such, therapeutic
strategies, based on the combination of SST analogs with other
antineoplastic drugs, appear very promising.

Somatostatin action is mediated by five specific high-affinity
G-protein coupled receptors SSTR1-5, which belong to the seven-
trans-membrane segment receptor superfamily and are expressed

in a wide variety of solid tumors, including PC (Møller et al., 2003;
Msaouel et al., 2009). All of the five SSTRs can be detected in
the prostate epithelial cells or PC tissues. SSTR-2 is expressed in
normal prostate tissue and in a subset of highly invasive PC, while
SSTR-1 and SSTR-5 are prevalently expressed in PC (Sinisi et al.,
1997; Halmos et al., 2000; Lattanzio et al., 2013). Therefore, SSTRs
represent a target for PC therapies, although the mechanism of
their action as well as their cross talk with steroid receptors is
still unclear. Estrogens up-regulate SSTR expression in BC cells
as well as in goldfish pituitary and cerebral tissues (Djordjijevic
et al., 1998; Kimura et al., 2001; Canosa et al., 2003). However,
the effect of the combined treatment of SST analogs and estradiol
on proliferation, EMT and migration of normal and PC cells has
not been investigated so far.

In the present study we have used two in vitro cultured cell
models, the prostate epithelial EPN cell line, which expresses AR
and both the ER isoforms (α and β) and a PC-derived cell line,
CPEC, which expresses low levels of both ERβ and AR, but lacks
ERα (Sinisi et al., 2002; Rossi et al., 2009 and present paper). In
these cell lines, we have compared the effects of estradiol and
pasireotide, alone or in combination, on SSTR1, SSTR2, SSTR3
and SSTR5 expression at both mRNA and protein levels. At last,
we have assessed the effect of these treatments on cell viability,
EMT and migration by analyzing cell cycle, apoptosis as well as
EMT markers and cell motility in the aforementioned models.

MATERIALS AND METHODS

Cell Culture and Chemicals
Cell media and supplements were supplied by Invitrogen. EPN
and CPEC cell lines were derived from epithelial normal prostate
tissue or PC, respectively. Isolation and characterization of both
cell lines has been previously described (Sinisi et al., 2002;
Pasquali et al., 2006; Rossi et al., 2009). Cells were maintained
at 37◦C in humidified 5% CO2 atmosphere and cultured in
Nutrient Ham’s F12, supplemented with 3% fetal calf serum
(FCS) and antibiotics. Cells (at 70% confluence) were cultured
for 5 days in phenol red-free Minimum Essential Medium,
containing antibiotics and 1% charcoal-treated FCS, to remove
steroids and minimize serum effect. The culture medium was
changed every day. Cells were left untreated or treated for
the indicated times with estradiol (Sigma-Aldrich; at 20 nM
final concentration), in the absence or presence of pasireotide
(Novartis; at 0,1 µM final concentration), before harvesting.
Parallel cells were treated with vehicle or pasireotide alone,
as a control. When indicated, the cells were treated with the
ERβ agonist, DPN (Tocris; at 3 nM final concentration) or
the ERα agonist, PPT (Tocris; at 3 nM final concentration).
Human BC-derived cells MCF-7 cells and PC-derived LNCaP
cells were from Cell Bank Interlab Cell Line Collection (ICLC,
Genova, Italy). Cells were maintained at 37◦C in humidified
5% CO2 atmosphere. MCF-7 cells were cultured in DMEM
supplemented with glutamine (2 mM), penicillin (100 U/ml),
streptomycin (100 U/ml), insulin (6 ng/ml), hydrocortisone
(3.75 ng/ml) and 5% FBS. LNCaP cells were cultured in RPMI-
1640 supplemented with 10% FBS, glutamine (2 mM), penicillin
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(100 U/ml), streptomycin (100 U/ml), sodium pyruvate (1 mM)
and non-essential amino acids (10 mM). Media and supplements
were from Gibco. The cell lines employed throughout the
paper were routinely monitored for Mycoplasma contamination,
expression of steroid receptors and steroid responsiveness, as
reported (Castoria et al., 2014).

RNA Isolation and Semi-Quantitative
Reverse-Transcription PCR (RT-PCR)
Analysis
At the indicated times, total RNA (1 µg) was extracted from
EPN and CPEC cells and then purified, using TRIzma Reagent
(Sigma-Aldrich) as reported (Porcile et al., 2014). RNA samples
were eluted in 50 µl of water treated with diethyl-pyrocarbonate
and stored at −80◦C. The quality of RNA was assessed by
gel electrophoresis in denaturing conditions and evaluation of
260/280 nm and 260/230 nm absorbance ratios. RNA samples
with absorbance ratio 260/280 nm lower than 1.9 or with
absorbance ratio 260/230 lower than 2.2 were discarded. RNA
samples were then treated with 40U of RNAse-free DNAse-I
(Boehringer Mannheim) for 45 min at 37◦C. To exclude the
presence of genomic DNA, PCR amplification was performed
on RNA samples not reverse-transcribed, too. MMLV-Reverse
Transcriptase and random primers (Bio-Rad Laboratories) were
used to reverse-transcribe total RNA. cDNAs amplification
was performed by RT-PCR with specific primers set for Bcl-
2, GAPDH (Pasquali et al., 2006; Rossi et al., 2009, 2011),
c-Myc (Gazzerro et al., 2006), SSTR1, SSTR2, SSTR3 and SSTR5
(Pasquali et al., 2008) transcripts, using JF buffer (30 mM Tris
base, 8 mM HEPES base, 20 mM K glutamate, 60 mM NH4
acetate, 2 mM DTT, 8% glycerol, 1.5 mM MgCl2, 0.2 mM dNTPs).
RT-PCR analysis was done as previously described (Abbondanza
et al., 2012). Calibration curve for RT-PCR analysis was obtained
by serial dilutions of cDNA, which were analyzed to verify the
linearity of the PCR reaction. Data obtained by RT-PCR fell
within the linearity range. cDNAs were amplified in triplicate and
reaction was done using a thermal cycler (Eppendorf). Amplified
products were analyzed by electrophoresis, using 2% agarose gel.
Gel images were acquired by the Gel DOC XR System platform
(Bio-Rad Laboratories).

Cell Cycle Analysis
Growing EPN and CPEC cells at 70% confluence were made
quiescent and then left unstimulated or stimulated for the
indicated times with estradiol (20 nM), in the absence or presence
of pasireotide (0,1 µM). When indicated, pasireotide (0,1 µM)
was used alone, as control. Cells were harvested in PBS containing
5 mM EDTA. Cell pellets were washed twice with PBS and then
centrifuged at 1,200 rpm. Permeabilization was performed by
incubating 106 cells in 0,5 ml of flow cytometry analysis (FACS)
permeabilizing solution, which contains RNAses and propidium
iodide (Beckton Dickinson). Incubation was done for 2 h at
4◦C in the dark. Flow cytometry data were collected using a
FACScalibur instrument and analyzed by CELL QUEST software
(Beckton Dickinson).

Epithelial Mesenchyme Transition (EMT)
Analysis, BrdU Incorporation, Scratch
Wound Migration Analysis and
Contrast-Phase Microscopy
Growing EPN or CPEC cells were plated (4 × 104 cells) in
culture multiwell plates (6 plates). After 24 h, the cells were made
quiescent and then left unstimulated or stimulated for 48 h with
20 nM estradiol, in the absence or presence of the indicated
compounds. Pasireotide was used at 0,1 µM. Cell lysates were
then prepared, as below described. Parallel multiwell plates were
used for wound scratch analysis, which was done as reported
(Castoria et al., 2011). Briefly, cells at 90% confluence were made
quiescent and then scratch wounded with sterile pipette tip. They
were left untreated or treated for 48 h with estradiol (20 nM),
in the absence or presence of pasireotide (0,1 µM). Parallel cells
were left untreated or treated with pasireotide alone (0,1 µM) or
the ERβ agonist DPN (3 nM) or the ERα agonist PPT (3 nM).
Cytosine arabinoside (Sigma; at 20 µM final concentration) was
included in the cell medium to avoid cell proliferation. The
proliferation rate of cells was monitored by BrdU incorporation
analysis in immunofluorescence microscopy (Pagano et al.,
2004), using a DMBL Leica (Leica) fluorescent microscope
equipped with HCX PL Apo 63x oil objective. Morphological
changes and wound scratch analysis were analyzed by contrast-
phase microscopy using a DMIRB (Leica) microscope, equipped
with X-Plan 10x or HCX PL Fluotar 40× or 63× objectives.
Images were acquired using a Leica DFC 450C digital camera
and processed using Leica Suite software, as reported (Di Donato
et al., 2015a, 2018). Images are representative of 3 different
experiments. When indicated, the wound gap was calculated
using Image J sofware and expressed as % of the decrease in the
wound area.

Lysates, Antibodies and Western Blot
Epithelial mesenchyme transition markers were analyzed by
Western blot technique. Briefly, unstimulated or stimulated cells
were harvested in PBS containing 5 mM EDTA. Cell pellets
were washed twice by centrifugation with PBS at 1,200 rpm
and lysate proteins were prepared as reported (Castoria et al.,
2011). SDS-PAGE and Western blot analysis were done according
to the same report. Mouse monoclonal anti-cytokeratin (C11;
Santa Cruz) and rabbit polyclonal anti-vimentin (H-84; Santa
Cruz) antibodies were used to detect cytokeratin and vimentin,
respectively. The mouse monoclonal anti E-cadherin (clone
HECD-1; Abcam) antibody was used to detect E-cadherin. Unless
otherwise stated, lysate preparation, SDS-PAGE and Western
blot analysis (WB) were done as described elsewhere (Donini
et al., 2012). A new panel of monoclonal antibodies to human
SSTRs (MoAb Y/SSTR1, MoAb Y/SSTR2, MoAb Y/SSTR3,
MoAb Y/SSTR5) was used for the primary immunoreaction.
Antibodies were raised against a peptide sequence of SST-
binding domains endowed within the extracellular loop of
the SSTRs. Antibody specificity was assessed by Western blot
analysis of proteins extracted from normal pancreas tissue
(Supplementary Figure S1). ERα and ERβ were detected as
described (Castoria et al., 2014), using the rabbit polyclonal

Frontiers in Pharmacology | www.frontiersin.org 3 February 2019 | Volume 10 | Article 28

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00028 December 2, 2024 Time: 12:43 # 4

Rossi et al. Estrogen Effects in Prostate Cells

anti-ERalpha antibody (543; Santa Cruz) or the rabbit polyclonal
anti-ERβ antibody (UBI). c-Myc was revealed as reported
(Castoria et al., 2004), using the anti-c-Myc mouse monoclonal
antibody (clone 9E10; Zymed Laboratories). Bcl-2 was detected
as reported (Perillo et al., 2000), using the mouse monoclonal
anti Bcl-2 antibody (clone Bcl-2-100; TermoFisher). Caspase-
3 activation was detected using the rabbit polyclonal anti-
cleaved caspase-3 antibody (Millipore). Tubulin was detected
using mouse monoclonal anti-tubulin antibody (Sigma-Aldrich).
Immunoreactive proteins were revealed using the ECL system
(GE Healthcare). When indicated, densitometry analysis was
done by Image J software (ImageJ, U. S. National Institutes
of Health, Bethesda, MD, United States1), using the “Gel Plot”
plug-in.

Statistical Analysis
Statistical analysis was performed by using ANOVA
for multiple comparisons and paired t-test to compare
individual cell responses to treatment. P < 0.05 values were
considered significant.

RESULTS

Estradiol Effect on SSTRs in EPN and
CPEC Cells
To assess the effects of estradiol on SSTRs expression, we used
EPN, which express ERα and ERβ and CPEC, which only express
low levels of ERβ (Supplementary Figure S2 and Rossi et al.,
2011). The cells were left untreated or treated with estradiol
(20 nM) for 24 h. Figure 1A and inset show that estradiol
treatment of EPN cells resulted in a significant increase in
SSTR1, 2 and 5 mRNA, as compared to untreated cells. Hormone
treatment did not affect SSTR3 gene expression. In contrast,
estradiol treatment of CPEC cells significantly reduced SSTR1
and 2 mRNAs. A negligible hormonal effect was observed
on SSTR3 and SSTR5 gene expression (Figure 1B and inset).
The Western blot analysis and densitometry quantification of
bands show that estradiol treatment increased the expression of
SSTR1, 2 and 5 in EPN cells (Figure 1C and inset). A weak,
but significant reduction of SSTR1 and SSTR2 protein levels
was detectable in CPEC cells, in the absence of significant
changes in SSTR3 protein levels (Figure 1C and inset). The
observation that estradiol down-regulates SSTR5 protein levels
(Figure 1C and inset) in the absence of significant changes in
gene expression might be due to post-translational modification
and degradation of SSTR5 induced by the hormone. SSTRs
undergo, indeed, phosphorylation at different sites with the
subsequent degradation (Csaba et al., 2012) and estradiol
activates multiple kinases in target cells (Migliaccio et al., 2007a,b;
Castoria et al., 2008).

To further evaluate the role of hormone regulation in SSTR
expression, we challenged quiescent EPN cells with estradiol,
or PPT and DPN ligands, which specifically bind ERα or ERβ,
respectively. The Western blot analysis in Figure 1C (lower

1http://imagej.nih.gov/ij/

section) shows that the increase in expression of SSTR1, 2 and
5 is mainly due to ERα activation by PPT ligand in EPN cells.
The down regulation of these receptors in CPEC cells, which
only express ERβ, is very likely caused by ERβ activation. We
did not use siRNA approach, since a cross talk between ERα

and ERβ regulates the expression of each other in PC cells
(Pisolato et al., 2016).

In sum, experiments in the Figure 1 shows that estradiol up-
regulation of SSTR1, SSTR2 and SSTR5 occurs mainly through
ERα activation in EPN cells. The absence ERα is likely responsible
for estradiol-induced down-regulation of SSTR1, SSTR2 and
SSTR5 in CPEC cells.

Effect of Estradiol and Pasireotide in
EPN and CPEC Cells: Studies on Cell
Cycle Progression and Caspase-3
Activation
A 24- and 48-h response of propidium-iodide incorporation
analysis was then performed to test the role of estradiol in EPN
and CPEC cell proliferation. The FACS analysis in Figure 2A
shows that 24 and 48 h treatment of EPN cells with estradiol
induced in both conditions a significant increase of pre-G1
apoptotic cells associated with a persistently elevated number of
cells in G0/G1 phases and a low amount of cells in S-phase. In
contrast, estradiol treatment of CPEC cells did not significantly
affect the number of apoptotic cells, with cells persistently
arrested in G0/G1 phase (Figure 2B).

Twenty-four h treatment of EPN (Figure 3A) and CPEC
(Figure 3B) cells with 0,1 µM of the SSTR-specific agonist,
pasireotide, significantly increased the number of apoptotic cells.
Co-treatment with estradiol reinforced the pro-apoptotic effect of
pasireotide in EPN cells, with a reduction in the number of cells in
S-phase (Figure 3A). In contrast, co-treatment of CPEC cells with
estradiol and pasireotide (0,1 µM) did not enhance the number of
apoptotic cells (Figure 3B). By prolonging the time of treatment
(48 h) and by increasing the concentration of pasireotide (1µM),
we did not observe any further increase in the number of
apoptotic cells (not shown). The strong stability of pasireotide,
together with its high affinity for all SSTRs (reviewed in Feelders
et al., 2013) might be responsible for its efficacy in inducing
the apoptotic response at very low concentration (0,1 µM) and
within a relatively short time frame (24h). Lastly, the Western
blot analysis of activated caspase-3 in Figure 3C confirmed the
data obtained by FACS analysis of EPN and CPEC cells.

In sum, Figures 2, 3 show that EPN cells challenged with
estradiol undergo a robust apoptotic response, while CPEC cells
remain arrested in G0/G1. Pasireotide induces apoptotic death in
both EPN and CPEC cells, and the simultaneous treatment with
estradiol enhances the pasireotide effect only in EPN cells.

Effect of Estradiol and Pasireotide in
EPN and CPEC Cells: Regulation of Bcl-2
and Myc Gene Expression and Protein
Levels
To evaluate the putative intracellular targets responsible for
the observed effects of estradiol and pasireotide on cell cycle,
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FIGURE 1 | Effect of estradiol on SSTRs mRNA and protein expression levels. RT-PCR analysis of SSTR1, 2, 3 and 5 mRNA levels in EPN (A) or CPEC (B) cells
untreated or treated for 24h with 20 nM estradiol (E2) was done. In panel (A,B), densitometry analysis of agarose gel electrophoresis is shown. The expression level
is indicated as fold changes over the basal conditions (A.U.). Histograms represent the averages (+/– standard error) from 3 independent experiments, normalized for
the expression of the control housekeeping gene GAPDH (∗ indicates p < 0.05 for each gene versus its untreated control). Means and SEMs are shown. n represents
the number of experiments. ∗p < 0,05. Insets are representative from one experiment in A or B. In panel (C, upper section), the Western blot analysis of lysate
proteins from EPN and CPEC cell lines untreated or treated with estradiol (20 nM; E2) for 48 h was done. Lysate proteins (1 mg/ml) were resolved by SDS–PAGE,
transferred to PVDF membrane and probed with anti-SSTRs or anti-tubulin antibodies. Inset in panel (C), densitometry analysis of SSTRs was done in two different
experiments using the NIH/Image J software. Results were expressed as relative change over the basal level of each SSTR isoform. In panel (C, lower section), the
Western blot analysis of lysate proteins from EPN cells untreated or treated with estradiol (20 nM; E2) or PPT (3 nM) or DPN (3 nM) for 48 h was done. Lysate
proteins (2 mg/ml) were resolved by SDS–PAGE, transferred to nitrocellulose membrane and probed with the antibodies against the indicated proteins. In panel (C,
upper and lower sections), the Western blot analysis of tubulin is shown, as loading control.

we analyzed by semi-quantitative RT-PCR the Bcl-2 gene
expression in both EPN and CPEC cells treated with estradiol and
pasireotide, alone or in combination. Estradiol induced a down-
regulation of Bcl-2 gene expression in EPN cells and pasireotide
co-treatment enhanced this effect (left panel in Figure 4A). In
contrast, estradiol induced an increase in Bcl-2 mRNA, and
simultaneous treatment with pasireotide enhanced such effect in
CPEC cells (right panel in Figure 4A).

We next analyzed c-Myc gene expression levels. Twenty-nM
estradiol induced a down-regulation of c-Myc mRNA in EPN
cells and co-treatment with pasireotide reinforced the estradiol
effect (left panel in Figure 4B). Estradiol, alone or in combination
with pasireotide, induced a weak, but significant increase of
c-Myc mRNA in CPEC cells (right panel in Figure 4B). Similar
findings were observed by Western blot analysis for Bcl-2
and c-Myc protein levels (Figure 4C), although the synergic

effect of estradiol and pasireotide was more evident by gene
expression analysis. The slight difference we observe might
due to modification of Bcl-2 and c-Myc occurring at post-
translational level.

These findings indicate that estradiol and pasireotide have a
synergic effect in decreasing Bcl-2 and c-Myc gene expression in
EPN cells, while they increase such responses in CPEC cells.

Effect of Estradiol and Pasireotide on
EMT and Migration of EPN and CPEC
Cells
Conflicting findings on the role of ERα or β in EMT of prostate
cells and PC progression have been reported (Montanari et al.,
2017). We then investigated by Western blot analysis the effect
of estradiol, or pasireotide or combination of both in EMT of
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FIGURE 2 | Effect of estradiol on cell cycle. Flow cytometry analysis of propidium iodide-labeled EPN (A) or CPEC (B) cells was done, as described in Methods.
Quiescent cells were left under basal conditions or treated with estradiol (20 nM; E2) for the indicated times. Histograms represent the % counts/FL2 areas of labeled
cells in the different cell cycle phases after 24 or 48 h of hormonal treatment. Means and SEMs are shown. n represents the number of experiments. ∗p < 0,05 for
each experimental point vs. the corresponding untreated control.

FIGURE 3 | Effect of both estradiol and pasireotide on cell cycle. Flow cytometry analysis of propidium iodide-labelled EPN (A) or CPEC (B) was done, as described
in Methods. In panel (A,B), quiescent cells were left under untreated or treated for 24 h with 0,1 µM pasireotide, in the absence or presence of 20 nM estradiol.
Histograms in panel (A,B) represent the % counts/FL2 areas of labeled cells in the different cell cycle phases after the indicated treatments. Means and SEMs are
shown. n represents the number of experiments. ∗p < 0,05; ∗∗p < 0,01. In panel (C), quiescent EPN (left section) or CPEC (right section) cells were left untreated or
treated for 24 h with 0,1 µM pasireotide, in the absence or presence of 20 nM estradiol. Lysate proteins were separated by SDS-PAGE, transferred to PDVF
membrane and filters were then analyzed by Western blot, using the anti-activated caspase 3 or anti-tubulin antibodies.
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FIGURE 4 | Effect of both estradiol and pasireotide on Bcl-2 and Myc mRNA expression levels. EPN or CPEC cells were untreated or treated for 24 h with estradiol
(20 nM; E2), in the absence or presence of 1 µM pasireotide. RT-PCR analysis of Bcl-2 (A) and c-Myc (B) mRNA levels was done. Densitometry analysis of agarose
gel electrophoresis was done. The expression level is indicated as fold changes from basal conditions (A.U.). Histograms represent the averages (+/− standard
error) from five independent experiments, normalized for the expression of the control housekeeping gene GAPDH. Means and SEMs are shown. n represents the
number of experiments. ∗p < 0.05 for each experimental point versus the corresponding untreated control. In panel (C), EPN or CPEC cells were untreated or
treated for 24 h with estradiol (20 nM; E2), in the absence or presence of 1 µM pasireotide. Lysate proteins were prepared, electrophoretically separated by
SDS-PAGE and transferred to PDVF membrane. Filters were immune-blotted using anti-Bcl-2 or anti-c Myc or anti-tubulin antibodies.

EPN cells (Figure 5A). Quiescent cells were left unchallenged
or challenged for 48h with the indicated stimuli and lysate
proteins were analyzed for expression of vimentin, E-cadherin
and cytokeratins. Regardless of stimuli, the Western blots in
Figure 5A shows that no significant changes in vimentin and
E-cadherin levels were observed in EPN cells. Estradiol or
pasireotide slightly increased the cytokeratin levels. Noticeably,
estradiol up-regulates cytokeratin levels in BC cells (Coutts
et al., 1996; Spencer et al., 1998), and pasireotide may impact
cytokeratin levels through activation of signaling networks
(Loschke et al., 2015). Under the same experimental conditions,
estradiol treatment did not induce significant morphological
changes in EPN cells (Figure 5B), and similar findings were
observed in cells stimulated with pasireotide, alone or in
combination with estradiol (not shown). We then evaluated cell
migration by the wound scratch analysis in EPN cells. At 48h
treatment, neither estradiol, nor pasireotide, nor combination
of both affected cell migration in wound scratch assay. Notably,
challenging of cells with PPT and DPN, which specifically activate
ERα or β, did not modify the migratory capacity of EPN
cells (Figure 5C).

This set of experiments shows that, irrespective of
pasireotide presence, estradiol treatment does not promote

EMT and migration of EPN cells. In the same experimental
conditions, hormonal stimulation of EPN cells activates
the apoptotic machinery, and pasireotide enhances this
response (see Figures 2, 3).

Quiescent CPEC cells were then used. The cells were left
untreated or treated for 48 h with the indicated compounds
and lysates were analyzed for expression of vimentin, E-cadherin
and cytokeratin. The Western blot in Figure 6A shows that
estradiol remarkably up-regulated the vimentin level in CPEC
cells. Combination of both, estradiol and pasireotide did
not significantly modify such an increase. Up-regulation of
vimentin was also observed in pasireotide-stimulated cells.
Simultaneously, estradiol decreased E-cadherin and cytokeratin
levels. Similar findings were observed by combining both
estradiol and pasireotide. A slight decrease in E-cadherin was
also observed in cells treated with pasireotide, alone. CPEC
cells were then analyzed for morphological changes. The cells
appeared elongated and less adherent upon 48h estradiol
treatment (Figure 6B). Notably, a simultaneous significant
increase in motility was observed upon estradiol challenging
of quiescent CPEC cells, as the wound gap was significantly
reduced, in the absence of cell proliferation (Figures 6C,D
and legend). Addition of pasireotide did not further increase
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FIGURE 5 | Effect of estradiol and pasireotide on EMT, morphology and motility of EPN cells. Quiescent EPN cells were untreated or treated for 48 h with the
indicated compounds. Estradiol was used at 20 nM, pasireotide at 0.1 mM, PPT and DPN both at 3 nM. In panel (A), lysate proteins (2 mg/ml) were prepared,
separated by SDS-PAGE and transferred to nitrocellulose membrane. Filters were immune-blotted using the antibodies against the indicated proteins. The blots are
representative of two different experiments. In panel (B), the cells were analyzed for morphological changes using contrast-phase microscopy. Bar, 10 mM. In panel
(C), the cells were wounded and then left unstimulated or stimulated with the indicated compounds. Cytosine arabinoside (20 mM) was added to the cell medium to
avoid cell proliferation. Contrast-phase images in panel (B,C) are representative of 3 different experiments.

the estradiol-induced effect on cell motility. Although able to
induce an increase in vimentin levels and a slight decrease
in E-cadherin (Figure 6A), pasireotide did not significantly
modify the migratory capacity of CPEC cells, when used
alone (Figures 6C,D). Acquisition of a mesenchymal cell state,
indeed, is not a prerequisite of a migratory phenotype in vitro
and in vivo (Schaeffer et al., 2014) and pasireotide might be
unable, in our experimental conditions, to activate the signaling
networks (e.g., Rho family GTPases, paxillin/focal adhesion
kinase signaling module) required for cell locomotion (Devreotes
and Horwitz, 2015). Notably, stimulation of CPEC cells with the
ERβ agonist, DNP strongly reduced the wound gap, indicating
that specific activation of ERβ, the only ER isoform expressed
in CPEC cells, is responsible for the migratory phenotype here
observed (Figures 6C,D).

Collectively, the data in 6 show that by activating ERβ,
estradiol promotes EMT and motility in CPEC cells. Addition
of pasireotide, or pasireotide alone does not significantly modify
these effects. Here again, hormonal stimulation of CPEC cells
scantly activates the apoptotic machinery, and pasireotide does
not enhance this response (see Figures 2, 3).

In sum, findings in Figures 5, 6 are consistent with the concept
that cells undergoing EMT become resistant to the apoptotic
effect (Thiery, 2002).

DISCUSSION

In this study, we have used the prostate epithelial EPN cell line
and the PC-derived epithelial CPEC cells. In both cell lines we
have assessed the responsiveness to estradiol and the SST analog,
pasireotide. Estradiol increases the expression of SSTR1, SSTR2
and SSTR5 at mRNA and protein levels in EPN cells, while
hormone treatment reduces the SSTR1 and SSTR2 mRNA and
SSTR1, SSTR2 and SSTR5 protein levels in CPEC cells. Our study
for the first time reports the regulation of SSTRs by estradiol
in prostate cell lines. Estradiol up-regulation of SSTR1, 2 and 5
depends on ERα, since EPN cells express both ERα and β, while
CPEC cells only express low amounts of ERβ (Rossi et al., 2011
and Supplementary Figure S2). Experiments with the specific
ERα ligand, PPT further support this concept. However, it cannot
be excluded the possibility that the balance between the two
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FIGURE 6 | Effect of estradiol and pasireotide on EMT, morphology and motility of CPEC cells. Quiescent CPEC cells were untreated or treated for 48 h with the
indicated compounds. Estradiol was used at 20 nM, pasireotide at 0,1 µM and DPN at 3 nM. In panel (A), lysate proteins (2 mg/ml) were prepared, separated by
SDS-PAGE and transferred to nitrocellulose membrane. Filters were immune-blotted using the antibodies against the indicated proteins. The blots are representative
of two different experiments. In panel (B), the cells were analyzed for morphological changes using contrast-phase microscopy. Bar, 10 µM. In panel (C), the cells
were wounded (the arrow indicates the wound length) and then left unstimulated or stimulated with the indicated compounds. Cytosine arabinoside (20 µM) was
added to the cell medium to avoid cell proliferation. The wound gap from three different experiments was calculated using Image J software and expressed as % of
the decrease in wound area. Means and SEM are shown. n represents the number of experiments. ∗p < 0.05 for each experimental point versus the corresponding
untreated control. Contrast-phase images in panel (D) are representative of 3 different experiments. In panel (C,D), quiescent cells on coverslips were left
unstimulated or stimulated for 24 h with estradiol (20 nM), or DPN (3 nM), or pasireotide (0,1 µM) or a combination of estradiol plus pasireotide. After in vivo pulse
with BrdU (100 µM; Sigma), the DNA synthesis was analyzed by IF as reported in Methods and calculated by the formula: percentage of BrdU-positive cells = (No. of
BrdU-positive cells/No. of total cells) X 100. In unstimulated cells, the BrdU incorporation was observed in less than 14% of total cells. Neither estradiol, nor DPN, nor
pasireotide, nor combination of estradiol and pasireotide increased the BrdU incorporation, which was detected in 18, 16, 15, and 17% of total cells, respectively.

ER isoforms regulates SSTR levels in EPN cells. In CPEC cells,
estradiol down-regulates SSTR1, 2 and 5 likely because of the
absence of ERα.

The expression pattern of SSTRs correlates with different
biological responses elicited by estradiol. Hormone treatment
induces a robust apoptotic response in EPN, but not in
CPEC cells, suggesting that up-regulation of SSTR1, 2 and
5 by estradiol is involved in the apoptotic machinery. The
finding that estradiol triggers cell death in EPN, but not
in CPEC cells, also suggests that the balance between ERα

and β expression plays a role in estradiol-induced apoptosis.
Loss of this balance, which occurs in CPEC cells, enables
cell cycle arrest. The SST analog, pasireotide exerts at very
low concentration (0,1 µM) a significant apoptotic effect in
both cell lines. The effect is stronger in CPEC cells, as
compared with EPN cells, likely because CPEC cells show a

more the robust expression of SSTR3, which mainly mediates
the SST-induced cytotoxic effect (War et al., 2011). However,
other mechanisms (e.g., regulation of PI3-K- or MAPK- or
the protein tyrosine phosphatase-dependent pathways or the
p27Kip1 cell cycle inhibitor) might be involved in CPEC cells.
Estradiol reinforces the apoptotic effect by pasireotide only
in EPN cells. This finding might be due to the estradiol-
induced increases in SSTR2 expression and the consequent
apoptotic effect. However, co-expression of both ERα and β

might sensitize the EPN cells toward cell death and estradiol
activation of both the ER isoforms might be permissive in the
apoptotic response.

We observe a down-regulation of Bcl-2 and c-Myc mRNA
levels upon estradiol or pasireotide treatment of EPN cells.
Combination of estradiol plus pasireotide further increases the
Bcl-2 and c-Myc down-regulation. Thus, the apoptotic effect
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induced by estradiol is mediated by down-regulation of both Bcl-
2 and Myc. These findings are consistent with results previously
obtained in estradiol-treated EPN cells (Rossi et al., 2011). It
has been reported that estradiol up-regulates the Bcl-2 gene in
estrogen responsive BC cells (Perillo et al., 2000, 2008). The down
regulation of Bcl-2 we observe in EPN cells suggests that estradiol
regulation of Bcl-2 depends on cell-context and/or ERα/β ratio.
In sum, by increasing the expression levels of SSTRs, estradiol
synergizes with pasireotide in prostate cells expressing both ER
isoforms. In CPEC cells, which only express low ERβ levels, such
regulation is lost and estradiol-treated cells result prevalently
arrested in G0/G1. Simultaneously, a significant increase in Bcl-2
level is detected, with a weak elevation in Myc levels, suggesting
the involvement of Bcl-2 in estradiol-mediated survival of CPEC
cells. It cannot be excluded, however, that a faint elevation in
c-Myc levels might amplify pre-existing transcriptional programs
(McMahon, 2014).

Conflicting findings on the role of ERα or β in EMT
and migration of prostate tissues and PC continue to emerge.
Irrespective of pasireotide presence, we did not observe
significant morphological changes in estradiol-treated EPN cells.
They did not undergo EMT and migration. Noticeably, estradiol
induces EMT in prostate benign hyperplasia (Shi et al., 2017).
However, the different experimental conditions (2 and 3D
conditions), the ratio between ERα and ERβ might explain these
discrepancies. In contrast, estradiol challenging of transformed
CPEC cells promotes EMT and enables migration. These effects
are mediated by ERβ, as CPEC cells only express ERβ and the
DPN specific ligand exerts an impressive effect in our migration
assay. Overall, our findings are consistent with the concept that
apoptosis and motility are mutually exclusive and that migrating
cells usually activate survival mechanisms as they move (Hood
and Cheresh, 2002). Thus, EPN cells undergo apoptosis, while
CPEC cells easily migrate on hormonal stimulation.

The findings we observe call for additional comments. SST
analogs, such as octreotide, lanreotide and pasireotide, have been
used in PC-derived cells (Lattanzio et al., 2013). Pasireotide,
a new synthetic SST analog active on SSTR1-3 and SSTR5
(Weckbecker et al., 2003), induces apoptosis in malignant
PC-derived cells and potentiates the antineoplastic effects of
prednisone and docetaxel in phase I clinical trial (Lo Nigro et al.,
2008; Erten et al., 2009; Thakur et al., 2018). Lanreotide, in
combination with dexamethasone and ADT, induces a decrease
in PSA level and improves the bone pain in PC patients
(Mitsogiannis et al., 2009). Relevant to the findings here reported,
combination of SST analogs with ethinyl estradiol restores
clinical responses (Di Silverio and Sciarra, 2003) and decreases
PSA levels in CRPC patients (Mitsogiannis et al., 2009). Thus
CRPC patients benefit from combination of ethinylestradiol and
SST analogs in terms of both clinical responses and symptomatic
relief. Our findings strongly suggest that combination of SST
analogs with estradiol might be efficacious in PC, provided
it expresses both the ER isoforms. It cannot be excluded,
however, that such combinatorial therapy may act in PC
patients by targeting not only PC cells, but also the tumor
microenvironment, which confers invasiveness, protection from
apoptosis and therapy escape (reviewed in Di Donato et al.,

2015b). Somatostatin analogs neutralize, indeed, the protective
effect elicited by survival signals derived by neuroendocrine
prostate cells (Hejna et al., 2002), which often surround PC
epithelial cells. On the other, estrogens might exert a direct
cytotoxic effect on epithelial PC cells, provided they express both
the ER isoforms. Further experiments in 3D models of PC are
needed to disclose this concern.

In conclusion, our findings for the first time reports that
estradiol controls SSTRs in normal and PC cells. By up-regulating
SSTRs, estradiol fosters the anti-proliferative effect of pasireotide
in EPN but not CPEC cells. Consistent with these results,
estradiol does not promote EMT and motility in EPN cells,
while it induces EMT and migration in CPEC cells. In addition
to offering valuable hints into the identification of hormonal
biomarkers in PC specimens, this study provides new insights
in the management of PC, which still remains a challenge
for clinicians.
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FIGURE S1 | Western blot analysis of protein extracted from normal pancreas
with anti-SSTRs monoclonal antibodies (MAbs). Lysate proteins were extracted
from normal pancreas and electrophoretically separated as described in Methods.
Proteins were then transferred to PVDF membrane and immunoblotted with
antibodies against SSTRs receptors (−). Control blots (+) were obtained using
anti-SSTRs MAb pre-adsorbed with immune-reactive specific peptide.

FIGURE S2 | Western blot analysis of EPN or CPEC lysate proteins with anti-ER
(α or β) antibodies. The Western blot analysis of lysate proteins from EPN and
CPEC cell lines was done. Proteins from cell lysates (1 mg/ml) were resolved by
SDS–PAGE, transferred to nitrocellulose membrane and then probed with
anti-ERα or β antibodies, as described in Methods. Lysate proteins from
ERα-positive MCF-7 or ERα-negative LNCaP cells were analyzed in parallel, as
control. The Western blot analysis with anti-tubulin antibody was also done as
loading control.
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