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The prevalence of depression has dramatically increased, and it has been estimated that 
over 300 million people suffer from depression all over the world. Depression is highly 
comorbid with many central and peripheral disorders. In this regard, depressive states 
have been associated with the development of neurological disorders such as Alzheimer’s 
disease (AD). Accordingly, depression is a risk factor for AD and depressive symptomatology 
is common in pre-clinical AD, representing an early manifestation of this disease. 
Neuropsychiatric symptoms may represent prodromal symptoms of dementia deriving 
from neurobiological changes in specific cerebral regions; thus, the search for common 
biological substrates is becoming an imperative and intriguing field of research. Soluble 
forms of beta amyloid peptide (Aβ) have been implicated both in the development of early 
memory deficits and neuropsychiatric symptoms. Indeed, soluble Aβ species have been 
shown to induce a depressive-like phenotype in AD animal models. Alterations in 
monoamine content are a common feature of these neuropathologies. Interestingly, 
serotonergic system modulation has been implicated in alteration of Aβ production.  
In addition, noradrenaline is considered crucially involved in compensatory mechanisms, 
leading to increased Aβ degradation via several mechanisms, including microglia 
modulation. In further agreement, antidepressant drugs have also been shown to potentially 
modulate cognitive symptoms in AD and depression. Thus, the present review summarizes 
the main knowledge about biological and pathological substrates, such as monoamine 
and related molecules, commonly involved in AD and depression pathology, thus shading 
light on new therapeutic approaches.
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INTRODUCTION

Many pathologies have been indicated as comorbid with Alzheimer’s diseases (AD) and in 
particular neuropsychiatric disorders such as depression (Ownby et  al., 2006; Sun et  al., 2008). 
Indeed, depression is common in pre-clinical AD and may represent an early manifestation 
of this disease before the appearance of cognitive impairments (Geerlings et  al., 2000; Visser 
et  al., 2000). In this regard, much evidence endorses a strong relationship between depression 
and AD, so much that this mental illness has been proposed as a risk factor for AD or as 
a prodromic AD phase (Modrego and Ferrandez, 2004). The amyloid cascade hypothesis 
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postulates that neurodegeneration in AD is related to abnormal 
accumulation of amyloid beta (Aβ) plaques in various areas 
of the brain. However, soluble forms of this peptide have been 
implicated in the development of early memory deficits as 
well as of neuropsychiatric symptoms (Rowan et  al., 2005). 
Indeed, significant cognitive deficits have been directly attributed 
to soluble Aβ fragments (Mattson, 2004; Cleary et  al., 2005), 
and increased levels of soluble Aβ oligomers have been linked 
to synaptic dysfunction (Hardy and Selkoe, 2002; Selkoe and 
Schenk, 2003). Meanwhile, it has been reported that in depressed 
patients, Aβ peptide levels are increased (Pomara and Sidtis, 
2010). In good agreement, we  have previously demonstrated 
that Aβ, intracerebroventricularly (icv) injected in rats 7  days 
earlier, evokes a depressive-like profile accompanied by lower 
cortical serotonin (5-HT) and neurotrophin content (Colaianna 
et al., 2010). Furthermore, we later reported that such impairment 
was associated with altered stress response and increased 
noradrenaline (NA) levels (Morgese et  al., 2014, 2015). In 
addition, in the same model, cognitive impairment was 
demonstrated either acutely, such as 2 h after Aβ administration, 
or more enduringly, i.e., 7 days after the peptide central release 
(Morgese et  al., 2014; Tucci et  al., 2014; Mhillaj et  al., 2018). 
Although the role of dopamine (DA) was less studied concerning 
depression and AD, recently, its role has been brought to the 
fore (Nobili et al., 2017) but is still in need of further evaluation.

The present review is aimed at summarizing the main 
knowledge related to biological and pathological substrates, 
such as monoamines and related molecules, commonly involved 
in AD and depressive pathology, with the scope of shedding 
light on possible therapeutic approaches.

MONOAMINE SYSTEM IN DEPRESSION 
AND ALZHEIMER’S DISEASE

Serotonergic System
The treatment of affective disorders is mainly based on the 
enhancement of the noradrenergic and serotonergic systems 
through selective or nonselective reuptake inhibitors. Such a 
pharmacological schedule sinks the roots on the catecholaminergic 
theory of affective disorders stating the crucial role of lower 
central NA and 5-HT availability in the insurgence of depression 
(Mann et  al., 1986; Schildkraut, 1995; Mann, 1999). Alterations 
in these neurotransmitter systems have also been linked to 
neurodegenerative disorders such as AD. Impairment of the 
serotonergic system has been reported in the very early stages 
of AD (Versijpt et  al., 2003; Egashira et  al., 2005; Kepe et  al., 
2006), and substantial disruption of the serotonergic system in 
AD has been postulated according to both clinical and postmortem 
studies (Morgan et al., 1987; Lanctot et al., 2001). In this regard, 
Aβ in its soluble forms, either monomeric or oligomeric, has 
been associated with the modulation of these systems. In 
particular, we  have previously found that soluble Aβ injected 
icv in rats caused a significant reduction in 5-HT at the prefrontal 
cortex level, without interfering with the physiological functioning 
of other areas such as the striatum or the nucleus accumbens 
(Colaianna et al., 2010). These results indicated that the prefrontal 

cortex is an area highly sensitive to Aβ effects, and this area 
is also crucially involved in the etiopathogenesis of depressive 
phenomena. Indeed, impairment of 5-HT neurotransmission 
in the prefrontal area is central to both depressive disorders 
(Krishnan and Nestler, 2008) and several neurodegenerative 
diseases (Mattson, 2004; Egashira et  al., 2005). Furthermore, 
we  have more recently individuated the vulnerability of the 
hippocampal area to the action of exogenous Aβ icv injected. 
Indeed, we have found that this peptide can reduce 5-HT levels 
in the hippocampus, and this event is associated with a 
proinflammatory state and higher rate of activated microglia 
(Mhillaj et al., 2018). In addition, the treatment with a selective 
COX-2 inhibitor, such as celecoxib, was able to prevent the 
reduction in 5-HT levels, thus preventing the Aβ-induced 
depressive-like behavior and restoring Aβ plasma levels to control 
(Mhillaj et al., 2018; Morgese et al., 2018a). Accordingly, we have 
recently demonstrated that environmental factors, such as 
modified dietary factors, can lead to serotonergic impairment 
associated with increased levels of Aβ. In particular, we  found 
that deficiency in polyunsaturated fatty acids of the omega 3 
family, thus corresponding to a condition linked to a 
pseudoinflammatory state (Solbrig et  al., 2010; Graeber et  al., 
2011), led to a depressive-like phenotype characterized by 
reduced 5-HT content and higher Aβ levels (Morgese et  al., 
2017). Accordingly, an anti-inflammatory diet, such as a diet 
enriched in omega 3 fatty acids, was able to prevent the reduction 
in 5-HT caused by Aβ injection, preventing the depressive 
phenomenon (Bove et al., 2018; Morgese et al., 2018b). Likewise, 
depressed patients showed higher risk for the development of 
AD (Kessing and Andersen, 2004). On the other hand, postmortem 
studies performed in AD patients revealed low 5-HT and relative 
receptor content (Reynolds et  al., 1995). An in vitro model of 
familiar AD confirmed these observations, since cells 
overexpressing APP gene with the Swedish mutations associated 
with familial AD, indicated an altered sensitivity of the 
serotonergic system and 5-HT1B receptor subtype in particular 
(Tajeddinn et  al., 2016). Furthermore, in a double transgenic 
model of early AD, fluoxetine, an antidepressant drug acting 
as serotonin-selective re-uptake inhibitors (SSRIs), ameliorated 
the impairment of spatial learning by preventing neuronal loss 
(Ma et  al., 2017) and delayed the cognitive decline associated 
with synaptic changes (Zhou et  al., 2018). Accordingly, clinical 
evidence revealed that SSRIs significantly improve depressant 
symptoms and daily activities in AD patients (Werner and 
Covenas, 2015). This point is very intriguing considering that 
cognitive decline is recognized also as a clinical feature of 
depressive state. Interestingly, serotonergic system activation was 
reported to negatively modulate interstitial Aβ content. Indeed, 
in transgenic animal models of AD, the enhancing of 5-HT 
signaling, through the administration of SSRI antidepressants, 
rapidly reduced Aβ production in vivo via activation of 
extracellular regulated kinase (ERK) and the α-secretase-mediated 
pathway (Cirrito et  al., 2011; Fisher et  al., 2016). Indeed, the 
sequential proteolytic cleavage of amyloid precursor protein 
(APP) can also occur via α-secretase, leading to the production 
of α-CTF later transformed by γ-secretase into AICD and p3 
peptides (Chow et  al., 2010). This pathway is recognized as 
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the non-amyloidogenic pathway since APP is cleaved by 
α-secretase in the Aβ region, yielding to lower Aβ production 
(Chow et  al., 2010). This pathway has been described as 
neurotrophic and neuroprotective (Chow et al., 2010); therefore, 
therapeutic strategies steered at pushing APP processing toward 
α-secretase-mediated derivatives are under the spotlight. 
Furthermore, a PET imaging study carried out in cognitively 
normal individuals evidenced lower Aβ accumulation in 
consequence to increased 5-HT signaling (Sheline et  al., 2014), 
and retrospective analysis on patients under antidepressants 
further confirmed this finding (Vlassenko et  al., 2011). In this 
regard, we have recently demonstrated that fluoxetine treatment 
not only could restore 5-HT content in animals centrally injected 
with Aβ characterized by depressive-like phenotype but also 
reduced Aβ plasma levels (Schiavone et  al., 2017). In further 
agreement, activation of serotonergic receptors, such as 5-HT4, 
5-HT6, and 5-HT7, corresponded to lower Aβ content, whereas 
the opposite effect was retrieved after simultaneous 
pharmacological blockade of 5-HT4 and 5-HT7 (Cho and Hu, 
2007; Fisher et  al., 2016). 5-HT4 partial agonists have been 
proposed as fast-acting antidepressants (Lucas et al., 2007; Vidal 
et al., 2014) and have been shown to ameliorate cognitive deficit 
in anxiety/depressive models (Darcet et  al., 2016). In good 
agreement, pharmacological activation of 5-HT4 receptors was 
shown to enhance short- and long-term memory function 
(Meneses, 2007), endorsing the hypothesis of a putative role 
of these drugs for the amelioration of symptomatology of 
depression in AD. With regard to other receptor subtypes, it 
has been shown that APP can be  released upon activation of 
5-HT2A and 5-HT2C, and activation of 5-HT2C receptor promotes 
the expression of neprilysin, a well-characterized Aβ degrading 
enzymes (Tian et  al., 2015). However, it should be  considered 
that both 5-HT2C agonists and antagonists have been evaluated 
as antidepressants (Cryan and Lucki, 2000; Steardo et  al., 2000; 
Cryan et  al., 2005).

As regard to 5-HT2A receptors, genetic polymorphisms have 
been described in AD patients affected by major depression 
(Holmes et  al., 2003) and, in AD patients, lower binding to 
these receptors has been identified (Versijpt et  al., 2003). In 
addition, intra-hippocampal injection of Aβ was associated with 
a significant reduction in 5-HT2A expression (Christensen et al., 
2008). However, the effects of the activation of these receptors 
may vary depending on the cerebral pathway involved. Indeed, 
5-HT2A knocked down mice showed an altered phenotype with 
depressive-like symptoms (Popa et  al., 2005), and 5-HT2A 
antagonists have been evaluated as antidepressants (Zhang and 
Stackman, 2015); thus, a better understanding would help the 
developing of targeted compounds. On the other hand, 5-HT6 
receptors represent a novel therapeutic strategy in AD. Indeed, 
clinical trial for studying the efficacy and tolerability of the 
5-HT6 receptor antagonist, SB-742457, in subjects with mild-
to-moderate and probable AD, revealed a safe profile and 
possible utility in improving cognitive symptoms of AD  
(Maher-Edwards et  al., 2010). However, antagonists of these 
receptor subtypes have been indicated as useful also in the 
treatment of non-cognitive symptoms associated with AD 
(Garcia-Alloza et  al., 2004). However, despite early positive 

findings, larger phase-III trials have failed to demonstrate any 
statistically significant impact on cognition for either idalopirdine 
or intepirdine, two 5-HT6 antagonists, as adjunct to cholinesterase 
inhibitors. Paradoxically, 5-HT6 receptor agonists also hold 
cognitive enhancing properties (Khoury et  al., 2018). Likewise, 
polymorphism of these receptors has been associated with altered 
response to antidepressant treatment in major depressive disorder 
(Lee et al., 2005), although contrasting results have been reported 
(Wu et  al., 2001); hence, further research is warranted.

Noradrenergic System
The noradrenergic system is also implicated in the 
etiopathogenesis of both depression and AD. However, it has 
been recognized that the cause of depression is more complex 
than just an alteration in the levels of 5-HT and/or NA, being 
more directly caused by dysfunction in brain areas or neuronal 
systems modulated by monoamine systems (Delgado and Moreno, 
2000). It has been postulated that antidepressants, by enhancing 
neurotransmission in normal noradrenergic or serotonergic 
neurons, can restore lost functions in affected brain areas under 
monoamine control through a time-dependent process (Delgado 
and Moreno, 2000). Indeed, noradrenergic and serotonergic 
systems are strictly interconnected and control each other via 
heteroreceptors. In particular, a negative feedback has been 
hypothesized considering that increased 5-HT levels correspond 
to NA release, which in turn inhibits further 5-HT release 
via α2AR activation (Mongeau et  al., 1997). This process is 
mediated through inhibitory α2 receptors (α2AR) at 5-HT 
terminal levels and 5-HT3 receptors at NA terminals. Interestingly, 
increased α2AR have been found in postmortem brains of 
depressed patients (Meana et  al., 1992; Ordway et  al., 1994), 
and a theory of α2AR supersensitivity in depression was postulated 
early on Charney et  al., 1981. In this regard, increased 
α2-adrenoceptor density was retrieved in most regions of a 
rat model of depression, such as the flinders sensitive rat 
(Lillethorup et al., 2015) and in patients with depressive disorders 
(Cottingham and Wang, 2012). Interestingly, it has been 
postulated that tricyclic compounds can bind α2AR, thus 
functioning as arrestin-based ligands, and such an effect can 
explain their antidepressant property (Cottingham et al., 2015). 
Βeta-arrestins are a small family of regulators of G protein-
coupled receptors that regulate desensitization, internalization 
along, and initiation of their own signaling of such receptors 
(Jiang et  al., 2013). Long-term activation of these receptors 
causes endocytosis and downregulation through the recruitment 
of α2AR/arrestin complex (Cottingham et  al., 2015). The NA 
system is deeply affected also in neurodegeneration and in 
early AD (Haglund et al., 2006). Indeed, α2A adrenergic receptors 
modulate APP endocytic sorting and promote Aβ generation 
through disrupting APP interaction with a vacuolar protein 
sorting (Vps10) family protein, a family of receptors that plays 
a decisive role in controlling the outcome of APP proteolytic 
processing (Chen et  al., 2014). In addition, this study pointed 
to the use of α2A antagonists as a new direction for AD 
treatment. In this light, another putative target for the generation 
of novel AD treatments is targeting β-arrestin. Indeed, increased 
β-arrestin 1 levels were shown in a transgenic animal model 
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of AD as well as in postmortem study (Liu et  al., 2013). 
In keeping in mind a parallel route for depression and AD, 
β-arrestin signaling has also been associated with antidepressant 
properties of drugs (Golan et  al., 2013). Overexpression of 
β-arrestin 2 was associated with increased Aβ production. In 
particular, experimental conditions able to silence the β-arrestin 2 
gene corresponded to Aβ rate of production by regulating 
γ-secretase activity (Thathiah et al., 2013). Accordingly, Pontrello 
et  al. found that the loss of dendritic spine in hippocampal 
neurons caused by Aβ was prevented by deleting β-arrestin-2 
(Pontrello et  al., 2012). On the other hand, polymorphisms 
in the gene encoding for β2 adrenergic receptor have been 
associated with an increased risk of developing sporadic late 
onset AD (Yu et  al., 2008), while alterations in β adrenergic 
receptors were reported in depressed patients (Mann et  al., 
1986). Indeed, much evidence indicates that activation of these 
receptors yield to antidepressant effects (Overstreet et al., 2008; 
Gu et al., 2012). Nonetheless, Aβ interacts with the noradrenergic 
system directly binding to β-adrenergic receptors (Igbavboa 
et  al., 2006; Wang et  al., 2011). Aβ may cause desensitization 
and subsequently internalization of β2 adrenergic receptors in 
prefrontal cortical neurons (Wang et  al., 2011). Furthermore, 
β2 adrenergic receptor activation mediates phosphorylation of 
tau after Aβ exposure both in vivo and in vitro (Wang et  al., 
2013). On the other hand, we  have found that central icv 
injection of Aβ increases noradrenergic tone after either 2  h 
or after 7  days from the central injection, probably reflecting 
a neuroprotective phenomenon (Morgese et  al., 2014, 2015), 
considering that, NA is protective against neuroinflammatory 
processes. Accordingly, NA is able to modulate glial activation, 
and pharmacological strategies finalized to increase NA are 
considered a valid approach for neurodegenerative diseases 
(Braun et  al., 2014). In vitro studies have evidenced that 
neuroprotective effects of noradrenergic locus coeruleus (LC) 
afferents against Aβ rely on the stimulation of neurotrophic 
NGF and BDNF autocrine or paracrine loops via beta 
adrenoceptor activation of the cAMP response element binding 
protein pathway (Counts and Mufson, 2010; Liu et  al., 2015). 
After Aβ exposure, lower NA concentrations in LC projecting 
areas facilitate the inflammatory reaction of microglial cells, 
thus impairing microglial migration and phagocytosis, ultimately 
decreasing Aβ clearance (Heneka et  al., 2010). Accordingly, 
progression of AD is paralleled by the loss of noradrenergic 
function in LC (Kelly et  al., 2017), indicating the crucial role 
of this system in neurodegeneration.

Dopaminergic System
As regards the dopaminergic system, impairment of its 
neurotransmission has been implicated in many diseases including 
depression (Schmidt et al., 2001), and several pre-clinical studies 
have indicated the involvement of dopaminergic, either D1, 
D2, or D3, in antidepressant effects (Pytka et  al., 2016). In 
good agreement, it has been shown that pure dopaminergic 
drugs, such as pramipexole, DA precursors, and DA reuptake 
inhibitors, show therapeutic efficacy in depression  
(El Mansari et al., 2010; Belujon and Grace, 2017). In addition, 
neurodegenerative diseases associated with the loss of 

dopaminergic function, such as Parkinson’s or Huntington’s 
diseases, have high comorbidities with depression and anxiety 
(Dale et al., 2016; Schrag and Taddei, 2017; Smeltere et al., 2017).

Concerning AD, it was shown that prefrontal cortical and 
hippocampal areas showed lower DA receptor expression 
(Kemppainen et  al., 2003; Kumar and Patel, 2007). Interestingly 
accumbal expression of D2-like receptors, dopaminergic 
transporter, and tyrosine hydroxylase enzyme was found altered 
in AD brains (Rinne et  al., 1986; Allard et  al., 1990; Murray 
et al., 1995; Joyce et al., 1997). Imaging studies evidenced atrophy 
of this area in a cohort of AD patients (Pievani et  al., 2013). 
Aβ administration disrupts the cholinergic control of DA release, 
particularly in the nucleus accumbens (Preda et  al., 2008), but 
we  also reported a blunting of DA release in the prefrontal 
cortex of rat after icv injection of the peptide (Trabace et  al., 
2007). In addition, the increase in DAnergic tone has been 
proposed as a possible therapeutic strategy for AD, considering 
that dopaminergic dysfunction plays a pathogenic role in cognitive 
decline (Martorana et al., 2009, 2013; Koch et al., 2014; Martorana 
and Koch, 2014). Furthermore, selective DAnergic neuronal 
degeneration in ventral tegmental area was demonstrated in AD 
transgenic mice at pre-plaque stages, suggesting that lower 
hippocampal and accumbal DA outflow correlate to memory 
deficits and dysfunction of reward processing (Nobili et al., 2017).

CONCLUSIONS

It has been reported that depressed individuals are nearly twice 
as likely to develop dementia, often in the form of AD, compared 
with non-depressed individuals. Unfortunately, few 
pharmacological tools are available for dementia; thus, the need 
for novel therapeutic strategies is very compelling. Future studies 
aimed at elucidating the mechanisms through which drugs 
modulating monoamine release may prove helpful in 
individuating novel strategy for slowing down cognitive 
impairment in pre-clinical AD phase, often associated with 
mood alterations, taking into account their effects on Aβ 
production/clearance, aggregation status, and neuroinflammatory-
induced pathways. Furthermore, some of these molecules are 
already commercialized; thus, such a novel potential therapeutic 
approach for AD treatment may become rapidly clinically suitable.
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