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Cancer heterogeneity constitutes the major source of disease progression and therapy
failure. Tumors comprise functionally diverse subpopulations, with cancer stem cells
(CSCs) as the source of this heterogeneity. Since these cells bear in vivo tumorigenicity
and metastatic potential, survive chemotherapy and drive relapse, its elimination may
be the only way to achieve long-term survival in patients. Thanks to the great advances
in the field over the last few years, we know now that cellular metabolism and
stemness are highly intertwined in normal development and cancer. Indeed, CSCs
show distinct metabolic features as compared with their more differentiated progenies,
though their dominant metabolic phenotype varies across tumor entities, patients and
even subclones within a tumor. Following initial works focused on glucose metabolism,
current studies have unveiled particularities of CSC metabolism in terms of redox state,
lipid metabolism and use of alternative fuels, such as amino acids or ketone bodies.
In this review, we describe the different metabolic phenotypes attributed to CSCs
with special focus on metabolism-based therapeutic strategies tested in preclinical and
clinical settings.

Keywords: cancer stem cells, metabolism, mitochondria, oxidative phosphorylation, lipid metabolism,
redox regulation

Abbreviations: α-ADD, alpha-aminoadipate; 2DG, 2-deoxy-D-glucose; AML, acute myeloid leukemia; ALDH1, aldehyde
dehydrogenase 1; ATO, arsenic trioxide; BET, bromodomain and extra-terminal motif; BSO, buthionine sulfoximide; CAFs,
cancer associated fibroblast; CML, chronic myeloid leukemia; CSCs, cancer stem cells; DHA, docosahexaenoic acid; DOX,
doxorubicin; DQA, dequalinium; DRP-1, dynamin-related protein 1; EGCG, epigallocatechin gallate; EPA, eicosapentaenoic
acid; ERRα, estrogen-related receptor alpha; EMT, epithelial-mesenchymal transition; ETC, electron transport chain;
FAs, fatty acids; FAO, fatty acid oxidation; FASN, fatty synthase; FOXO, forkhead box; G6P, glucose-6-phosphate; GPx,
glutathione peroxidase; HBP, hexosamine biosynthetic pathway; LDs, lipid droplets; LPA, lysophosphatidic acid; MAO-B,
monoamine oxidase-B inhibitor; MCT 1/2, monocarboxylate transporter 1 and 2; Mdivi-1, mitochondrial division inhibitor;
MPP, mitochondria penetrating peptide; mtDNA, mitochondrial DNA; mTOR, mammalian target of rapamycin; MTS,
mitochondria targeting sequences; MUFAs, monounsaturated fatty acids; NER, nucleotide excision repair; NRF2, nuclear
factor erythroid 2–related factor 2; OxPhos, oxidative phosphorylation; PDAC, pancreatic ductal adenocarcinoma; PDX,
patient-derived xenograft; PEITCs, phenethyl isothiocyanates; PGC-1α, peroxisome proliferator-activated receptor gamma
coactivator 1-alpha; PHGDH, phosphoglycerate dehydrogenase; PI3K, phosphoinositide 3-kinase; PPP, pentose phosphate
pathway; ROS, reactive oxygen species; S1P, sphingosine-1-P; SOD, superoxide dismutase; SREBP1, sterol regulatory element-
binding protein 1; SCD-1, stearoyl-CoA desaturase; TCA, tricarboxylic acid; TICs, tumor initiating cells; TNBC, triple
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INTRODUCTION

Cancer is a highly heterogeneous disease, not only in terms
of variability among patients, but also within a single tumor.
This heterogeneity constitutes the main cause for therapy
resistance and cancer progression in some patients (Hanahan
and Weinberg, 2011). We can find different levels of intratumor
heterogeneity. First, a tumor is comprised of multiple genotypes,
which belong to distinct subclones with diverse features,
which may include differential morphology and/or functionality.
Additionally, tumors (and the subclones within) are formed of
a functionally heterogeneous cell population, where a particular
subset of tumor cells have the ability to initiate and propagate
tumor growth, survive chemotherapy and drive relapse (Phillips
et al., 2006; Diehn et al., 2009; Labelle et al., 2011; Hu
et al., 2012; Rhim et al., 2012; Touil et al., 2014; Li et al.,
2015b). These cells, the so-called cancer stem cells (CSCs),
have self-renewal capacity, and can give rise to a differentiated
progeny, leading to the production of all cell types present
within a tumor, thereby generating tumor heterogeneity through
a differentiation hierarchy (Reya et al., 2001). This distinct
population was initially identified in leukemia, but was also
found in solid tumors, such as breast, lung, prostate, colon,
brain, head and neck, liver, as well as in pancreatic ductal
adenocarcinoma (PDAC) (Hermann et al., 2007; Castellanos
et al., 2013; Du et al., 2017). Finally, non-cancer cells
present in the tumor microenvironment constitute a third
level of heterogeneity, since they can directly affect cancer
cell plasticity and functionality (Malanchi and Huelsken, 2009;
Batlle and Clevers, 2017).

Cancer stem cells can be originated either from a
mutation of a normal stem cell or from differentiated
cells acquiring stem-like abilities (Reya et al., 2001).
Indeed, numerous studies have found an abnormal
activation of stem cell regulatory genes and pathways in
the CSCs population, such as c-MYC, Bmi-1, Hedgehog,
Notch and Wnt (Somervaille et al., 2009; Sancho et al.,
2015; Wang et al., 2016). Apart from the well-known
developmental pathways such as Wnt, Hedgehog or Jagged,
metabolic traits have recently been involved in governing
the function of stem cells. Indeed, although stem cells
are primarily glycolytic, acquisition of certain metabolic
plasticity, together with an increase in oxidative metabolism,
primes them for maturation and supports their lineage
differentiation (Cho et al., 2006; Chen et al., 2008; Simsek
et al., 2010). A parallel mechanism was also postulated
for CSCs in different tumors (Dong et al., 2013; Shen
et al., 2015; Chen C.L. et al., 2016). However, recent
data indicate that CSCs may mainly depend on oxidative
metabolism (Sancho et al., 2015). In any case, reported
metabolic differences between CSCs and progenies introduce
another source of heterogeneity within tumors: metabolic
heterogeneity. The latter can be further amplified, since
different CSCs subclones can bear different metabolic
phenotypes (Gammon et al., 2013) as a result of genetic or
microenvironmental factors (Guha et al., 2014; Raj et al., 2015;
Sancho et al., 2016).

CANCER (STEM) CELL METABOLISM

One of the main cancer characteristics is uncontrolled growth
and cell division. To support the abnormal survival and
growth, cancer cells need to increase nutrient uptake to supply
biosynthesis pathways (Vander Heiden et al., 2009; Kamphorst
et al., 2015; Hensley et al., 2016). To achieve that, cancer cells
usually modulate the activity of different metabolic pathways
in order to produce metabolic precursors to satisfy energetic
and anabolic demands, and maintain redox balance (Vazquez
et al., 2016). Due to the crucial contribution of diverse metabolic
pathways to malignant transformation and tumor progression,
metabolic reprogramming recently became one of the cancer
hallmarks (Hanahan and Weinberg, 2011).

Aerobic Glycolysis
The best example of reprogrammed metabolism in cancer is
aerobic glycolysis (De Berardinis and Chandel, 2016): fast-
proliferating tumor cells increase their glucose uptake to produce
lactate in the presence of oxygen. This cancer hallmark was
discovered by Otto Warburg and, thus, named the Warburg effect
(Warburg et al., 1927; Warburg, 1956; Shim et al., 1998; Vander
Heiden et al., 2009; Cairns et al., 2011). Glycolysis intermediates
are used in diverse reactions to support high proliferation rates.
For example, glucose-6-phosphate (G6P) can be used in the
pentose phosphate pathway (PPP) to produce NADPH (Horton,
2002; Porporato et al., 2011; Doherty et al., 2014; Liberti and
Locasale, 2016) or generate ribose groups, necessary for the
synthesis of nucleotides (Lane and Fan, 2015; Vazquez et al.,
2016). Alternatively, glycolytic intermediates can be used for
anabolic reactions of glycogen or lipid synthesis (Gatenby and
Gillies, 2004; Kroemer and Pouyssegur, 2008).

Glycolysis also facilitates survival and fast adaptation to the
typically hypoxic tumor environment avoiding toxic Reactive
Oxygen Species (ROS) accumulation through both low ROS
production and increased detoxification systems (Brand and
Hermfisse, 1997; Cairns et al., 2011; Doherty et al., 2014; Liberti
and Locasale, 2016). Moreover, favoring glycolysis may bring
other advantages to tumor cells, such as creating an acidic
environment that can help invasion and suppress the immune
response (Fischer et al., 2007; Swietach et al., 2007).

Even though aerobic glycolysis is quite inefficient in terms of
ATP production, the rate of glucose uptake can be significantly
elevated in cancer cells, resulting in ATP production to levels
usually achievable with oxidative phosphorylation (OxPhos)
(Liberti and Locasale, 2016). Additionally, although it was
originally postulated that aerobic glycolysis is irreversible for
tumor cells after cell division (Zu and Guppy, 2004; Jose et al.,
2011; Porporato et al., 2011), it is well accepted nowadays that
most cancers still produce ATP via OxPhos and modulate the
contribution of both pathways in response to environmental
factors or in different phases of the cell cycle (Smolková et al.,
2011; De Berardinis and Chandel, 2016).

Importantly, glycolytic metabolism supports stemness in
normal stem cells and CSCs of several cancer types (Folmes et al.,
2011) (Table 1). Indeed, recent pieces of evidence demonstrate
the involvement of oncogenes and pluripotency transcription
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factors, such as MYC, p53, K-Ras, HIF1α, NANOG, MEIS1,
Wnt or OCT4 in the metabolic reprogramming from oxidative-
dependent metabolism to a glucose dependence in many types
of cancer (reviewed in Gabay et al., 2014; Alptekin et al.,
2017; Deshmukh et al., 2018). Different studies support the
glycolysis dependence of CSCs in diverse types of cancer, such
as in radioresistant nasopharyngeal carcinoma spheres with high
expression of stage-specific embryonic antigen (SSEA) -3 and -4
compared to parental cells (Shen et al., 2015), CD133+ human
hepatocellular carcinoma cells and mouse models (Song et al.,
2015; Chen C.L. et al., 2016), ALDH+ (aldehyde dehydrogenase)
non-small lung carcinoma cells and side population (SP) cells
from human colon cancer (Liu et al., 2014).

On the other hand, enhanced glycolysis in CSCs could also
constitute a secondary response to maintain energy balance, since
reduction of mitochondrial metabolism seems to be essential for
full stemness in some cancer types, such as osteosarcoma or
glioblastoma (Zhou et al., 2011; Yuan et al., 2013; Palorini et al.,
2014). Indeed, the downregulation of mitochondrial genes was
associated with enhanced increased expression of genes related
to epithelial-mesenchymal transition (EMT) usually linked to
stemness (Gaude and Frezza, 2016). Importantly, such inverse
relationship was functionally proven in embryonal carcinoma
cells derived from teratocarcinomas, since the stimulation of
mitochondrial function induced cell differentiation and loss of
pluripotency (Vega-Naredo et al., 2014). In fact, the occurrence
of this metabolic switch, not the final glycolytic phenotype, seems
to be key for early state of tumorigenesis and acquisition of
stemness-related properties in human mammospheres and brain

CSCs in a mouse model of primitive neuroectodermal tumors
(Dong et al., 2013; Ciavardelli et al., 2014; Malchenko et al., 2018).

Mitochondrial Metabolism
Mitochondria play a key role in eukaryotic cells coordinating
energy production and distribution through OxPhos based on
oxygen and substrate availability, although other important
metabolic reactions such as fatty acid oxidation (FAO),
glutaminolysis, or reductive carboxylation in cells with damaged
mitochondria also take place in these organelles. Mitochondrial
tricarboxylic acid (TCA) cycle is primarily fueled by acetyl-CoA
produced by glycolysis (from pyruvate) or FAO. Alternatively, in
highly glycolytic cells, such as Ras-mutant cells, glutamine can
be the driving force for OxPhos (Fan et al., 2013) through its
conversion to α-ketoglutarate and oxaloacetate, that can be then
used for fatty acids (FAs) and nucleotide synthesis (Gaglio et al.,
2011). Electron donors produced in the TCA cycle are used by the
electron transport chain (ETC) to create a proton motive force to
synthesize ATP by the complex V.

As opposed to what we summarized in the previous section,
recent literature described OxPhos as the main source of energy
in CSCs from a number of cancer types (Table 2). This has been
convincingly shown for ROSlow quiescent CD34+ leukemia CSCs
(Lagadinou et al., 2013), lung spheroids and CD133+ PDAC cells
(Ye et al., 2011; Sancho et al., 2015), as well as CSCs-enriched
spheroids form ovarian, cervical and papillary thyroid carcinoma
that displayed a reprogrammed metabolism through TCA cycle
(Sato et al., 2016; Caria et al., 2018). Since mitochondrial
metabolism coupled to OxPhos constitutes a much more efficient

TABLE 1 | Stem-like cells with glycolytic metabolism for various cancer types (in chronological order).

METABOLIC PHENOTYPE: GLYCOLYSIS

Cancer type Model of study CSCs/Tumor cells Methods References

Glioblastoma In vivo (xenograft) and
in vitro

Neurospheres Clark-type oxygen electrode Zhou et al., 2011

Glioblastoma In vitro Neurospheres Gene expression analysis Goidts et al., 2012

Breast cancer In vitro Bulk of tumoral cells Isotope tracing and seahorse Dong et al., 2013

Glioblastoma In vitro Neurospheres Clark-type oxygen electrode Yuan et al., 2013

Ovarian cancer In vivo (xenograft) and
in vitro

Spheres Isotope tracing and seahorse Anderson et al., 2014

Breast cancer In vitro Spheres Proteomics and targeted metabolomics Ciavardelli et al., 2014

Ovarian cancer In vitro Spheres Isotope tracing combined with spectrometry Liao et al., 2014

Lung cancer In vitro SP Clark-type oxygen electrode Liu et al., 2014

Colorectal cancer In vitro SP Clark-type oxygen electrode Liu et al., 2014

Osteosarcoma In vitro 3AB−OS CSC−like line Seahorse Palorini et al., 2014

Teratocarcinomas In vitro P19SCs Clark-type oxygen electrode Vega-Naredo et al.,
2014

Nasopharyngeal
carcinoma

In vitro Sphere-derived cells Seahorse Shen et al., 2015

Hepatocellular
carcinoma

In vitro CD133+cells Seahorse Song et al., 2015

Lung cancer In vitro Spheres Glucose uptake, glutamine, glutamate and
NAD+/NADH determination

Deshmukh et al., 2018

Breast cancer In vitro Spheres Glucose uptake, glutamine, glutamate and
NAD+/NADH determination

Deshmukh et al., 2018

Brain cancer In vitro Tumor cell lines with
BTIC features

Seahorse Malchenko et al., 2018
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TABLE 2 | Stem-like cells with OxPhos metabolism for various cancer types (in chronological order).

METABOLIC PHENOTYPE: OxPhos

Cancer type Model of study CSC/Tumor cells Methods References

Lung cancer In vivo (xenograft) and in vitro Secondary spheres Clark-type oxygen electrode Ye et al., 2011

Glioblastoma In vitro Gliomaspheres Seahorse Janiszewska et al., 2012

Leukemia stem cells In vitro CD34+ cells Seahorse Lagadinou et al., 2013

PDAC In vivo (inducible mouse model of
mutated KRAS2) and in vitro

Spheres Isotope tracing, metabolomics
and seahorse

Viale et al., 2014

Breast cancer In vitro Spheres Label-free quantitative
proteomics

Lamb et al., 2015b

PDAC In vivo (xenograft) and in vitro CD133+ cells and spheres
CD44+CD133+

Seahorse Sancho et al., 2015

Ovarian cancer In vitro Spheres Metabolomics Sato et al., 2016

Papillary Thyroid
Carcinoma

In vitro Thyrospheres GCMS Caria et al., 2018

energy process, CSCs relying on OxPhos would theoretically
make a better use of limited nutrients, which is an important
advantage to survive in nutritionally poor environments. Indeed,
mitochondria-dependent CD44+CD117+ ovarian CSCs and
CD133+ PDAC CSCs showed enhanced resistance to glucose
or glutamine deprivation compared to their differentiated
counterparts (Pasto et al., 2014; Sancho et al., 2015). On the other
hand, a variety of metabolites released by stromal cells can be
used by OxPhos-dependent cells to fuel the TCA cycle, conferring
them with increased adaptability to the changing conditions
of the tumor microenvironment (Anderson et al., 2014). The
best known example is lactate uptake from hypoxic tumor cells
or cancer-associated fibroblasts (CAFs) via monocarboxylate
transporter 1 and 2 (MCT1 and MCT2) in a process known
as reverse Warburg effect (Kroemer and Pouyssegur, 2008;
Sonveaux et al., 2008; Porporato et al., 2011; Rattigan et al., 2012).
Moreover, pancreatic stellate cells release alanine to fuel the TCA
cycle and subsequent biosynthetic pathways in pancreatic cancer
cells (Sousa et al., 2016). Additionally, recent evidence indicate
that microvesicles found in the tumor microenvironment contain
several metabolites, including aminoacids, lipids and TCA cycle
intermediates to fuel central metabolism of oxidative tumor cells
and, consequently, tumor growth (Santi et al., 2015; Zhao et al.,
2016). In this sense, stromal cells would play a key role in tumor
progression supporting OxPhos-dependent CSCs proliferation
and survival in nutrient-deprived environments.

Even though Warburg hypothesized that mitochondrial
respiration defects are responsible for cancer cells shifting
to glycolysis, it is known today that cancer cells still retain
mitochondrial functions and that, in fact, a significant amount of
ATP is produced through OxPhos (Tang et al., 2011; Kang et al.,
2014; Zong et al., 2016). Indeed, ATP from OxPhos proved to be
important for cell movements and invasive/metastatic abilities of
cancer (stem) cells (Yu et al., 2017), suggesting that mitochondria
contributes to cytoskeletal alterations (Caino et al., 2015).
Moreover, OxPhos activation in metastatic breast cancer models
is crucial to escape from the metabolic dormancy derived from
hormonal therapy (Sansone et al., 2016). Interestingly, OxPhos
activation is caused by the horizontal transfer of mitochondrial

DNA (mtDNA) in exosomes from CAFs to dormant CSCs,
providing a possible mechanism to development of resistance
to hormonal therapy and highlighting metabolic interaction
between CSCs and their niche (Sansone et al., 2017).

Beyond energy production, mitochondria are involved in
controlling cellular redox rate, ROS generation, calcium buffering
and the synthesis of intermediate molecules, such as acetyl-
CoA and pyrimidines. Additionally, mitochondria have a crucial
role in apoptosis initiation through activation of the membrane
permeability transport pore, and release of cytochrome C
(Wallace, 2012). Furthermore, mitochondria may contribute
to malignant transformation and tumor progression through
increased ROS production by the ETC (Ishikawa et al., 2008; Liou
et al., 2016), abnormal accumulation of specific mitochondrial
oncometabolites modifying epigenetic signals (Sciacovelli et al.,
2013), and functional deficits in apoptosis (Tomiyama et al., 2006;
Izzo et al., 2016). For all these reasons, mitochondrial biogenesis
is essential for survival and propagation of CSCs regardless of
their metabolic phenotype (Bonuccelli et al., 2010; De Luca et al.,
2015; De Francesco et al., 2018). In fact, mitochondrial biogenesis
may be a primary driver of stemness since its inhibition efficiently
eliminated hypoxic spheroids in breast cancer (Lamb et al.,
2015b,c; De Francesco et al., 2017).

The mechanisms driving mitochondrial biogenesis and
OxPhos in CSCs described above have not been fully
characterized yet, although some studies shed some light
on this matter. In fact, findings in glioblastoma spheroids
demonstrated the role of the oncofetal insulin-like growth factor
2 mRNA-binding protein 2 (Imp2) in the regulation of OxPhos,
and mitochondrial biogenesis and structure (Janiszewska et al.,
2012). Interestingly, the metabolic profile and plasticity of
PDAC CD133+ cells rely on the balance between the MYC-
driven glycolysis and the main regulator of the mitochondrial
biogenesis peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC-1α) (Sancho et al., 2015). In this
study, differentiated PDAC cells exhibited an overexpression
of MYC that counteracted stemness maintenance through
a negative regulation of PGC-1α. These results apparently
contradict the role of MYC as driver of stemness via glycolysis
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previously exposed, which may be due to a cell context-
dependent modulation of stemness/differentiation. On the
other hand, PGC-1α overexpression can also lead to different
outcomes depending on the cellular context in BRAF driven
melanomas: increased PGC-1α expression in primary tumors
after BRAF inhibition with vemurafenib causes OxPhos addiction
associated with poor patient prognosis (Haq et al., 2013), while it
impaired growth rate and invasive abilities in metastatic settings
(Luo et al., 2016).

Redox Regulation
It is well known that oncogenic transformation (Trachootham
et al., 2009; Zhou et al., 2014), dysfunctional mitochondria
(Kudryavtseva et al., 2016) and altered cell signaling (Tachibana
et al., 2008; Raza et al., 2017) induce ROS accumulation in
cancer cells, further promoting tumorigenesis and mutagenesis.
However, due to the potential deleterious effects of ROS, a
powerful antioxidant machinery formed of both enzymatic and
non-enzymatic antioxidants is often found in cancers (Obrador
et al., 2002; Townsend and Tew, 2003; Arnold et al., 2004; Estrela
et al., 2006; Valko et al., 2006; Du et al., 2013; Harris et al., 2015;
Raza et al., 2017).

Increasing evidence suggests an important role of ROS and
redox signaling for CSCs functionality. It was known that
quiescent stem cells reside in a low ROS niche that supports their
stemness characteristics, like self-renewal capacity. On the other
hand, increased ROS content promote stem cell proliferation
and differentiation (Ito et al., 2006; Jang and Sharkis, 2007;
Naka et al., 2008; Owusu-Ansah and Banerjee, 2009; Yahata
et al., 2011; Bigarella et al., 2014). Only recently, it was shown
that CSCs share the same redox-related properties (Diehn
et al., 2009; Kobayashi and Suda, 2012; Yuan et al., 2015):
murine CD44+CD24−/lowLin− and human Thy1+CD24+Lin−
breast CSCs (Diehn et al., 2009; Luo et al., 2018), CD44high

gastrointestinal cell lines (Ishimoto et al., 2011), tumorigenic
ROSlow from head and neck carcinoma cell lines (Chang et al.,
2018), human or murine CD133+ glioblastoma cells from cell
lines and tumors and chronic myeloid leukemia (CML) CD34+
CSCs (Zhao et al., 2009; Qiang et al., 2012; Zhu et al., 2013)
maintain low levels of intracellular ROS coupled to enhanced
antioxidant capacity. Apart from stemness maintenance, bearing
high antioxidant capacity grants CSCs resistance to ROS
inducers, such as chemo and radiotherapy (Diehn et al., 2009;
Izumiya et al., 2012; Wang et al., 2017b).

Redox balance can also be achieved through the regulation
of ROS-dependent signaling pathways and redox-sensitive
transcription factors, such as c-MYC, HIF1α, p53, NF-κB, AP-1,
and the master regulator of antioxidant response, nuclear factor
erythroid 2–related factor 2 (NRF2) (Chandel et al., 2000; Kamata
et al., 2005; Soriano et al., 2009; Liou and Storz, 2010; Boyer-
Guittaut et al., 2014; Jiang et al., 2014; Raza et al., 2017). In fact,
CSCs regulate ROS levels via antioxidant transcription factors,
such as NRF2 or FOXO (Diehn et al., 2009; Zhu et al., 2013;
Wu T. et al., 2015; Ryoo et al., 2016; Chang et al., 2018; Luo
et al., 2018). Most of these factors affect redox homeostasis by
direct or indirect modulation of cellular metabolism. Indeed,
NRF2 upregulation in different cancer types (Mitsuishi et al.,

2012; Abdul-Aziz et al., 2015; Kim and Keum, 2016; Rocha
et al., 2016; Milkovic et al., 2017) influences the switch between
anabolic/catabolic glucose metabolism (Mitsuishi et al., 2012;
Wallace, 2012; Heiss et al., 2013; Hawkins et al., 2016). In
addition, the proto-oncogene c-MYC controls both cellular
metabolism and redox homeostasis by increasing glycolysis
(Ellwood-Yen et al., 2003; Kim et al., 2007; Wang et al., 2008;
Miller et al., 2012; He et al., 2015; Davis-Yadley et al., 2016;
Massihnia et al., 2017), and regulating glutamine metabolism
(Anderton et al., 2017). Interestigly, both mechanisms could
be interconnected, since c-MYC binds to the NRF2 promoter
(Levy and Forman, 2010).

Importantly, most of the main signaling pathways governing
CSCs functionality are regulated by ROS signaling. That is the
case of stemness-regulatory pathways, such as Wnt and Notch
(Takubo et al., 2010; Qiang et al., 2012; Paul et al., 2014), or
key signaling nodes important for cell survival and growth, such
as PTEN (Xia et al., 2013), PI3K (Le Belle et al., 2011), AKT
(Zhou et al., 2007; Dey-Guha et al., 2011), ATM (Ito et al., 2004;
Yalcin et al., 2008), STAT3 (Qiang et al., 2012; Zhang et al., 2016),
and mammalian target of rapamycin (mTOR) (Dubrovska et al.,
2009) and their downstream targets. Moreover, those pathways
further modulate ROS production/detoxification in a positive
feedback loop by activating redox-sensitive transcription factors
(Miyamoto et al., 2007; Tothova et al., 2007; Dubrovska et al.,
2009; Yeo et al., 2013; Zhang et al., 2016).

Lipid Metabolism
Besides the classical metabolic reprogramming related to glucose,
alterations in diverse aspects of lipid metabolism are increasingly
gaining attention as determinants of cancer, including CSCs
function. In fact, highly proliferating cells require increased
amounts of the cell membrane’s main components: lipids
and cholesterol. In that cellular location, lipids function as
either membrane building blocks or signaling transduction
modifiers, since membrane lipid composition modulates protein
recruitment and interaction (lipid rafts) (Rysman et al., 2010;
Staubach and Hanisch, 2011). In this sense, several reports
indicate that CSCs accumulate unsaturated lipids, such as
monounsaturated FAs (MUFAs), the precursors of several
plasma membrane lipids. In fact, lipid desaturation, mainly via
the enzyme stearoyl-CoA desaturase (SCD-1), plays essential
functions controlling self-renewal and tumorigenicity in different
cancer models (Noto et al., 2013, 2017; Lai et al., 2017; Li F.
et al., 2017), possibly through the activation of stemness-related
pathways, such as Wnt signaling (Lai et al., 2017). Additionally,
differences in plasma membrane lipid composition between CSCs
and their differentiated counterparts have been reported, which
can be potentially used to identify CSCs. Indeed, even though
CSCs may present an overall decrease in glycosphingolipids
as described for the glioblastoma CSC-like cell line GSC11
(He et al., 2010), the expression of specific gangliosides, such
as GD2 and GD3, identified cells with increased self-renewal
capacity and tumorigenicity in breast cancer (Battula et al., 2012;
Liang et al., 2013).

Lipids and cholesterol in tumors are either scavenged from
exogenous sources or synthesized de novo through FA synthase
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(FASN) or the mevalonate pathway, respectively (Beloribi-
Djefaflia et al., 2016). Thus, different reports suggest that elevated
de novo synthesis of lipids and cholesterol contribute to CSCs
properties and survival. In fact, the expression of sterol regulatory
element-binding protein 1 (SREBP1), master controller of de
novo lipogenesis, is increased in CD24−CD44+ESA+ cells from
a ductal carcinoma in situ cell line as well as mammospheres
and melanospheres (Pandey et al., 2013; Corominas-Faja et al.,
2014; Giampietri et al., 2017). This transcription factor may
be involved in resistance to hypoxia and nutrient scarce
environments, as suggested for glioblastoma sphere-derived cells
(Lewis et al., 2015). Moreover, de novo lipogenesis from glycolytic
intermediates or acetate via FASN is critical for in vitro self-
renewal (Corominas-Faja et al., 2014; Yasumoto et al., 2016),
and tumor relapse and metastatic dissemination after withdrawal
of anti-angiogenic treatment (Sounni et al., 2014). In the same
line of evidence, the activation of the mevalonate pathway is
important for self-renewal and tumor formation in breast and
pancreatic cancer, as well as glioblastoma (Ginestier et al., 2012;
Brandi et al., 2017; Wang et al., 2017a).

Although de novo synthesis has traditionally been considered
the preferred source of FAs for tumor cells (Ookhtens et al., 1984),
recent reports highlight the crucial role of FAs uptake via CD36
or FA binding proteins (Hale et al., 2014; Pascual et al., 2016).
The same is also true for cholesterol uptake within lipoproteins
(Guillaumond et al., 2015). Indeed, lipid uptake, either via
lipoprotein receptors or CD36, favors proliferation of glioma
CD133+ cells (Hale et al., 2014) and label-retaining/CD44+
cells from squamous cell carcinoma (Pascual et al., 2016).
Interestingly, increased lipid uptake points to the crucial role
of microenvironment supporting cancer (stem) cell functions:
tumor-activated adipocytes provide FAs to support leukemia
CD34+ cells growth, survival and chemoresistance (Ye et al.,
2016; Shafat et al., 2017) as well as omental metastasis from
ovarian cancer (Nieman et al., 2011).

Fatty acids require covalent modification by CoA by fatty acyl-
CoA synthetases to enter the bioactive pool of FAs. Afterward,
they will be further esterified to form triacylglycerols or sterol
esters and stored in lipid droplets (LDs). Importantly, recent
reports correlate accumulation of LDs or stored cholesteryl-
ester with tumor progression and aggressiveness (Yue et al.,
2014; Guillaumond et al., 2015). In fact, activated and stored
lipids play a crucial role supporting tumorigenicity of CSCs
in vivo, as demonstrated in cells derived from neurospheres from
glioblastoma and ALDH+ CD133+ ovarian cancer cells (Sun
et al., 2014; Menard et al., 2016; Li J. et al., 2017). This may
be a reflect of adaption to the harsh conditions found in the
tumor microenvironment, since those lipids can be mobilized
upon metabolic stress, providing ATP via FAO to ensure survival
(Maan et al., 2018). Importantly, increased lipid storage in
LDs may constitute a useful CSCs marker, as demonstrated
in colorectal (CRC) and ovarian cancer (Tirinato et al., 2015;
Li J. et al., 2017).

Activated FAs are not only incorporated into membranes
or storage, but also used as substrate to synthesize signaling
lipids or energy production in FAO. Although FAO is considered
the main energy source in non-glycolytic tumors (Liu et al.,

2010; Caro et al., 2012), a high activity of this pathway has
been reported for aggressive tumor cells and CSCs, especially
in nutrient scarce environments (Table 3) (Carracedo et al.,
2013; Kamphorst et al., 2013; Daniëls et al., 2014; Pasto et al.,
2014). In fact, ATP production and survival of matrix-deprived
epithelial cells depend on FAO (Schafer et al., 2009; Carracedo
et al., 2012), a metabolic process that also sustains the self-renewal
capacity in both leukemia-initiating CFSEhighCD34+ cells and
hematopoietic long-term culture initiating cells (Samudio et al.,
2010; Ito et al., 2012). Besides its well-known role in energy
production, FAs metabolism via mitochondrial FAO regulates
multiple functions of CSCs. Indeed, FAO contributes to
pluripotency maintenance and chemoresistance (Wang T. et al.,
2018), mainly by reducing ROS production (Lee et al., 2015;
Chen et al., 2016) and may sustain metastatic properties of
sphere-derived cells (Aguilar et al., 2016).

Finally, lipids can also regulate CSCs functionality in
terms of self-renewal and tumorigenic abilities through
their function as second messengers in signal transduction
pathways, thus becoming potential therapeutic targets. Indeed,
sphingolipids, such as sphingosine-1-P (S1P), eicosanoids,
such as prostaglandin E2 or glycerophospholipids, such as
lysophosphatidic acid (LPA), have been reported to increase
CSCs proliferation and in vivo tumorigenicity, activating self-
renewal and survival signaling pathways (Notch, AKT, NF-kB)
in ALDH1+ from breast cancer, label-retaining cells in bladder
cancer, CD133+CD44+ cells in CRC and sphere-derived cells
from ovarian cancer (Hirata et al., 2015; Kurtova et al., 2015;
Wang et al., 2015; Seo et al., 2016).

Alternative Fuels
Cancer cells require the use of amino acids for their heightened
metabolic needs. Indeed, one of the most important metabolic
pathways for cancer cells is that related to glutamine (Wise
and Thompson, 2010), since it is an important substrate
for DNA and fatty acid synthesis, as well as anaplerosis of
the TCA cycle. Indeed, glutamine addiction has become a
hallmark of glycolytic tumors, especially those with increased
c-MYC expression (Deberardinis and Cheng, 2010; Wise and
Thompson, 2010; Korangath et al., 2015). In addition, glutamine
is related to glutathione synthesis, well known for its powerful
antioxidant ability and some other biological activities (Todorova
et al., 2004; Son et al., 2013). Although OxPhos-dependent
pancreatic CD133+ CSCs are resistant to glutamine deprivation
(Sancho et al., 2015), evidence of the involvement of glutamine
metabolism in the maintenance of the stem-like SP phenotype
has been provided in lung and pancreatic cancer by a
β-catenin/redox-mediated mechanism (Liao et al., 2017). In fact,
glutamine deprivation in pancreatic cancer cell lines inhibited
their self-renewal capacity, reduced their stemness gene signature
and increased sensitivity to radiotherapy (Li D. et al., 2015).
Additionally, aminoacid metabolism, especially glutamine, is
increased in acute myeloid leukemia (AML) ROSlow CSCs to
fuel OxPhos and favor survival (Jones et al., 2018). Interestingly,
leukemia CSCs may obtain their glutamine supply from
neighbor stromal cells, as described for bone marrow adipocytes
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supporting cancer cells growth after asparaginase treatment in
high-risk leukemia patients (Ehsanipour et al., 2013).

Apart from glutamine, the metabolism of amino acids,
such as lysine or serine may also support CSCs features.
Indeed, CRC CD110+ tumor-initiating cells (TICs) are
rich in enzymes implicated in both lysine transport and
catabolism, which activates β-catenin-dependent Wnt signaling,
ultimately promoting self-renewal and metastasis (Wu Z. et al.,
2015). Additionally, accumulation of alpha-aminoadipate, an
intermediate of lysine catabolism, on brain TICs correlates with
poor survival rate of glioblastoma patients, representing a marker
of tumor aggressiveness (Rosi et al., 2015). On the other hand,

recent data demonstrate that phosphoglycerate dehydrogenase
(PHGDH), catalyzing the first step of the serine biosynthesis,
maintains self-renewal and tumorigenicity of lung, breast and
brain CD133high sphere-forming cells in a mechanism involving
pluripotency gene expression and redox balance (Samanta
et al., 2016; Sharif et al., 2018). Finally, endogenous tryptophan
derivatives, such as Kyn (kynurenine) and ITE (2-(10H-indole-
30- carbonyl)-thiazole-4-carboxylic acid methyl ester), may play
opposite roles on cancer progression and stemness, regulating
OCT4 expression through aryl hydrocarbon receptor (AhR)
modulation: accumulation of the low-affinity AhR agonist Kyn
in the tumor microenvironment favor carcinogenesis, whereas

TABLE 3 | Stem-like cells using alternative metabolism for various cancer types (in chronological order).

METABOLIC PHENOTYPE: OTHERS

Cancer type Metabolic phenotype Model of study CSC/Tumor cells Methods References

Breast cancer FAO In vitro Detached tumor
cells

Isotope tracing Schafer et al., 2009

Breast cancer Ketone bodies In vivo (xenograft) 3-OH-butirate effects on
tumor growth, migration
and angiogenesis

Bonuccelli et al., 2010

Hepatic cancer Glutamine In vitro Bulk of tumor cells BD Oxygen Biosensor
System

Hu et al., 2010

Leukemia-initiating
cells

FAO In vivo (xenograft)
In vitro

Bulk of tumor cells Clark-type oxygen
electrode

Samudio et al., 2010

Hepatic cancer Glutamine In vitro Bulk of tumor cells Glutathione, glutamate and
glutamine

Suzuki et al., 2010

Breast cancer FAO In vitro Detached tumor
cells

Isotope tracing Carracedo et al., 2012

Leukemia-initiating
cells

FAO In vivo CD150+CD48−

CD41−Flt3−CD34
−KSL cells sorted
from Pml+/+ or
Pml−/−mice

Isotope tracing and
seahorse

Ito et al., 2012

Glioblastoma PPP In vitro Gliomaspheres Isotope tracing Kathagen et al., 2013

Colorectal cancer Glycolysis, TCA cycle, and
cysteine/methionine
metabolism

In vitro CD133+ cells Metabolomics Chen et al., 2014

Ovarian Cancer OXPHOS and PPP In vivo (xenografts)
In vitro

CD44+CD117+

cells
Flow cytometry Pasto et al., 2014

PDAC Glutamine (non-canonical
pathway of glutamine
metabolism)

In vivo (xenografts)
In vitro

Spheres Gene expression and
enzymatic assays

Li D. et al., 2015

Colorectal cancer Lysine catabolism In vivo (xenografts)
In vitro

CD110+ Transcriptomics Wu Z. et al., 2015

Hepatocellular
carcinoma

Glycolysis and FAO in
sh-Nanog-TICs

In vitro CD133+CD49f+CD45− Isotope tracing and
metabolomics

Chen C.L. et al., 2016

Breast cancer PPP In vitro Mammospheres
and ALDH+ cells

Glucose consumption,
lactate, NADPH and G6P

Debeb et al., 2016

Cervical cancer TCA In vitro Spheres Metabolomics Sato et al., 2016

Breast cancer Mitochondrial biogenesis
and FAO

In vitro Mammospheres Seahorse and label-free
semi-quantitative
proteomics

De Francesco et al.,
2017

Pancreatic cancer Glutamine In vitro ABCG2 high ATP, NADP+/NADPH and
glutathione

J Liao et al., 2017

Breast cancer Ketone bodies In vitro Mammospheres Seahorse Ozsvari et al., 2017

Brain cancer Purine metabolism In vivo (xenograft) and
In vitro

Brain TICs Metabolomics Wang et al., 2017c
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the high-affinity AhR agonist ITE promotes its binding to the
OCT4 promoter to suppress its transcription and, consequently,
inducing cell differentiation in U87 glioblastoma neurospheres
(Cheng et al., 2015).

Ketone bodies can also work as fuel to promote tumor growth
and play a role in CSCs activity. Reports on breast cancer
showed the role of ketone bodies increasing the expression of
stemness-related genes, driving recurrence and metastasis, thus
related to decreased patient survival (Bonuccelli et al., 2010;
Martinez-Outschoorn and Lisanti, 2014).

The PPP has also come up as an alternative way to
generate energy in CSCs. For instance, glioblastoma stem-
like cells are remarkably metabolically flexibles, switching their
metabolism depending on oxygen levels fluctuations: from
high levels of PPP activity linked to active proliferation under
acute oxygenation, to a glucose-dependent phenotype under
hypoxia, when cell migration is stimulated (Kathagen et al.,
2013). Additionally, Debeb et al. (2016) described that PPP
inhibitors reduced the stemness-related markers in node-positive
invasive breast carcinoma and a high rate in PPP activity
was also reported in combination with an OxPhos-dependent
phenotype in CD44+CD117+ CSCs from epithelial ovarian
cancer (Pasto et al., 2014).

Overproduction of hyaluronan, a component of the
extracellular microenvironment, supports self-renewal in
human head and neck squamous cell carcinoma HSC-3 cells
(Bourguignon et al., 2012) and dedifferentiation in breast cancer
cells (Chanmee et al., 2014). Using metabolomic approaches,
Chanmee et al. (2016) later described that increased hyaluronan
production leads to a HIF1α-induced metabolic reprogramming
toward glycolysis, thus creating a positive feedback loop through
the hexosamine biosynthetic pathway (HBP). Interestingly, HBP
inhibition considerably reduced the content of CD44highCD24low

cells and mammosphere-forming capacity.
Finally, purine metabolism has also been described to regulate

stemness-related properties. Indeed, upregulation of MYC-
mediated de novo purine synthesis maintained self-renewal,
proliferation and tumor forming capacity in brain TICs, and
was associated with poor prognosis in glioblastoma patients
(Wang et al., 2017c).

Considerations on the Metabolic
Heterogeneity of CSCs
As inferred from the information above, CSCs display a
plethora of metabolic phenotypes diverging from the classical
OxPhos/Warburg phenotypes (Table 3). However, such diversity
cannot be completely attributed to the intrinsic heterogeneity of
cancer, since conflicting data can be often found in the literature
even for the same tumor entity.

The main source of reported disparities is the utilized model
systems. On the one hand, the term CSC tend to be loosely used
and include models as dissimilar as established cell lines grown as
spheroids in 3D and sorted cells from human tumors expressing
one or several surface markers. In fact, although resistance
to anoikis and the ability to grow in anchorage-independent
conditions are well-accepted characteristics of stem-like cells,

the percentage of bona-fide CSCs within a spheroid may be
as low as 1%. On the other hand, established cell lines are
usually clonal and have been passaged in vitro for dozens or
even hundreds of times: resemblance with the genetic and
phenotypic heterogeneity found in tumors barely exists. Even
when considering sorted cells from fresh tumors, we need to
bear in mind that most surface markers are not completely
reliable and may be lost or modified in sample preparation: in
fact, trypsinization time may greatly affect expression of these
markers. Most importantly, most in vitro studies are carried
out in artificial metabolic conditions (e.g., high glucose and
oxygen) lacking microenvironmental components of the CSC
niche. In fact, tumor niche can support metabolic alterations
in CSCs (Mateo et al., 2014; Ye et al., 2016) via signaling and
metabolic crosstalk.

Interestingly, even with these limitations, different groups
have found phenotypically diverse CSCs subpopulations
coexisting in the same in vitro or in vivo conditions (Diehn
et al., 2009; Sancho et al., 2015; Luo et al., 2018). For instance,
although most pancreatic CSCs are dependent on OxPhos, a pre-
existing subpopulation of CD133+ resistant to mitochondrial
inhibition, due to their increased metabolic plasticity, was
detected (Sancho et al., 2015). Importantly, differences in
metabolism may be associated to functional diversity inside
the CSCs population. Indeed, metabolic heterogeneity, mainly
in terms of redox state, has been associated to differences
in stemness, as well as chemo and radioresistance (Diehn
et al., 2009; Wang et al., 2013; Sancho et al., 2015; Ye et al.,
2016). Additionally, several reports link CSCs with enhanced
metastatic abilities to specific metabolic traits. Indeed, reduced
mitochondrial DNA and function contribute to the acquisition
of a metastatic phenotype in spheroid-forming breast cancer
cells (Guha et al., 2014). Moreover, alterations in redox balance
leading to NRF2 activation mediate a phenotypic switch from
glycolytic mesenchymal-like to OxPhos-dependent epithelial-
like breast CSCs (Luo et al., 2018). In addition to breast
cancer, CD44+ESAlow cells with increased metastatic potential
(upon EMT), linked to low ROS levels, as compared to their
non-EMT counterparts, have been described for oral and skin
carcinomas, as well as prostate cancer (Gammon et al., 2013;
Aguilar et al., 2016). On the contrary, metastasis-initiating cells
in melanoma bear redox stress, as inferred from their elevated
ROS and reduced glutathione content (Porporato et al., 2014;
Piskounova et al., 2015).

THERAPEUTIC TARGETING OF CSCs
METABOLISM

Considering the involvement of CSCs in chemoresistance,
tumor relapse and metastasis, there is a pressing need
in cancer therapy to find new strategies to eradicate this
aggressive cell population. As summarized in the previous
section, the distinct metabolic features of CSCs, compared
to non-CSCs, constitute a significant opportunity to
targeting specifically the CSCs component of tumors and
eradicate the tumor bulk.
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Mitochondrial Metabolism
As mentioned above, mitochondria play a key role for CSCs
functionality regardless of their dominant metabolic phenotype,
suggesting that targeting mitochondrial metabolism may be
the most effective therapeutic strategy for their elimination.
Noteworthy, highly glycolytic cells with mutations in the
TCA cycle or ETC still require functional mitochondria for
the generation of metabolites from glutamine via reductive
carboxylation (Mullen et al., 2011). For those reasons,
pharmacological approaches designed to target different
aspects of mitochondrial function for cancer treatment are
currently under intense investigation in preclinical and clinical
studies (Figure 1).

Targeting OxPhos
Inhibition of mitochondrial respiration by compounds blocking
ETC complexes is one of the most studied metabolism-
based strategies for cancer treatment. In fact, tumor cells in
nutrient-deprived environments or displaying limited metabolic
plasticity, as described for some gliomaspheres and PDAC
CD133+ cells (Janiszewska et al., 2012; Sancho et al., 2015),
have restricted ability to cope with decreased mitochondrial
ATP production. ETC inhibitors also target glycolytic CSCs,

such as CD44+CD24low cells in breast cancer or SP cells in
nasopharyngeal carcinoma (Vazquez-Martin et al., 2010; Shen
et al., 2013), highlighting the importance of ETC for coupled ATP
production, avoiding electron loss in the form of ROS.

One of the most studied ETC inhibitors in the context of
CSCs targeting is the antidiabetic drug metformin. Reported
antitumoral effects of this drug relate to both systemic glucose
decrease, and direct cancer cell targeting via ETC complex I
inhibition (Wheaton et al., 2014). Although metformin shows
cytostatic properties at low concentration, it induces apoptosis
specifically in PDAC CD133+ cells and CD44high CD24low

mammospheres (Iliopoulos et al., 2011; Sancho et al., 2015),
which, at least for PDAC CD133+ cells, is attributable to their
dependency on mitochondrial metabolism. Although metformin
clinical testing for pancreatic cancer treatment showed no
improvement in patient survival rate (Kordes et al., 2015;
Reni et al., 2016), positive clinical data has been reported
for breast, endometrial and prostate cancer. On the other
hand, the development of resistance to metformin monotherapy
in vivo suggests that the design of combinatory treatments
(Sancho et al., 2015; Roh et al., 2017) or the use of stronger
mitochondrial inhibitors may be needed. This could be the case
of the ETC complex I inhibitor phenformin, which is more

FIGURE 1 | Therapeutic targeting of mitochondrial metabolism in CSCs. Different aspects of the mitochondrial metabolism can be approached to target CSCs: (1)
oxidative phosphorylation (OxPhos) can be impaired by ETC inhibitors such as the antidiabetic drugs metformin or phenformin, the reactive oxygen species (ROS)
inductor and complex I inhibitor menadione, or the anti-Parkinson compound selegiline; (2) Mitochondrial biogenesis and translation can be targeted by
FDA-approved antibiotics such as doxycycline, tigecycline, bedaquiline among others, or non-antibiotic inhibitors; (3) Mitochondrial dynamics can be disrupted by
the mitochondrial division inhibitor Mdivi-1; (4) The blockage of mitophagy, an essential mitochondrial quality control system, with nanomedicines such as
188Re-liposome or the inhibitor liensinine may affect CSCs functions; (5) The use of nanocarriers (lipophilic cations, peptides and nanoparticles) conjugated with
chemotherapeutics and small drugs may be used for a selective delivery of drugs in mitochondria.
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efficiently delivered to mitochondria (Petrachi et al., 2017) and
when combined with the ALDH inhibitor gossypol, suppresses
stemness, invasiveness and cell viability in glioblastoma (Park
et al., 2018). Additionally, menadione, with dual mechanism
of action combining complex I inhibition and ROS induction,
prevents the development of resistance (Sancho et al., 2015).

Following metformin’s relative success, a great effort has
been put on the drug repurposing for CSCs targeting in cancer
treatment. In this sense, several known FDA-approved antibiotics
target the ETC at different levels and have proven to selectively
decrease CSC content. This is the case of antimycin A, a
powerful complex III inhibitor that decreased lung spheroids
(Yeh et al., 2013); the antituberculosis agent bedaquiline
(complex V inhibitor) that targeted mammospheres (Fiorillo
et al., 2016); oligomycin (another complex V inhibitor), which
showed drastic synergistic effects suppressing cell growth and
motility in glioblastoma cell lines when combined with 2-deoxy-
D-glucose (2DG) (Kennedy et al., 2013); and niclosamide, an
antihelmintic with ETC uncoupling properties, that inhibited
TICs from ovarian and breast cancers (Yo et al., 2012; Wang
et al., 2013). Similarly, numerous studies suggest the efficacy of
the OxPhos inhibitor salinomycin for CSCs targeting in vitro
and in vivo in diverse cancer types (Naujokat and Steinhart,
2012 and references therein). In this last case, however, the final
antitumoral effect may be the result of a combination of factors,
since salinomycin also interferes with ABC transporters or Wnt
signaling (Naujokat and Steinhart, 2012). Besides antibiotics,
the agent L-deprenyl (also known as Selegiline), a monoamine
oxidase-B (MAO-B) inhibitor typically used for the treatment
of Parkinson’s disease, was found to exert antimitochondrial
activity and cause apoptotic cell death in AML CSCs through
the reduction of ETC and glycolysis-related gene expression,
independently of MAO-B inhibition (Ryu et al., 2018).

Considering the therapeutic potential of OxPhos inhibition,
compound discovery is currently taking place in order to identify
new selective molecules with adequate in vivo properties. As an
example, the compound VLX600 showed cytotoxicity in colon
cancer spheroid-derived cells both in vivo and in vitro, by
directly inhibiting ETC complexes in metabolically compromised
microenvironments (Zhang et al., 2014).

Targeting Mitochondrial Translation and Biogenesis
As commented above, several FDA-approved antibiotics can
disrupt mitochondrial function. Apart from direct OxPhos
inhibition, certain widely prescribed antibiotics target either
mitochondrial translation or biogenesis as an “off-target” effect
(Lamb et al., 2015c), inhibiting self-renewal ability of multiple
tumor types (Lamb et al., 2015a,b). For instance, the use of a
tetracycline such as doxycycline induced apoptosis in pancreatic
cancer cell lines and human cervical carcinoma tumorspheres
(Son et al., 2009; Yang et al., 2015), while azithromycin
(erythromycin family) demonstrated to inhibit the self-renewal
capacity of PDAC spheroids (Lamb et al., 2015c). On the
other hand, the use of the antimicrobial tigecycline selectively
killed leukemia CD34+CD38− cells without affecting normal
hematopoietic cells through the inhibition of mitochondrial
translation (Skrtic et al., 2011).

However, although this research line shows promising results,
continuous treatment with antibiotics for cancer therapy may be
ineffective (Esner et al., 2017). Indeed, long-term desensitization
was reported for human metastatic breast cancer cells treated
with different antibiotic classes including streptomycin,
tetracycline, kanamycin, G418-geneticin (aminoglycoside),
puromycine (aminonucleoside) and blasticidine (Esner et al.,
2017). Nonetheless, the design of novel combinatory treatments
or stronger derivatives could overcome this setback for future
application in the clinical setting, taking advantage of the
well-known safety profile of antibiotics.

On the other hand, non-antibiotic inhibitors of mitochondrial
biogenesis are already available: XCT790, a specific inhibitor of
the estrogen-related receptor alpha (ERRα)/PGC-1α, signaling
pathway (responsible for mitochondrial biogenesis), inhibited
breast CD44+/highCD24−/low TICs and mammosphere survival
and propagation by reducing OxPhos. These effects were
prevented or reversed by stimulating mitochondrial biogenesis
with the mitochondrial fuel acetyl-L-carnitine (ALCAR9)
(De Luca et al., 2015).

Targeting Mitochondrial Dynamics
Several types of cancer show downregulation of mitochondrial
fusion proteins (Zhang et al., 2013; Chen and Chan, 2017)
or upregulation of fission proteins (Rehman et al., 2012;
Kashatus et al., 2015; Wieder et al., 2015; Zhang et al.,
2017). In fact, increased mitochondrial fragmentation has also
been involved in malignancy, promoting tumor migration and
invasion in breast cancer (Zhao et al., 2013). On the other
hand, mitochondrial dynamics seem to regulate proliferation and
survival of CSCs, similar to what is known in embryonic stem
cells (Chen and Chan, 2017). Indeed, dynamin-related protein
1 (DRP1)-dependent fission regulates mitochondrial distribution
in asymmetrical division, ensuring maximal mitochondrial
fitness in the daughter stem cell (Katajisto et al., 2015).

Currently, the only available pharmacological strategy to
target mitochondrial dynamics is the DRP1 inhibitor mdivi-
1. On the one hand, mdivi-1 or DRP-1 knockdown reduced
proliferation and induced apoptosis in lung cancer cells, whose
mitochondria were in a situation of constant fission in vitro and
in vivo (Rehman et al., 2012). This inhibitor also attenuates lung
cancer and mesothelioma proliferation when combined with the
MET inhibitor MGCD516 (Wang J. et al., 2018). Importantly,
mdivi-1 reduced tumorsphere-forming ability of breast, lung, and
melanoma cancer cell lines (Peiris-Pagès et al., 2018) and reduced
tumorigenicity of brain TICs in vitro and in vivo (Xie et al., 2015).

Targeting Mitophagy
Mitophagy is an essential quality control system to selectively
remove damaged, non-functional or unnecessary mitochondria
in cells. However, its involvement in cancer is controversial, since
contradictory reports on the role of this process in tumorigenesis
have been published (Chourasia et al., 2015a).

On the one hand, the mitophagy promoter Parkin is
frequently deleted in many cancer types (Cesari et al., 2003). In
addition, defective mitophagy caused by BNip3 loss/inhibition
promote invasion and metastasis in breast, pancreatic or
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CRC (Okami et al., 2004; Chourasia et al., 2015b; Li et al.,
2018). Moreover, the induction of mitophagy and mitoptosis
by salinomycin treatment led to decreased mitochondrial
mass and ATP depletion in prostate cancer and breast
cancer CD44highCD24low cells triggering a cytotoxic effect
specific to tumor cells without damaging normal fibroblasts
(Jangamreddy et al., 2013).

On the other hand, mitophagy can be triggered as a stress
response against nutrient deprivation or hypoxia, promoting
cell survival and tumorigenesis in hostile environments and
contributing to drug resistance in human CRC CD133+CD44+
cells (Jangamreddy et al., 2013; Yan et al., 2017). In agreement
with this notion, mitophagy is upregulated in esophageal
squamous cell carcinoma undergoing EMT (Whelan et al.,
2017). Accordingly, the use of mitophagy blockers, such as
the nanomedicine 188Re-Liposome or the inhibitor liensinine,
reversed drug resistance in ovarian cancer cells in vitro (Chang
et al., 2017) and in breast cancer xenografts in vivo (Zhou
et al., 2015), respectively. Additionally, the alkaloid matrine
induced mitochondrial dysfunction and apoptosis by inhibiting
mitophagy in HepG2 hepatoblastoma cells (Wei et al., 2018).
Interestingly, a link between autophagy and mitochondrial
respiration has recently been reported: the novel autophagy
inhibitor aumitin blocks complex I activity (Robke et al., 2018),
while pharmacologic or genetic inhibition of complex I inhibitor
impairs autophagy (Thomas et al., 2018).

Mitochondrial Drug Delivery
In order to ensure an efficient and selective delivery in
mitochondria, different small compounds or chemotherapeutic
drugs can be conjugated with nanocarriers, including
lipophilic cations, peptides and nanoparticles, with preferential
accumulation in mitochondria.

One of the most studied strategies involves the conjugation
of small compounds with delocalized lipophilic cations, such
as triphenylphosphonium (TPP), dequalinium or rhodamine
123, that possess both lipophilicity and a positive charge,
and accumulate in the mitochondrial matrix (Murphy,
2008). Importantly, as OxPhos-dependent CSCs show
an elevated mitochondrial membrane potential (19m),
indicative of increased activity (Sancho et al., 2015), conjugated
compounds will be delivered primarily to these cells. For
example, MitoChromanol (vitamin E analog) or Gamitrinib
(chaperone inhibitor) combined with TPP inhibit OxPhos and
ATP production selectively in cancer cells (Chae et al., 2012;
Cheng et al., 2013).

Commonly used chemotherapeutic agents can also be joined
with lipophilic cations to exert their therapeutic action in the
mitochondria and improve their effect. For example, doxorubicin
(DOX) combined with TPP showed enhanced toxicity against
DOX-resistant MDA-MB-453 breast cancer cells, even though
TPP-DOX was as toxic as free DOX in wild type cells (Han et al.,
2014). Interestingly, DOX fused with TPP-conjugated chitosan
nanoparticles exhibited higher cytotoxicity than free doxorubicin
in A549 and Hela cells (Hou et al., 2017). Additionally, the
development of a cisplatin prodrug combined with TPP showed
promising results treating cisplatin-resistant, aggressive cancers,

such as neuroblastoma, since its delivery into the mitochondrial
matrix circumvents the nucleotide excision repair pathway
present in the nucleus (Marrache et al., 2014). Moreover, the
union of paclitaxel with TPP also resulted in enhanced antitumor
effects in Hela and in mouse mammary carcinoma cells (4T1)
in vitro and in vivo (Biswas et al., 2012).

An alternative delivery strategy tested for chemotherapeutic
agents involved their conjugation with mitochondria-penetrating
peptide (MPP) or mitochondria-targeting sequences (MTS),
which act independently of mitochondrial potential. This
approach directs their activity toward mtDNA, thus promoting
drug selectivity for cancer cells with reduced mtDNA
integrity, while their stable mitochondrial location prevents
the acquisition of resistance due to drug efflux (Chamberlain
et al., 2013). As an example, cisplatin linked to MMP overcomes
tolerance in cisplatin-resistant ovarian cancer 2780/CP70 cells
(Marrache et al., 2014).

Finally, the combination of the antibiotic salinomycin with
reduced graphene oxide-silver nanocomposites synergistically
enhanced the activity of either compound alone, leading to
mitochondrial dysfunction and selectively killing human ovarian
CD133+ cells (Choi et al., 2018).

Targeting Redox Homeostasis
It is well established that intracellular ROS accumulation induces
cancer cell death, a strategy widely used in the clinics associated
to classical chemo and radiotherapy. However, recent evidence
suggests that this approach may not be effective against CSCs,
due to their increased antioxidant potential (Diehn et al., 2009;
Ishimoto et al., 2011; Yuan et al., 2015). Moreover, ROS can be a
double-edged sword, since they may promote CSCs survival and
invasive abilities acting as signaling molecules (Luo et al., 2018).

As previously mentioned, CSCs are characterized by a finely
regulated redox metabolism (Le Belle et al., 2011; Paul et al.,
2014; Chang et al., 2018), where glutathione plays an essential
role to maintain stemness characteristics (Diehn et al., 2009;
Ishimoto et al., 2011). For that reason, increasing oxidative
stress by blocking glutathione synthesis could represent a
novel therapeutic strategy for eliminating CSCs population and
diminishing tumor growth (Diehn et al., 2009; Rodman et al.,
2016). Thus far, buthionine sulfoximine (BSO), an inhibitor of
glutathione biosynthesis, has proven (Marengo et al., 2008) to be
very effective in decreasing clonogenicity and enhancing response
of CSCs to radiotherapy in vitro and in vivo (Diehn et al., 2009;
Boivin et al., 2011; Rodman et al., 2016). Due to its importance
for glutathione biosynthesis, especially in glutamine-addicted
cancer cells, deprivation of glutamine increased oxidative stress
and reduced SP cells in non-small lung and pancreatic cancer
cell lines (Liao et al., 2017). Glutamine deprivation also
inhibited metastatic potential of cancer cells, one of the main
characteristics of CSCs (Wang et al., 2010).

Besides glutathione, strategies aimed at inhibiting cellular
antioxidants are currently applied with relative success, mostly
improving response to conventional therapies (Figure 2). For
example, treatment with auranofin, a thioredoxin reductase
inhibitor, increased the sensitivity of human breast CSCs to
radiotherapy (Rodman et al., 2016), while a synergistic reduction
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of the CD44v9+ cells content was achieved by inhibiting
glutathione-S-transferase and thioredoxin reductase in patient-
derived xenograft (PDX) models of CRC (Tanaka et al., 2016).
Arsenic trioxide (ATO), an FDA-approved drug for acute
promyelocytic leukemia that increases ROS content and depletes
superoxide dismutase (SOD) and glutathione peroxidase (GPX)
(Li et al., 2006), proved to reduce CSCs content in different
cancer types (Ding et al., 2014; Li et al., 2015a; Chang et al.,
2016; Bell et al., 2018). Moreover, the synergistic effect of ATO
with glutathione depletion could present a novel treatment for
cancers unresponsive to ATO treatment alone (Miller, 2002;

Davison et al., 2003; Bhalla et al., 2009; Matulis et al., 2012).
The anti-alcohol addiction drug disulfiram has been widely used
as anticancer agent since it can increase oxidative stress by
blocking SOD activation (Calderon-Aparicio et al., 2015) and
inhibiting NRF2 (Xu et al., 2017). In studies with breast cancer
cell lines in vitro and in vivo, disulfiram not only diminished
mammosphere formation (Yip et al., 2011; Kim et al., 2017) and
reduced CD44+CD24− and CD49f+CD24+ subpopulations, but
also managed to reverse paclitaxel and cisplatin resistance of
triple-negative breast cancer (TNBC) (Liu et al., 2013). Moreover,
disulfiram proved to diminish the ALDH1+ population from

FIGURE 2 | Therapeutic targeting of glycolysis, lipid and redox metabolism in CSCs. Metabolic pathways such those involving glucose, lipids and redox balance are
potentially targetable in CSCs. (1) Glycolysis. 2-DG represent the most promising therapeutic approach to neutralize highly glycolytic CSCs in combination
treatments. (2) Lipid metabolism. 2M14NQ, SSO and the monoclonal antibodies FA6.152 and JC63.1 can block CD36 activity; substances like Etomoxir, Avocatin B
or ST136 block fatty acid oxidation (FAO) in the mitochondria; FASN can be inhibited by drugs such as Cerulenin, C75, C93, EGCG, G28UCM, Orlistat,
GSK2194069 or GSK837149A; while HMG-CoAR enzyme may be inhibited by either Statins or the combination of Brutieridin plus Melitidin; GTPase prenylation
pathway in which mevalonate is involved can be targeted by both Zoledronic acid and GGTL-298; and different steps of the lipid-mediated cell signaling may be
blocked with molecules such as S32826, PF8380, Celecoxib, ONOAE-208, Misoprostol, PGE1 and ω-3 PUFAs; finally, targeting of the main enzyme of lipid
desaturation route, SCD-1, can be achieved by CAY10556, SC-26196, SSI-4, A939572 or MF-438. (3) Redox metabolism. Antioxidant features of CSCs may be
inhibited at different levels including SOD and GPX proteins with Disulfiram and/or ATO, respectively; ROS-induced NRF2 activity can be neutralized by Disulfiram,
ATRA, Brusatol, Apigenin and Trigonelline; finally, glutathione synthesis may be inhibited either directly or indirectly by blocking GS or GLS enzymes with BSO or a
glutamine analog, and a mixture of Zaprinast with BPTES or 968 compounds, respectively. 2-DG – 2-deoxy-D-glucose, Pyr – pyruvate, LDs – lipid droplets, LPR –
lipoprotein receptor, FAs – fatty acids, FASN – fatty acid synthetase, HMG-CoAR – 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, SCD-1 – stearoyl-CoA
desaturase, MUFAs – monounsaturated fatty acids, PUFAs – polyunsaturated fatty acids, FAO – fatty acid oxidation, TCA – tricarbolxylic acid cycle, CPT1 – carnitine
palmitoyltransferase I, GTPase – guanosin triphosphatase, I/Q/II/III/IV/V – complexes of the electron transport chain, O2

− – superoxide anion, H2O2 – oxygen
peroxide, SOD – superoxide dismutase, GPX – glutathione peroxidase, ROS – reactive oxygen species, NRF2 – nuclear factor erythroid 2–related factor 2, GSH –
glutathione, Glu – glutamate, Gln – glutamine, GS – glutathione synthase, GLS – glutaminase, 2M14NQ – 2-methylthio-1,4-naphtoquinone, SSO – sulfosuccinimidyl
oleate, mAb – monoclonal antibody, EGCG – epigallocatechin gallate, ATRA – all-trans retinoic acid, BSO – L-buthionine-S,R-sulfoximine, ATO – arsenic trioxide.
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non-small cell lung cancer cell lines (Liu et al., 2016) and
CD34+CD38+ cells in AML cell lines and primary samples
in vitro and in vivo (Xu et al., 2017). Now entering phase III
in clinical trials, disulfiram may present a potential adjuvant
therapy for cancer treatment, although it is highly unstable in
blood. For that reason, disulfiram-containing nanoparticles have
also been developed. Even though these nanoparticles proved
to increase disulfiram blood levels (Song et al., 2016), further
studies are needed to establish its full in vivo antioxidant and
biological properties.

Increased NRF2 levels turned out to play a role in CSCs
survival and chemoresistance (Kwak et al., 2001; Zhu et al.,
2013; Ryoo et al., 2016), representing another potential target for
eradicating CSCs. All-trans retinoic acid (ATRA) blocked NRF2
activation, diminishing self-renewal and tumorigenic capacity
of ALDH1+ lung cancer cells (Moreb et al., 2004) and ovarian
cancer cell lines (Kim D. et al., 2018). Moreover, brusatol,
which decreases NRF2 protein levels, was demonstrated to
inhibit mammospheres formation and increase the sensitivity
of human breast CSCs to Taxol (Wu T. et al., 2015). Similarly,
the natural flavonoid apigenin (Kim et al., 2016; Erdogan et al.,
2017) or the alkaloid trigonelline (Arlt et al., 2013; Roh et al.,
2017), which inhibits NRF2 at transcriptional and translational
level, can sensitize CSCs toward chemotherapeutic drugs. On
the other hand, the combination of ROS inducers and NRF2
(or downstream targets) inhibition could represent a potential
strategy for CSCs elimination (Diehn et al., 2009; Ishimoto et al.,
2011; Kwak et al., 2016; Liu et al., 2016; Kim et al., 2017; Kim D.
et al., 2018; Luo et al., 2018).

Paradoxically, some natural antioxidants that can increase
NRF2 expression levels have also shown therapeutic potential.
The NRF2-inducer sulforaphane, a dietary component from
broccoli, inhibited self-renewal capacity of CD44+ LDH1+
pancreatic (Rausch et al., 2010) and ALDH1+ breast cancer
cells in vivo and in vitro (Burnett et al., 2017). Curcumin,
an active ingredient of turmeric, diminished self-renewal
capacity of CD44+ EpCAM+ pancreatic cancer cells in vitro
and in vivo (Bao et al., 2012) and reduced proliferation
and mammosphere formation of ALDH1+ breast cancer cells
(Kakarala et al., 2010). Additionally, resveratrol, oleanane
triterpenoid or carnosol also proved to active and increase
NRF2 expression which could have a positive effect on
diminishing the CSCs population (Probst et al., 2015a,b;
Sancho et al., 2015; Giacomelli et al., 2017). Treatment
with naturally occurring antioxidants, such as vitamin C or
phenethyl isothiocyanates (PEITCs), found in broccoli or Brussel
sprouts, also diminished self-renewal capacity and clonogenicity
of NCCIT human embryonic carcinoma and human colon
cancer cell lines, and reduced CD133+, EpCAM+ and OV6+
cells while inhibiting tumorspheres formation and growth of
hepatocellular carcinoma cell lines and PDX models in vivo
(Yun et al., 2017; Lv et al., 2018). However, even though natural
antioxidants could represent an exciting strategy in anticancer
therapy, clinical trials thus far showed no positive effect on
patient survival. Indeed, published data highlighted the lack of
specificity of antioxidant treatments. This fact, together with the
possible contribution of antioxidants to stemness maintenance

and cancer development, weakens the translation potential
of this approach.

Targeting Lipid Metabolism
Lipid metabolism has become an interesting target in order to
design new anti-CSC strategies, and a number of compounds
have been tested during the last years (Figure 2).

Lipid Desaturation
Over the last few years, several SCD-1 inhibitors have
demonstrated their effectiveness in different preclinical in vitro
and in vivo models of cancer, by specifically targeting stemness-
related properties. Indeed, the inhibitors CAY10556 and SC-
26196 reduced stem cell-related markers and signaling pathways
by downregulating Hedgehog and Notch expression in ovarian
ALDH+CD133+ cells (Li J. et al., 2017). Interestingly, this
led to the inhibition of sphere formation in vitro and
tumorigenicity in vivo, with no effect on differentiated cells,
suggesting the selectivity of this approach. In the same line
of evidence, inhibition of SCD-1 with the compounds SSI-4
or A939572 modulates endoplasmic reticulum-stress-mediated
differentiation in liver chemoresistant hepatospheres, sensitizing
resistant PDXs to sorafenib treatment with low side toxicity
in vivo (Ma et al., 2017). In parallel, effects of the inhibitor
A939572 in CD133+CD49f+ liver CSCs have also been linked
to Wnt-mediated self-renewal and in vivo tumorigenicity (Lai
et al., 2017). Finally, MF-438 treatment induced anoikis in lung
ALDH1+ cells, decreasing self-renewal and pluripotency markers
expression (Pisanu et al., 2017). Interestingly, these in vitro effects
translated into reduced tumorigenic potential and reversion of
chemoresistance in vivo.

Lipogenesis
Given the important involvement of the enzyme FASN in
numerous tumor types, a number of inhibitors have been
designed and/or tested in diverse cancer models: cerulenin,
C75, C93, epigallocatechin gallate (EGCG), G28UCM, orlistat,
GSK2194069 and GSK837149A. In fact, cerulenin treatment
prevents proliferation in vitro of pancreatic spheres (Brandi
et al., 2017) and neurospheres established from glioma
patients (Yasumoto et al., 2016) CSCs. On the other hand,
C75 at non-cytotoxic concentrations significantly reduced
self-renewal in HER2+ breast cancer cells (Corominas-
Faja et al., 2017). However, it is important to highlight
the critical selectivity and toxicity issues found for FASN
inhibitors in vivo, which have compromised their translation to
clinical trials. Only the inhibitor TVB-2640 is being currently
tested in clinical trials for HER2+ advanced breast cancer,
high grade astrocytoma and colon cancer (NCT03179904,
NCT03032484, NCT02980029, respectively).

Cholesterol Synthesis
Cholesterol synthesis through the mevalonate pathway can
be inhibited by statins, for which the molecular target is
the enzyme 3-hydroxy-3-methylglutharyl-coenzyme A reductase
(HMG-COAR). In fact, treatment with different statins decreased
self-renewal and CSCs content in breast (Ginestier et al.,
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2012) and nasopharyngeal (Peng et al., 2017) carcinomas.
Interestingly, similar effects were detected in CD133+ brain
TICs (Wang et al., 2017a) where overexpression of mevalonate
pathway genes was controlled by MYC, highlighting the
variety of metabolic pathways controlled by the oncogene.
However, anti-CSCs effects of statins could also be related to
inhibition of cellular signaling via small GTPases (e.g., Rho
and Rac), since they require prenylation using mevalonate
pathway intermediates. In fact, impaired self-renewal ability
achieved with simvastatin treatment in breast tumorspheres was
recapitulated by zoledronic acid and GGTI-298, inhibitors of
the prenylation pathway (Ginestier et al., 2012). Moreover, a
mixture of brutieridin and melitidin (natural products derived
from bergamot with statin-like properties) impaired breast
ALDH1+ CSCs proliferation inhibiting both FAO and Rho-
related signaling pathways (Fiorillo et al., 2018).

Lipid Uptake
Strategies targeting lipid uptake are mainly designed to inhibit
the transporter CD36, by either pharmacological inhibition
or blocking antibodies. CD36 blockade with 2-methylthio-
1,4-naphtoquinone decreases self-renewal ability and induces
apoptosis in glioblastoma CD133+ (Hale et al., 2014). Another
CD36 inhibitory compound, sulfosuccinimidyl oleate, decreases
chemoresistant leukemic stem cells (Ye et al., 2016). Interestingly,
CD36-neutralizing antibodies against either all known functions
of CD36 (FA6.152) or the ones reported to block active
FA and lipoprotein uptake (JC63.1) induced lipotoxicity in
label-retaining/CD44+metastasis-initiating cells, thus, inhibiting
metastasis initiation and progression in oral squamous cell
carcinoma, with no reported toxicity in vivo (Pascual et al., 2016).

FAO
Fatty acid oxidation inhibition with etomoxir has been studied
in preclinical in vitro and in vivo cancer models. Indeed,
etomoxir treatment inhibits mammosphere formation and tumor
growth in vivo in TNBC tumors bearing high MYC expression
(Camarda et al., 2016). In addition, etomoxir treatment
sensitizes hepatocarcinoma CD133+CD49f+ CSCs to standard
chemotherapy with sorafenib (Chen C.L. et al., 2016). Moreover,
etomoxir decreases the number of quiescent leukemia CSCs in
AML patients and, combined with the BCl-2 inhibitor ABT-
737, substantially decreases tumor burden (Samudio et al., 2010).
However, etomoxir treatment induces normal hematopoietic
stem cell exhaustion invalidating this compound for further
clinical studies (Ito et al., 2012). Interestingly, alternative FAO
inhibitors with higher selectivity for malignant cells are under
investigation currently. For example, avocatin B is a lipid that
accumulates in mitochondria inhibiting FAO and targets AML
cells and leukemia CD34+ CSCs with no effect on hematopoietic
stem cells (Lee et al., 2014, 2015). Additionally, the compound
ST136 showed antileukemic activity with no effect on normal
CD34+ stem cells (Ricciardi et al., 2015).

Lipid-Mediated Signaling
As stated in the previous section, lipid-mediated signaling plays
an important role in cancer and, specifically, in CSCs functions.
For that reason, several therapeutic approaches, including

inhibitors and indirect modulation via dietary supplements,
have been studied over the last few years. For example, several
stemness-related functions of ovarian spheroid-derived cells
from cell lines and primary cells from patients were dependent
on LPA synthesis. Thus, inhibition of the LPA-producing enzyme
autotaxin with the small molecules S32826 or PF8380 decreased
tumorigenicity and chemoresistance in vivo (Seo et al., 2016).
Interestingly, inhibition of LPA production not only affects
cancer cells, but could also play an important role modulating
the immune system and supporting tumor progression. Indeed,
LPA induces the differentiation of monocytes into macrophages
and favors the activation of CAFs phenotype (Ray and Rai, 2017;
Radhakrishnan et al., 2019).

The most studied lipid mediator class in relation to
CSCs is prostaglandins. Indeed, treatment of ApcMin/þ mice
with celecoxib, the prostaglandin-endoperoxide synthase 2
selective inhibitor, or the EP4 receptor (prostaglandin receptor)
antagonist ONOAE-208 resulted in a reduction of tumor
CD133+CD44+ cells and tumor burden (Wang et al., 2015).
Importantly, celecoxib inhibited CSCs content and the number
of liver metastatic tumors upon orthotopic injection of patient-
derived CRC into NSG mice. Additionally, celecoxib impaired
chemoresistance in bladder carcinomas, suggesting its utility
as adjuvant therapy (Kurtova et al., 2015). On the contrary,
activation of EP4 with the FDA-approved agonist misoprostol
or PGE1 reduced CD34+ cells in a xenograft model of chronic
myelogenous leukemia (CML) (Li F. et al., 2017), suggesting a
context-dependent effect of prostaglandins in stemness.

On the other hand, preclinical and human observational
studies suggest that dietary omega-3 polyunsaturated fatty
acids (ω-3 PUFA), including eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA), decrease CRC risk and may be
effective as adjuvant treatment of advanced CRC. Indeed, EPA
and DHA reduced the CD133+ content or stem properties in
two different in vitro studies using CRC cell lines (De Carlo
et al., 2013; Yang et al., 2013). Interestingly, EPA alone or
in combination with chemotherapy decreased sphere-forming
ability and suppressed tumor growth, likely through inhibition
of proinflammatory metabolites in mice (Vasudevan et al., 2014).
Importantly, studies in other tumor entities also suggest an
anti-CSCs effect of ω-3 PUFAs besides CRC. Indeed, EPA and
DHA supplementation also reduced proliferation and induced
toxicity in breast tumorspheres, likely through alteration of
the prostaglandin profile (Erickson and Hubbard, 2010). In
addition, a metabolite derived from EPA eradicated leukemia
M34+Kit+Sca1+ CSCs in PDXs of CML (Hegde et al., 2011).

Targeting Metabolism of Alternative
Fuels
As mentioned in the previous section, CSCs may utilize
a number of different substrates, such as amino acids
and ketone bodies, in order to support self-renewal and
tumorigenicity. For that reason, diverse compounds which
target the metabolism of these alternative fuels are currently
under investigation.

On the one hand, the use of a glutamine analog reduced 20
times tumor growth and inhibited metastasis in the VM-M3
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FIGURE 3 | Redox involvement in the different metabolic dependencies described for CSCs. CSCs bear diverse metabolic dependencies in a tumor and
context-dependent manner: (1) Aerobic glycolysis, controlled by MYC; (2) OxPhos, fuelled by different microenvironmental substrates and controlled by Imp2 or
PGC-1α; (3) Lipid metabolism, increasing either fatty acid synthesis and storage in lipid droplets (LDs) or utilization via mitochondrial FAO; (4) CSCs can be
dependent on alternative substrates and pathways such as aminoacids, ketone bodies, PPP or purines. Interestingly, the metabolic phenotypes described for CSCs
ensure the maintenance of cellular redox state. Keeping redox balance is crucial for CSCs in order to maintain their stemness characteristics, differentiation ability and
resistance to chemo and radiotherapy, constituting one of the most important vulnerabilities independently of their origin or cellular context. ROS – reactive oxygen
species, OxPhos – oxidative phosphorylation, LDs – lipid droplets, PPP – pentose phosphate pathway, FAO – fatty acid oxidation, TCA – tricarboxylic acid cycle.

murine tumor model of systemic metastasis, when compared
with non-treated mice (Shelton et al., 2010). Interestingly, the
anti-asthma compound Zaprinast was identified as a novel
glutaminase inhibitor that, together with BPTES and 968,
inhibited clonogenicity of pancreatic cancer cells in response to
radiation (Elhammali et al., 2014).

Interestingly, Ozsvari et al. (2017) unveiled the potential
anti-CSCs activity of a novel class of compounds denominated
“mitoketoscins.” These compounds block the active site of the
enzymes involved in the recycling of ketone bodies into acetyl-
CoA (OXCT1 and ACAT1), leading to inhibition of the CSCs
activity and propagation in breast cancer spheroids. However,
considering the sometimes contradictory results of diverse
studies on the antitumor effects of ketogenic diet (high-fat/low-
carbohydrate intake) (Vidali et al., 2015; Weber et al., 2018), the
anti-tumor effect of these inhibitors would need to be carefully
tested as dependency on ketone bodies strongly varies across
tumor entities and specific genotypes.

Combination Treatments: Targeting
Glycolysis
Considering the great intratumoral metabolic heterogeneity
and plasticity found in tumors, mitochondrial inhibitors as
single agents will unlikely become an effective therapy for
cancer treatment. In fact, combination treatments, where two
or more metabolic pathways are inhibited simultaneously,

would block relapse and development of resistances. For
instance, a dual inhibition of the main metabolic pathway
together with its main escape mechanism will completely
erase CSCs within the tumor. This has been reported for the
combinations of metformin with either the bromodomain and
extraterminal motif (BET) inhibitor JQ-1 in pancreatic cancer
(Sancho et al., 2015) or PI3K inhibition for ovarian cancer
(Li et al., 2012), which blocks OxPhos and indirectly inhibits
glycolysis simultaneously.

In fact, direct glycolysis inhibition for cancer treatment has
been studied intensively in preclinical and clinical settings over
the last few years, although with low success rates. On the
one hand, glucose transport inhibitors, such as silybin/silibinin
[tested in a phase I/II clinical trials for prostate cancer and
advanced hepatocellular carcinoma (Flaig et al., 2006)], phloretin,
WZB117 and fasentin caused important side effects, since
GLUT transporters are present in all the cells of the organism.
Similarly, inhibition of glycolytic enzymes, such as hexokinase
II with lonidamine, has been tested in several types of cancers,
including breast, lung and ovarian cancer (Gadducci et al.,
1994; De Lena et al., 1997; De Marinis et al., 1999; Berruti
et al., 2002). However, there was no significant improvement
in overall survival and many cases presented with elevated
toxicity. Additionally, the glucose analog 2-DG was shown to be
a promising agent in preclinical studies (Maschek et al., 2004;
Coleman et al., 2008). In fact, it has been recently tested in
phase II/III of a clinical trial for prostate cancer (NCT00633087),
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although no results are available, since the trial was terminated
due to the slow accrual.

Apart from direct inhibition, targeting tumor drivers affecting
cellular metabolism might hinder glycolysis. For example, KRAS
mutation is present in more than 90% of pancreatic cancer
cases (Bailey et al., 2016) and controls both tumorigenesis and
metabolic reprogramming (Ying et al., 2012; Son et al., 2013; Liou
et al., 2016). In fact, KRAS drives glycolysis and the diversion of
glycolysis intermediates into the non-oxidative branch of PPP,
essential for the synthesis of nucleic acids (Yun et al., 2009;
Ying et al., 2012; Blum and Kloog, 2014). However, even though
small molecule inhibitors of KRAS proved to be promising in
preclinical studies (Xie et al., 2017; Zeng et al., 2017), targeting
KRAS or its downstream pathways showed no effect in overall
survival and overall response rate in pancreatic cancer patients
(Kindler et al., 2012; Infante et al., 2014; Chung et al., 2017).

Alternatively, c-MYC is another essential driver of
tumorigenesis and glycolysis in cancer (Miller et al., 2012; Lin
et al., 2013; He et al., 2015). For that reason, different compounds
targeting MYC are currently undergoing clinical trials.
Noteworthy, inhibitors of BET proteins directly downregulate
MYC expression and suppress tumor growth in vivo (Delmore
et al., 2011; Mazur et al., 2015; Garcia et al., 2016). Importantly,
since MYC suppression blocks development of resistance to
mitochondrial inhibitors (Sancho et al., 2015; Kim J.H. et al.,
2018), combinatory approaches using this strategy can represent
a promising anticancer therapy.

CONCLUDING REMARKS

Over the last few years, a huge collective effort to decipher
metabolic reprogramming occurring in cancer has taken place.
Technical advances have allowed the determination of the
great metabolic heterogeneity, not only among individuals
suffering from one type of cancer, but within a single tumor.
Collectively, present literature indicates that both metabolic
and redox state diversity define CSCs phenotype and fate,

determining response to therapy. Importantly, most of the
metabolic dependencies described for CSCs in diverse tumor
entities have the tight control of redox state as a common
factor (Figure 3), unveiling an important vulnerability that could
provide new therapeutic opportunities. Other factors, such as
tumor metabolic heterogeneity, microenvironmental cues or a
cross-talk through metabolic and redox signaling between CSCs
and cancer cells or stromal components (Riemann et al., 2011;
Chen X. et al., 2016; Chang et al., 2018; Luo et al., 2018) can play
an additional role in cancer progression and chemoresistance.
Therefore, current knowledge suggests that carefully designed
therapies, which target metabolically diverse populations and
consider the tumor microenvironment may be crucial in order to
develop more effective metabolism-focused treatment strategies.
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