
fphar-10-00184 March 1, 2019 Time: 12:38 # 1

MINI REVIEW
published: 01 March 2019

doi: 10.3389/fphar.2019.00184

Edited by:
Trinidad Montero-Melendez,

Queen Mary University of London,
United Kingdom

Reviewed by:
Michael Hickey,

Monash University, Australia
Dianne Cooper,

Queen Mary University of London,
United Kingdom

*Correspondence:
Helen M. McGettrick

h.m.mcgettrick@bham.ac.uk

†These authors have contributed
equally to this work

‡These authors jointly coordinated
this work

Specialty section:
This article was submitted to
Inflammation Pharmacology,

a section of the journal
Frontiers in Pharmacology

Received: 06 October 2018
Accepted: 14 February 2019

Published: 01 March 2019

Citation:
Hopkin SJ, Lewis JW, Krautter F,

Chimen M and McGettrick HM (2019)
Triggering the Resolution of Immune

Mediated Inflammatory Diseases: Can
Targeting Leukocyte Migration Be

the Answer?
Front. Pharmacol. 10:184.

doi: 10.3389/fphar.2019.00184

Triggering the Resolution of Immune
Mediated Inflammatory Diseases:
Can Targeting Leukocyte Migration
Be the Answer?
Sophie J. Hopkin1†, Jonathan W. Lewis2†, Franziska Krautter1†, Myriam Chimen1‡ and
Helen M. McGettrick2*‡

1 Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom, 2 Rheumatology Research
Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation
and Ageing, University of Birmingham, Birmingham, United Kingdom

Leukocyte recruitment is a pivotal process in the regulation and resolution of an
inflammatory episode. It is vital for the protective responses to microbial infection and
tissue damage, but is the unwanted reaction contributing to pathology in many immune
mediated inflammatory diseases (IMIDs). Indeed, it is now recognized that patients
with IMIDs have defects in at least one, if not multiple, check-points regulating the
entry and exit of leukocytes from the inflamed site. In this review, we will explore
our understanding of the imbalance in recruitment that permits the accumulation and
persistence of leukocytes in IMIDs. We will highlight old and novel pharmacological
tools targeting these processes in an attempt to trigger resolution of the inflammatory
response. In this context, we will focus on cytokines, chemokines, known pro-resolving
lipid mediators and potential novel lipids (e.g., sphingosine-1-phosphate), along with the
actions of glucocorticoids mediated by 11-beta hydroxysteroid dehydrogenase 1 and 2.

Keywords: leukocytes, migration, inflammation, resolution, PEPITEM, sphingosine-1-phosphate, glucocorticoids,
11-beta hydroxysteroid dehydrogenase

INTRODUCTION

Acute inflammation is a self-limiting, resolving response in which leukocyte entry and exit is
tightly controlled. An imbalance in these processes permits accumulation and persistence of
leukocytes within inflamed tissue, leading to damaging chronic non-resolving inflammation that
underpins immune-mediated inflammatory diseases (IMIDs). Although significant advances have
been made, we still do not fully understand the physiological processes regulating resolution of
inflammation, and whether tissue-specific, or stimuli-specific processes exist. Current therapeutic
strategies target leukocytes directly or their cytokine products, and hence the activation process of
inflammation, rather than promoting resolution. Identifying the immune components that actively
induce resolution of inflammation may be the key to novel therapeutic strategies for the treatment
of IMIDs (Fullerton and Gilroy, 2016). In this review, we will focus on the pharmacological tools
that influence the migration of leukocytes during an inflammatory response and whether such
agents can trigger resolution (Figure 1).
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LEUKOCYTE TRAFFICKING IN HEALTH

Upon inflammation, blood vascular endothelial cells (EC) up-
regulate adhesion molecules and chemokines necessary to
support dynamic EC-leukocyte interactions and allow leukocytes
to cross the EC barrier (Nourshargh and Alon, 2014; Mellado
et al., 2015). The leukocytes themselves receive a series of
sequential signals as they negotiate this barrier, which influence
their adhesive and migratory properties, effector functions (Luo
et al., 2015) and survival (Filer et al., 2006; McGettrick et al.,
2006) at the inflamed site. At the blood-tissue interface, selectivity
between neutrophils and T-cells arises from the production and
use of specific capture receptors (E-, P-selectins, low affinity
α4β1-integrin), adhesion molecules (β2-, β1-integrins binding
ICAM-1 or VCAM-1, respectively), chemokine and junctional
molecule combinations (Reglero-Real et al., 2016). Tissue-specific
“address-codes” (Parsonage et al., 2005) are created by the
interactions of tissue-resident stromal cells with neighboring EC
(McGettrick et al., 2012) and provide an extra level of complexity
to the leukocyte adhesion cascade, controlling the number and
type of leukocytes recruited during a given inflammatory event.

CHRONIC INFLAMMATION:
DYSREGULATION OF TRAFFICKING

Growing evidence indicates that leukocyte entry into, migration
through and exit from peripherally inflamed tissues is changed
to some degree in patients with IMIDs, and that these processes
can differ between individual’s with the same clinical diagnosis,
and over the life-time of disease [i.e., amongst different phases
of disease, following therapeutic intervention; (Buckley and
McGettrick, 2018)]. Susceptibility genes associated with IMIDs
have been shown to directly influence leukocyte recruitment and
migration. For instance, expression of the rheumatoid arthritis
(RA) susceptibility variant of PTPTN22 (R620W) has been
reported to increase the adhesive and migratory properties of
murine T-cells (Burn et al., 2016) and human neutrophils (Bayley
et al., 2015) in non-diseased models and subjects. Similarly
alterations in the cellular metabolism of leukocytes [namely
T-cells in RA (Shen et al., 2017) or monocytes in atherosclerosis]
can render these cells hypermotile or overtly pro-inflammatory
(Chimen et al., 2017). Additionally vascular EC from chronically
inflamed tissues acquire pathogenic traits, including elevated
expression of adhesion molecules (Jones et al., 1995; Salmi et al.,
1997; Cañete et al., 2007). For instance, cultured rheumatoid
synovial EC required minimum TNFα stimulation to recruit
leukocytes (Abbot et al., 1999). Similarly, secretory smooth
muscle cells associated with atherosclerotic plaques are able
to prime neighboring blood vascular EC to recruit leukocytes
in response to very low TNFα concentrations (Rainger and
Nash, 2001). Pathogenic rheumatoid synovial fibroblasts overtly
activate EC, leading to the inappropriate influx of leukocytes
(Lally et al., 2005; Smith et al., 2008; McGettrick et al., 2009).
These interactions evolve with the progression of RA (Filer
et al., 2017). This will ultimately change the phenotype of EC
(McGettrick et al., 2015) and therefore the types of leukocytes

they recruited as the disease persists. Thus it is clear that IMIDs
adversely affect key cellular components that control leukocyte
migration. Whilst we currently are unable to modify the genetic
background of a patient with IMIDs, targeting environmental
alterations in key cellular components to trigger resolution
pathways is a much needed strategy.

TRIGGERING RESOLUTION OF
IMMUNE-MEDIATED INFLAMMATORY
DISEASES

In humans, it is difficult to evaluate the impact of current IMID
therapies on the process of leukocyte trafficking, with many
studies only commenting on the changes in cell numbers in one
tissue. A reduction in leukocyte numbers at an inflamed site
due to drug treatment could arise from (i) reduced entry, (ii)
enhanced clearance, (iii) promotion of exit, or (iv) retention in
lymph nodes or other peripheral tissues that result in reduced
numbers of leukocytes in the circulation (e.g., S1P inhibitors
– see below). Indeed, anti-cytokine therapies systemically target
key molecules utilized during leukocyte trafficking, including
EC activation (TNFα, IL-1β) or EC-stroma crosstalk (e.g.,
IL-6). Raising the question – what properties should a pro-
resolving agent have? If we specifically focus on the context of
leukocyte trafficking, potential modes of action would include,
limiting cellular infiltration; inducing apoptosis; modulating
chemokine and cytokine gradients to promote egress and
clearance; reprogramming of leukocytes (e.g., macrophage)
phenotypes to induce suppressor cells and induction of tissue
repair mechanisms (Sugimoto et al., 2016a).

Cytokines
The cytokine pathways promoting resolution are largely
undefined thus far. Certain cytokines are considered to be anti-
inflammatory, such as IL-10 and TGF-β, but does this mean they
also induce resolution? IL-10 signaling caused the destabilization
of TNFα and IL-1α mRNA, thereby reducing protein production
in macrophages (Schaljo et al., 2009). Similarly, TGF-β can
inhibit the translation of TNFα mRNA into protein in LPS-
stimulated murine macrophages in vitro (Bogdan et al., 1992).
Reduced TNFα levels at inflamed sites, as seen in patients
treated with TNFα inhibitors, causes EC and stromal cells to
revert to a resting-like phenotype, downregulating the expression
of adhesion molecules and chemokines necessary to support
leukocyte migration (Tak et al., 1996). Mice deficient in either
IL-10 (Keubler et al., 2015) or TGF-β1 (Kulkarni and Karlsson,
1993; Dang et al., 1995; Letterio et al., 1996) have increased
suspectibility to developing IMIDs. However, neither cytokine
appeared to induce resolution when administered therapeutically
in rodent models of IBD (Herfarth et al., 1998; Barbara et al.,
2000; Kitani et al., 2000); and only TGF-β was shown to reduce
leukocyte infiltration and disease severity (Kitani et al., 2000).
Raising the question as to whether these cytokines can influence
the migration of leukocytes to support resolution. IL-10 therapy
has been reported to reduce the incidence of psoriasis relapse
in a cohort of patients in remission (Friedrich et al., 2002),
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FIGURE 1 | Regulation of leukocyte trafficking as a way to enhance resolution. Leukocytes, such as neutrophils, monocytes, and lymphocytes, are recruited to and
migrate through the vessel wall to reach the site of inflammation. This process is tightly regulated and involves adhesion molecules and chemokine-chemokine
receptor signal transduction, as well as interaction with the stromal compartment. Critically, these processes become dysregulated in chronic inflammatory diseases
leading to aberrant recruitment that contributes to the diseases. There is a growing interest in finding ways to control leukocyte trafficking as a means to reduce the
numbers of leukocyte in inflammatory sites, and therefore potentially allow resolution. Amongst those potential targets are cytokines, such as IL-10 and TGF-β; lipid
mediators (e.g., lipoxins, resolvins, maresin-1, and S1P); annexin A1, glucocorticoids and its regulating enzyme 11β-HSD-1, as well as the recently characterized
pChemokines and ACKRs. These potential targets are all capable of modulating leukocyte migration and further investigation is required to establish their potential
pro-resolution roles.

and induce clinical remission in ∼25% of patients with steroid-
resistant Crohn’s disease when compared to placebo control
(van Deventer et al., 1997). Whilst both cytokines modulate
inflammation, their clinical potential as pro-resolving therapies
has yet to be fully determined.

Chemokines
Chemokines are active regulators of leukocyte migration into
and out of tissues, as well as playing a key role in the
positioning of leukocytes within the inflamed site. The successes
and failures of targeting the chemokine pathway to block
their pro-inflammatory functions and interfere with leukocyte
migration has been reviewed elsewhere (Asquith et al., 2015).
Recently, an alternative means of targetting chemokines to induce
resolution was described: pChemokines are short-chain peptides
with high affinity for chemokine glycosaminoglycan binding do-
main, which enables them to act as competitive inhibitors for
chemokine receptors (McNaughton et al., 2018). pCXCL8 treat-
ment was able to reduce neutrophil migration across CXCL8-
treated endothelium in vitro and limited the numbers of leukocy-
tes infiltrating arthritic murine joints (McNaughton et al., 2018).

pChemokines are potentially a promising new therapeutic option
for IMIDs, limiting the inflammatory infiltrate. It remains to
be seen whether pChemokines also display other pro-resolving
mechanisms, such as inducing tissue repair or reprogramming of
macrophages from classical to alternative activation.

Endogenous removal of chemokines, either by drainage
through the lymphatics or by chemokine-scavenging atypical
chemokines (ACKRs), is necessary to facilitate the removal of
the inflammatory infiltrate during resolution (Bonecchi and
Graham, 2016). The potential role of ACKRs in resolution
has been reviewed elsewhere (Bonecchi and Graham, 2016).
As an example, ACRK2 (also known as D6) deficient mice
have increased chemokine expression in the kidney (Bideak
et al., 2018) and skin (Jamieson et al., 2005), accompanied by
accumulation of T-cells in these tissues and exacerbation of
nephrotoxic nephritis and psoriasis. To date, it is unclear whether
the functional properties of ACKR2 can be defined as pro-
resolving rather than anti-inflammatory, and whether ACKR2
has utility as a therapeutic target. Nevertheless, it is possible
that agents that manipulate the expression and/or sequestering
properties of ACKRs may be able trigger the resolution
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process in patients with IMIDs. Further work in this area
is urgently required.

Bioactive Pro-resolving Mediators –
Resolvins, Lipoxins, Protectins,
Maresin and Annexin A1
A variety of bioactive lipid mediators and proteins with pro-
resolving properties have been identified, including lipoxins,
resolvins, protectins and maresins (Serhan and Petasis, 2011),
and subsequently shown to become dysregulated in patients
with IMIDs contributing to pathology (Serhan, 2014; Brouwers
et al., 2015). Circulating cytokine and chemokine levels can
be directly modulated by such agents – for instance maresin
can reduce IL-6, IL-1β (Marcon et al., 2013), and CCL2 levels
(Martínez-Fernández et al., 2017), whilst annexin A1 (also
known as lipocortin) is able to increase IL-10 production
(Martínez-Fernández et al., 2017). Moreover, annexin A1,
resolvins D1 and D2, and lipoxin A4 can all inhibit the
expression of selectin molecules [e.g., P-selectin (Scalia et al.,
1997), E-selectin (Chatterjee et al., 2014), or trigger L-selectin
shedding (Strausbaugh and Rosen, 2001)] and also reduce
β-integrin affinity states and their ability to cluster (Spite
et al., 2009; Krishnamoorthy et al., 2010; Drechsler et al.,
2015) on both leukocytes and on the endothelium. Reduced
expression, activation and clustering of adhesion molecules,
along with increased shedding will have considerable impact on
the leukocyte recruitment cascade. Indeed, substantial evidence
exists that pro-resolving lipid mediators, such as annexin A1,
maresin-1, lipoxin A4, resolvin E1 and protectin D1 can inhibit
neutrophil or monocyte infiltration into a variety of inflamed
tissues, including mesentery (Lim et al., 1998), gut (Schwab
et al., 2007), lung (Guido et al., 2013; Gong et al., 2014), brain
(Gavins et al., 2012), atherosclerotic lesions (Drechsler et al.,
2015), to promote resolution. Protectin D1, and to a lesser extent
resolvin E1, are also able to enhance neutrophil and macrophage
egress from inflamed cavities to neighboring lymphoid tissues
(lymph node/spleen), further facilitating resolution through the
removal of the microbial challenge via the lymphatics (Schwab
et al., 2007). For further details, this topic is reviewed in depth
elsewhere (Ortega-Gómez et al., 2013; Headland and Norling,
2015; Sugimoto et al., 2016b). Such data would indicate that these
agents offer the potential to induce resolution in patients with
IMIDs; however, the clinical efficacy of these agents has yet to
be proven.

Sphingosine-1-Phosphate
Numerous pharmaceutical companies are currently interested
in modifying the bioactivity of sphingosine-1-phosphate (S1P)
(Dyckman, 2017), yet it remains unclear whether S1P functions
as a pro-resolving or a pro-inflammatory lipid mediator. The
most abundant store of S1P is found in the blood, where the
majority is bound to plasma proteins reducing its bioavailability
(Christoffersen et al., 2011). The two main consequences of
this are: (i) a S1P concentration gradient between the blood
and tissue (Pappu et al., 2007) and (ii) reduced S1P receptor
(SIPR) expression on circulating leukocytes (Lo et al., 2005).

However, re-expression of surface S1PR1 and S1PR4 is stimulated
by chemokine-induced integrin activation of T-cells bound to
inflamed blood vascular EC, sensitizing these cells to S1P (Chimen
et al., 2015). Under these circumstances, locally released S1P was
able to inhibit T-cell transendothelial migration, by reducing the
affinity state of β2-integrins from high to low (Chimen et al.,
2015). In this study, B-cells recruited to the inflamed EC and
binding adiponectin secrete a novel 14 aa immunomodulatory
peptide, called PEPITEM (PEPtide Inhibitor of Transendothelial
Migration) (Chimen et al., 2015). PEPITEM binds to cadherin-
15 on the endothelium triggering S1P production and release
through the S1P transporter, SPSN2 (Chimen et al., 2015).

The inability to produce PEPITEM, and thus stimulate local
S1P production, contributes to the inappropriate accumulation
of T-cells in inflamed tissues in type-1-diabetes and RA (Chimen
et al., 2015). Thus in this context S1P acts in an anti-inflammatory
manner and could be an early initiator of the pro-resolving
machinery. Mast cell derived S1P can also indirectly regulate
leukocyte rolling triggering rapid mobilization of P-selectin to
the EC surface in a S1PR3 dependent manner in response to
tissue damage (Nussbaum et al., 2015). In a counter-regulatory
manner, leukocyte rolling was enhanced in S1PR1 deficient
mice, indicating that S1PR1 is inhibitory for leukocyte rolling
(Nussbaum et al., 2015). Thus the actions of S1P may be subtly
modified dependent on the different S1PR triggered.

In addition to regulating leukocyte entry into inflamed
peripheral tissues, S1P has also been reported to influence
the transit through and exit from these sites across lymphatic
endothelium (Ledgerwood et al., 2007). For instance, S1P
reportedly enables activated CD4+ T-cells (OT-II cells) to persist
and move about within inflamed ear pinnae when the cells
are injected directly into the tissue, whereby inhibiting S1P
signaling with fingolimod reduced the speed at which T-cells
cells traveled within the ear (Jaigirdar et al., 2017). Moreover,
fingolimod significantly reduced the number of activated T-cells
retained in the ear, suggesting that in the absence of S1P signals
the activated T-cells were now able to migrated out of the
tissue across the lymphatics (Jaigirdar et al., 2017). Similarly,
S1P signaling through S1PR1 blocked T-cell migration across
lymphatic endothelial cells of the footpad (Ledgerwood et al.,
2007), strongly indicating that S1P signaling regulates T-cell exit
of peripheral tissues. Overall it appears that S1P has dual roles in
regulating leukocyte recruitment and migration, acting to both
promote and inhibit it depending on context. The relationship
between these properties and the resolution processes remains to
be fully elucidated.

Dysregulation of S1P production, leading to higher S1P levels
in chronically inflamed tissues is a shared feature of many IMIDs.
For example, elevated levels of the enzyme (SPHK-1) necessary
for S1P synthesis have been reported in rheumatoid synovium
(Jaigirdar et al., 2017) and ulcerative colitis (Karuppuchamy et al.,
2017), whilst high concentrations of S1P occur in broncholavage
fluid (Ammit et al., 2001) and cerebrospinal fluid (Kułakowska
et al., 2010) from asthma and multiple sclerosis (MS) patients.
This tends to support the notion that the bioactivity of S1P is pro-
inflammatory rather than pro-resolving. Indeed, inhibiting S1P
signaling with FTY720 has protective effects when administered
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therapeutically in rodent models of MS (Sheridan and Dev, 2014),
inflammatory arthritis (Matsuura et al., 2000; Wang et al., 2007;
Tsunemi et al., 2010; Fujii et al., 2012; Han et al., 2015), and
systemic lupus erythematosus (SLE) (Wenderfer et al., 2008).
Moreover, fingolimod is an FDA-approved treatment for MS with
clinical efficacy in reducing relapses in patients with relapsing
remitting MS (Kappos et al., 2006; Singer, 2013), but not those
with primary progressive MS (Lublin et al., 2016). Nevertheless,
existing S1P modulators are known to induce lymphopenia
(Wang et al., 2007; Tsunemi et al., 2010) by blocking lymphocyte
exit from lymph nodes (Mandala et al., 2002; Chiba, 2005; Han
et al., 2015) – thus indirectly reducing the circulating numbers
of cells available to enter peripherally inflamed sites. This can
result in a general immunosuppression in patients; increasing
susceptibility to opportunistic infections, whilst reducing vaccine
efficiency (Massberg and von Andrian, 2006). Moreover, it is
highly probable that S1P modulators also interfere with the S1P-
dependent migration of T-cell out of peripherally inflamed tissues
across lymphatic endothelium (Ledgerwood et al., 2007), and
thus maybe responsible for retention of cells at the inflamed site
further exacerbating disease.

11-Beta HSD Enzymes in
Regulating GC Function
Glucocorticoids (GCs) are steroid hormones responsible for
regulating cellular metabolism, immune function, adhesion
molecule expression, and leukocyte migration (Tomlinson
and Stewart, 2001). Dexamethasone (a synthetic GC) reduced
the expression of E-selectin on inflamed aortic EC, disrupting
neutrophil migration (Brostjan et al., 1997). By contrast,
dexamethasone enhanced CXCL12-induced chemotaxis of
resting human T-cells in vitro (Ghosh et al., 2009). Blocking
GC function with prophylactic administration of glucocorticoid
receptor (GR) antagonists exacerbated neutrophil infiltration
into the synovial of carrageenan-induced monoarthritis in
rats (Leech et al., 1998). GCs also influence cell viability,
promoting neutrophil survival (Cox, 1995; Ruiz et al., 2002),
whilst stimulating eosinophil apoptosis (Druilhe et al., 2003).
Importantly, GCs can indirectly promote the resolution of
inflammation through the induction of annexin A1 on human
neutrophils and monocytes (Goulding et al., 1990). Annexin A1
can disrupt neutrophil migration, causing adherent neutrophils
to detach from inflamed mesenteric endothelium and re-enter
the circulation (Lim et al., 1998) restoring tissue homeostasis.
Synthetic GCs clearly elicit cell-type specific effects, eliciting
more immunomodulatory rather than immunosuppressive
effects and may even exacerbate inflammation. Yet they
are commonly used to treat IMIDs [e.g., RA, MS, psoriasis
(Coutinho and Chapman, 2011)], where prolonged use
is associated with metabolic and endocrine dysregulation
(Schäcke et al., 2002).

The predominately active GC in humans is cortisol, which
upon binding to the cytosolic GR, modifies gene expression
to promote an anti-inflammatory response (Schüle et al., 1990;
De Bosscher et al., 1997). The local bioavailability of GC is
regulated by metabolic enzymes, including the two isoforms of

11β-hydroxysteroid dehydrogenase [11β-HSD-1 and 11β-HSD-2;
(Seckl and Walker, 2001; Tomlinson and Stewart, 2001)]. Residing
in the lumen of the ER, 11β-HSD-1 primarily reduces cortisone
(inactive GC) to cortisol (active GC) increasing local active GC
concentrations, whilst 11β-HSD-2 catalyzes the reverse reaction –
inactivating cortisol and reducing active GC levels (Albiston
et al., 1994; Seckl and Walker, 2001; Tomlinson and Stewart,
2001). 11β-HSD-1 expression and activity are ubiquitious, albeit
at varying amounts: high expression is found in GC-target tissues
[e.g., liver and fat; (Seckl and Walker, 2001)] and much lower
levels are seen in leukocytes (Thieringer et al., 2001; Chapman
et al., 2009; Coutinho et al., 2016). In contrast, 11β-HSD-2
expression and activity are largely restricted to mineralocorticoid-
target tissues, e.g., the kidneys, pancreas and large intestine
(Albiston et al., 1994), and not found in leukocytes. Importantly,
the expression and activity of 11β-HSD-1 is dynamically regulated
during inflammation, where cytokines such as IL-1β (Sun
and Myatt, 2003), IL-4 (Thieringer et al., 2001), and IL-13
(Thieringer et al., 2001) induce 11β-HSD-1 activity stimulating
local increases in active GC which exert anti-inflammatory and
pro-resolving effects. Interestingly, GC metabolism is skewed
in patients with IMIDs, such as SLE (Ichikawa et al., 1997)
and RA (Hardy et al., 2006), toward cortisol production and
therefore should trigger GC-induced anti-inflammatory/pro-
resolving pathways to dampen the inflammatory response.
However, despite elevated plasma cortisol levels in patients with
IMIDs, the anti-inflammatory/pro-resolving GC pathways are
not obviously triggered. This discrepancy has been attributed
to an insufficient levels of active GCs, as this deficiency can be
overcome by administration of high-dose GC mimics to IMID
patients (Straub and Cutolo, 2016). Thus the relationship between
plasma cortisol and active GC is not strictly linear in chronic
inflammation, opening avenues for further research into the
dysregulation of GC metabolism.

11β-HSD-1 have also been reported to modulate leukocyte
trafficking by influencing expression of chemokines and adhesion
molecules (Wamil et al., 2011; Kipari et al., 2013; Mylonas et al.,
2017). However, in vivo studies blocking 11β-HSD-1 function
with chemical agents or in 11β-HSD-1-deficient (Hsd11b1−/−)
mice have reported conflicting findings. In a model of
acute thioglycollate-induced peritonitis in mice, augmented
leukocyte recruitment was observed following prophylactic
inhibition of local 11β-HSD-1 (Coutinho et al., 2016) and in
Hsd11b1−/− mice (Coutinho et al., 2012). Similar findings
were reported in carrageenan-induced pleurisy (Coutinho et al.,
2012) and coronary artery ligation induced myocardial infarction
(McSweeney et al., 2010) in Hsd11b1−/− mice, supporting the
concept that 11β-HSD-1 functions to limit inflammation. In
contrast, lower amounts of MCP-1 were released by adipocytes
from Hsd11b1−/− mice on a high fat diet, resulting in fewer
CD8+ T-cell and macrophage infiltrating mesenteric adipose
tissue (Wamil et al., 2011). Similarly low VCAM-1 expression by
aortic endothelial cells was attributed to the significant reduction
in T-cell and macrophage within atherosclerotic plaques of
Hsd11b1−/− mice on high fat diet (Kipari et al., 2013). These
studies indicate that 11β-HSD-1 activity promotes leukocyte
recruitment and hence inflammation. The field currently believes
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that the functional outcomes of 11β-HSD-1 activity, whether
these be pro or anti-inflammatory, is governed by a mixture
of cell-specific, tissue-specific and inflammatory context-specific
factors. Therefore, it is impossible to say with any certainty that
11β-HSD-1 has pro-resolving properties and is a viable drug
target without further studies in this area.

That said, phase 2 clinical trials examining the efficacy of
11β-HSD-1 selective inhibitors, such as INCB13739 in obesity-
related inflammatory diseases are ongoing (Anagnostis et al.,
2013), but as yet no candidate drug is in the pipeline for IMIDs.
Nevertheless caution is required: 11β-HSD-1 down-regulators
[e.g., glycyrrhizic acid and rosiglitazone (Mai et al., 2007; Wake
et al., 2007)] are associated with increased risk of cardiovascular-
associated morbidity (Nissen and Wolski, 2007), hypertension
encephalopathy (Russo et al., 2000) and hypokalemic paralysis
(Pant et al., 2010). Given the tissue-restricted expression patterns
of 11β-HSD, there is growing excitement about the potential
to specifically modulate local GC concentrations using tissue-
specific targeted therapies. However, we do not fully understand
the role of these enzymes in specific IMIDs. Critically, the effects
of endogenous GC and synthetic mimics are context dependent
based on cell-type and local environmental conditions creating
a complex interplay between GC, 11β-HSD enzymes and local
environment, which is not yet fully understood. Clarifying the
role of 11β-HSD enzymes in different IMIDs will allow the anti-
inflammatory and pro-resolution properties that they exert to be
exploited to promote the resolution of inflammation.

CONCLUSION AND CURRENT
PERCEPTIONS

The regulated movement of leukocytes into, through and out of
peripheral tissues is vital in order to mediate tissue homeostasis

in response to an inflammatory insult. We are expanding our
understanding into how these processes are altered in the
pathogenesis of IMIDs, and crucially the timing of such changes
and their impact on the resolution of inflammation. With every
step forward, key agents with the capacity to induce resolution
and that may be amenable to therapeutic intervention become
clearer. This represents an exciting new prospect that these novel
drugs would actively target endogenous regulatory processes to
reduce leukocyte entry into tissues and promote their clearance
and egress to restore tissue homeostasis.
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