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MicroRNAs (miRNAs) are small non-coding nucleic acids able to post-transcriptionally 
regulate gene expression by binding to complementary sequences of target messenger 
RNA (mRNA). It has been estimated that at least 1% of the human genome encodes 
miRNA and every miRNA can regulate up to 200 mRNAs. These findings suggest 
that dysregulation of miRNA expression could be associated with several human 
pathological conditions including central neurological disorders. Alzheimer’s disease 
(AD) is a neurodegenerative disorder and the most common cause of dementia in 
the elderly. The characteristic symptoms are a progressive loss of memory and other 
cognitive functions due to the impairment of particular types of neurons and synapses, 
leading to neuronal death. At present, the available symptomatic treatments can 
only slow down disease progression without stopping it. miRNAs are widely found 
within the nervous system where they are key regulators of functions such as neurite 
outgrowth, dendritic spine morphology, neuronal differentiation, and synaptic plasticity. 
This has been the clue for considering miRNAs crucial molecules to be studied in 
AD, and nowadays, dysfunction of miRNAs in AD is increasingly recognized. In this 
review, we summarized existing evidence about miRNAs as biomarkers or therapeutic 
agents. The field of miRNAs as biomarkers is more advanced in terms of human data, 
and it is likely that miRNAs will be used successfully in the near future. Given the 
huge number of miRNAs potentially involved in diagnostics, miRNA panels will be used 
for specific tasks such as the stage of the disease, the risk prediction, and disease 
progression. The field of miRNAs as therapeutics is rapidly developing, and it offers 
a huge variety of solutions. These include positive effects related to beta-amyloid or 
tau reduction, increased number of neurons, inhibition of apoptosis, protection of 
synapses, transformation of other cellular elements into missing/deficient neurons in 
AD, and so on. It is predictable that both areas of research will be carried forward. 
However, given the absence of an AD therapy able to stop or reverse the disease, it is 
desirable to accelerate research on miRNAs as therapeutic agents.
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MICRORNAs

MicroRNAs (miRNAs) are small non-coding nucleic acids 
(around 20 nucleotides) that are able to post-transcriptionally 
regulate gene expression by binding to complementary 
sequences of target messenger RNA (mRNA) (Friedman et al., 
2008). The effect of miRNA on genes is due to their binding 
to the 3′ untranslated region (3′UTR) of the target mRNAs, 
which leads to translational inhibition of the target gene or 
mRNA degradation (Czech and Hannon, 2010). Since the 
discovery of the first miRNA in 1993 (Lee et al., 1993), it has 
been estimated that at least 1% of the human genome encodes 
miRNA and every miRNA can regulate up to 200 mRNAs 
(Chen et al., 2012). These findings have suggested the idea that 
the dysregulation of miRNA expression could be associated 
with several human pathological conditions (Bartel, 2004; 
Lekka and Hall, 2018). Indeed, the amount of data on the 
involvement of miRNA in human diseases is enormous and 
includes serious diseases such as cancer (Zhang et al., 2018b), 
cardiovascular disorders (Wojciechowska et al., 2017), and 
peripheral (Zhang et al., 2018a) as well as central (Deverman 
et al., 2018) neurological disorders.

Besides that, the scientific interest in miRNAs has mainly 
focused on two areas of investigation: 1) miRNAs as possible 
disease biomarkers, and 2) miRNAs as a molecular target of 
disease therapies. In this review, we will focus the attention 
on one of the most devastating central nervous system (CNS) 
disorders, Alzheimer’s disease (AD), and will try to summarize 
the evidence for a role of miRNAs as diagnostic markers and/or 
therapeutic agents.

MICRORNAs’ INVOLVEMENT IN 
ALZHEIMER’S DISEASE

AD is a complex neurodegenerative disorder and the most 
common cause of dementia in the elderly (Jagust, 2018). The 
characteristic symptoms are a slow but progressive loss of 
memory and other cognitive functions due to the impairment 
of particular types of neurons and synapses, finally leading 
to neuronal death. Pathological processes are caused by 
impaired metabolism of beta-amyloid (Aβ) followed by tau 
pathology (Hunter et al., 2018). Recently, there has been a shift 
in scientific interest from fibrillar amyloid-forming plaques 
to shorter species, i.e., monomeric and oligomeric forms 
of Aβ. Aβ is an amino acid fragment, composed by 40 or 42 
amino acids, derived from the proteolytic cleavage of a longer 
precursor, called amyloid precursor protein (APP) (Roher 
et al., 2017). Although these features of the disease are very 
well documented (Jeong, 2017), unfortunately, the treatments 
aimed at reducing production or removing already produced 
misfolded proteins are still not a successful strategy (Coimbra 
et al., 2018). At present, the available symptomatic treatments 
can only slow down disease progression, without stopping it 
(Adlimoghaddam et al., 2018).

An alternative approach has focused on genetics as many 
genes encoding for proteins of the CNS have been proposed as 

candidates to explain AD pathogenesis. Many of them encode 
for proteins involved in synaptic regulation and plasticity, or 
for these misfolded Aβ and tau proteins (Carmona et al., 2018). 
In particular, miRNAs are widely found within the nervous 
system where they are key regulators of functions such as 
neurite outgrowth, dendritic spine morphology, neuronal 
differentiation, and synaptic plasticity (Vreugdenhil and 
Berezikov, 2010; Cao et  al., 2016). This has been the clue for 
considering miRNAs crucial molecules to be studied in AD, 
and nowadays, dysfunction of miRNAs in AD is increasingly 
recognized (Reddy et al., 2017b).

Many miRNAs have been identified as key elements for the 
regulation of cognitive functions and memory processes lost 
in AD, through the regulation of activity-mediated protein 
synthesis at the synaptic level (Ramakrishna and Muddashetty, 
2019). Mice overexpressing the miR-34c are characterized 
by reduced dendritic length and spine density (Kao et al., 
2018). In an AD mouse model (Tg2576 mice), it was found 
that miR-124 is dramatically increased in the hippocampus 
and is directly associated with deficits in synaptic plasticity 
and memory dysfunction (Wang et al., 2018). These data 
suggest that memory deficits in AD may be caused by 
miRNA alterations. Nonetheless, it should be noted that 
miRNA expression may in turn be influenced by epigenetic 
mechanisms that lead to effects on cognition (Harman and 
Martín, 2019). It has been shown that the beneficial effects 
of physical exercise on cognition can be mediated by changes 
in the expression of certain miRNAs (Fernandes et al., 2017). 
Interestingly, these effects can also occur in neuropathological 
conditions. Mice exposed to traumatic brain injury showed 
recovery of hippocampus-related cognitive deficits associated 
with modulation of miRNAs (miR-21 and mir-34) after 
spontaneous running wheel (Bao et al., 2014). As for AD, 
in a spontaneous senescence-accelerated P8 mouse model 
(SAMP8), it was shown that spontaneous running wheel 
modulates the expression of several miRNAs involved in AD, 
such as miR-30a-5p and miR-128 (Cosín-Tomás et al., 2014).

Several studies have used profiling strategies to identify 
miRNA dysregulation in AD. In cellular and animal models of 
AD, there are miRNAs that have consistently been identified as 
dysregulated. In the brains of transgenic animals harboring the 
human presenilin 1 (PS1) and a Swedish APP mutant (APPSwe/
PS1 mice), as an in vitro AD model, a reduction of miR-298 and 
miR-328 was found, which was associated to higher β-amyloid 
precursor protein converting enzyme (BACE1) protein 
(Boissonneault et al., 2008). In SAMP8 mice, the level of miR-
195 was also negatively related to the protein level of BACE1 
(Zhu et al., 2012). In mouse PC12 cells and primary cultured 
hippocampal neurons exposed to toxic concentration of Aβ, it 
was found that miR-124 also negatively correlates with BACE1 
expression (Makeyev et al., 2007; Fang et al., 2012). In APPSwe/
PS1 mice, overexpression of miR-98 was found to induce Aβ 
production and phosphorylation of tau, whereas inhibition of 
miR-98 reduced them (Hu et al., 2013).

Many other miRNAs have also been recently identified, and 
their number is continuously increasing (Fransquet and Ryan, 
2018). Some of them have been linked to altered regulation of 
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key genes known to be involved also with AD (Millan, 2017). 
The direction of miRNA changes in AD could be different. 
Some of them are upregulated while others are repressed (Chen 
et al., 2018). Accordingly, either a protective or an inducing role 
for different miRNAs in AD has been postulated (Reddy et al., 
2017a).

Despite this, the importance of miRNAs in AD is still a matter 
of debate. The main reasons lie in the fact that the results of many 
studies are not reproducible and there is the possibility that the 
studied miRNAs may undergo variations for causes different 
from those elicited by AD.

Thus, the data on miRNAs in in vitro and in vivo AD animal 
models must be confirmed by studies in the human brain. This 
aspect is crucial for establishing the real involvement of miRNAs 
in AD. Unfortunately, these data are not yet numerous.

In primary cultures of human brain and in brain specimens 
from AD patients, it has been shown that some miRNAs are in 
fact altered and may have effects on Aβ deposition (Long et al., 
2012; Long et al., 2014; Jiang et al., 2018) or be in turn deregulated 
by pro-inflammatory transcription factors (Zhao et al., 2014).

MiR-137 inhibits p-tau overexpression induced by Aβ1–42 
in human SH-SY5Y neuroblastoma cells (Jiang et al., 2018). 
In addition, brain levels of miR-137 measured by quantitative 
reverse transcription polymerace chain reaction (RT-qPCR) 
in the hippocampus, cerebral cortex, and serum of APP/PS1 
mice were found reduced (Jiang et al., 2018). MiR-153 was 
analyzed by RT-qPCR (hsa-miR-153; ID:001191) in frozen 
brain specimens of the frontal cortex (from the Harvard 
Brain Tissue Resource Center) in age-matched control and 
AD patients (Long et al., 2012). MiR-153 was reduced in the 
specimens of AD brains. In addition, miR-153 delivery in 
primary human fetal brain cultures significantly reduced APP 
expression, while antisense miR-153 inhibitor significantly 
elevated APP expression.

In short postmortem interval brain tissue-derived 
extracellular fluid from AD and age-matched control neocortex, 
carefully selected from multiple domestic and international 
brain bank sources, a consistent upregulation of several brain-
enriched miRNAs that are under transcriptional control by the 
pro-inflammatory transcription factor NF-kB (Zhao et al., 2014) 
was observed (Alexandrov et al., 2012). MiRNA were measured 
by miRNA array analysis using a human MRA-1001 miRNA 
microfluidic chip analytical platform. Upregulated miRNAs 
include miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a, 
and miRNA-155 (Alexandrov et al., 2012). It should, however, 
be noted that, also in postmortem studies, RNA quality obtained 
from human samples usually displays a high range of variability 
(Clement et al., 2016). These methodological aspects are only 
becoming addressed in the most recent years (Duda et al., 2018).

MICRORNAs AS DIAGNOSTIC MARKERS 
IN ALZHEIMER’S DISEASE

The fact that AD patients are characterized by miRNA 
alterations in the brain and in biological fluids, including 
serum, plasma, and cerebrospinal fluid (CSF), has prompted 

the idea to use these noncoding sequences as biomarkers of 
the disease (Zendjabil, 2018). At present, the only biomarkers 
currently recognized for AD are Aβ peptides and tubulin-
associated unit (tau) proteins (Hampel et al., 2018). These 
measurements in CSF and blood have, however, some 
limitations. Besides the issues related to the standardization of 
the methodology in body fluids, there is not enough evidence 
for adopting cutoff values of these biomarkers (alone or in 
combination) in the current clinical practice (Ritchie et al., 
2013). In addition, predictive value of these biomarkers in 
patients with mild cognitive impairment (MCI) is still matter 
of debate (Paolacci et al., 2017).

Prediction in asymptomatic individuals to develop 
symptomatic AD (MCI or dementia) is important (Shaffer et  al., 
2013). Furthermore, there is currently no therapeutic agent 
capable of curing or preventing AD. Thus, biomarkers can be 
used to evaluate the efficiency of therapeutic agents under testing 
in clinical trials and so accelerate the therapeutic discovery 
process.

MiRNAs, unlike mRNAs, are stable enough in biological 
fluids, including serum, plasma, and CSF (Zhang et al., 2018c). 
In addition, many of them target genes directly involved in AD 
pathophysiology such as presenilins, BACE-1, APP (Liu et al., 
2014), TOMM40 (Wang et al., 2019), and BDNF (Croce et al., 
2013; Keifer et al., 2015). Moreover, there is evidence that, in 
APOE4 mice, the association between certain miRNAs (miR-
146a) and inflammatory mediators (NFκB) seems to be even 
greater (Lusardi et al., 2016; Teter et al., 2016).

Analysis of miRNAs in body fluids is a relatively simple 
procedure (Kalogianni et al., 2017) and a non-invasive 
approach. If we compare miRNAs to conventional protein-based 
biomarkers of AD, the level of sensitivity achieved for miRNAs 
due to amplification by PCR is far superior to what is currently 
available for proteins (Kumar et al., 2017). In addition, the cost 
of miRNA quantification is far lower than that of established 
biomarkers, such as structural magnetic resonance imaging 
(MRI) and molecular neuroimaging with positron emission 
tomography (PET).

For this purpose, many miRNAs appear to be promising. 
In a study with postmortem brain tissue and serum from AD 
patients, MCI, and controls, it was found that miR-455-3p was 
upregulated in the AD group. The miRNA quantification was 
performed with Affymetrix microarray analysis and validated 
using RT-qPCR (Kumar and Reddy, 2018). In addition, the 
levels of miR-455-3p and miR-34a-5p measured in plasma from 
a homogeneous AD cohort positively correlated with Aβ1–42 
levels in CSF (Cosín-Tomás et al., 2016). In another study, it 
was found that miR-93 expression measured by RT-qPCR was 
markedly decreased in AD patients’ serum compared with 
controls (Kiko et al., 2014).

In a set composed of 36 clinically diagnosed AD patients and 
22 age-matched cognitively normal controls, it was found that 
serum miR-501-3p levels (RT-qPCR) were downregulated in AD 
patients, and its lower levels significantly correlated with lower 
Mini-Mental State Examination scores (Hara et al., 2017). The 
research is still ongoing and many other miRNAs seem to be 
useful as AD biomarkers (Fransquet and Ryan, 2018).
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One limitation could be the inconsistency in miRNA profiling 
data in different studies. Most of the human data on miRNAs and 
AD derive from studies in serum, plasma, and CSF. The quantity 
of variables in these studies is enormous and includes the nature 
of the biological liquid (serum/plasma vs. CSF), the measurement 
methods (like microarray and RNA sequencing), and the 
algorithms necessary to associate the miRNAs with a certain state 
of the disease. This has been evidenced in a recent meta-analysis 
(Takousis et al., 2017) that screened data for more than 1,000 
miRNAs in AD and concluded that the most significant findings 
were observed with miR-342-3p in blood and miR-127-3p in CSF.

In very recent reviews (Martinez and Peplow, 2019; Swarbrick 
et al., 2019), the need to have very standardized parameters 
has been highlighted. The most important parameters include 
recruitment of patients, gender, inclusion and exclusion 
criteria, medications, most appropriate validation methods, 
normalization, and statistical analysis of data.

Numerous strategies have been proposed for normalization 
for miRNA profiling methods (Kumar and Reddy, 2016). It 
should be noted that this problem is not specific to AD, but rather 
general concerns of the use of circulating miRNAs as biomarkers 
in blood to reflect brain diseases. Furthermore, due to their great 
number and different action on genes, it is unlikely that a single 
miRNA measurement will be adopted as biomarker.

In a recent study (Denk et al., 2018), it is highlighted how the 
use of cluster analysis of a miRNA family, rather than the study 
of a single miRNA, seems to be a better strategy to find potential 
AD biomarkers. Thus, each panel will include a set of miRNAs 
for specific tasks, such as synaptic function, neuronal survival, 
AD disease staging, AD specificity versus other diseases causing 
dementia, and so on (Zafari et al., 2015; Guo et al., 2017).

Regarding the choice of the optimal biological fluid to be used 
for analysis, a recent study showed that the use of serum, instead 
of CSF, provides appreciable results, as the data on miRNA 
correlate satisfactorily with the state of cognitive functions and 
with the changes in cortical integrity (Maldonado-Lasuncion 
et  al., 2018). It is hoped that future studies will continue to 
address these aspects so that a sensitive, specific, and minimally 
invasive test could be developed.

MICRORNAs AND TREATMENT OF 
ALZHEIMER’S DISEASE

The use of miRNAs to treat human diseases is rapidly 
developing. In 2018, the FDA approved the first therapy based on 
administration of miRNA for the treatment of rare progressive 
polyneuropathy caused by hereditary transthyretin-mediated 
(hATTR) amyloidosis (Adams et al., 2018; Wood, 2018).

The observation that miRNAs interfere with (or modulate) 
expression of candidate genes in AD has suggested the researchers 
to develop miRNA-based therapeutic strategies. This is also 
because the therapies targeting Aβ have not been successful in 
treating or even slowing down the disease (Alifragis and Marsh, 
2018). Depending on the data available, a mimic or an antagonist 
of miRNAs could be explored as therapeutic agent. The possibility 
to modulate mRNA expression of an AD candidate gene has been 

recently explored by using antisense oligonucleotides (ASO), 
which act similarly to miRNA by inhibiting mRNA transcription 
(DeVos et al., 2017). Interestingly, it was shown that the injection 
of ASO into the CSF of nonhuman primates causes the reduction 
of the target RNA (tau) in the brain regions analyzed, including 
the hippocampus (DeVos et al., 2017). The relevance of this 
study was the demonstration that injection of ASO into CSF 
may modulate brain mRNA expression. Based on these data, as 
reported at the 70th annual meeting of the American Academy 
of Neurology, a clinical trial to test a tau ASO in people with mild 
AD has been started by Biogen, IONIS Pharmaceuticals (https://
www.alzforum.org/therapeutics/biib080).

The therapeutic modulation of miRNAs can be done in two 
ways. In the first case, the miRNA function is inhibited through 
a single-stranded complementary antisense oligonucleotide 
(ASO). In the second case, the expression of the miRNA is 
increased or brought back to its physiological level through the 
administration of compounds that stimulate its production or 
through a double-stranded synthetic oligonucleotide miRNA 
that has the same functions as endogenous miRNA (miRNA 
mimic).

The most recent studies on AD animal models and cell cultures 
demonstrated that restoring the expression of certain miRNAs 
could have positive effects that include neuroprotection, recovery 
of cognitive function, and neuronal regeneration. It has been 
shown that an increase in miRNA expression may counteract 
Aβ and tau accumulation in AD cellular and animal models by 
acting on different molecular pathways.

Using miRNA microarray analysis of cortical tissue from 
Tg2576 transgenic mice, miRNAs of the miR-200 family (miR-
200b and miR-200c) were identified as downregulators of Aβ 
secretion by modulation of mTOR in murine primary neurons 
and human neuroblastoma cells (Higaki et al., 2018). A similar 
effect on downregulation of Aβ production was observed after 
upregulation of miR-330 in murine AD model through the 
activation of MAPK signaling pathway (Zhou et al., 2018). In 
the SH-SY5Y cell line transfected with APPSwe, it was found that 
miR-15b reduces Aβ by inhibiting the expression of the enzyme 
BACE1 (Li and Wang, 2018). Similarly, in a study aimed to 
explore the role of miR-124 in the pathogenesis of AD, miR-124 
expression was examined using RT-qPCR analysis in 35 cases of 
sporadic AD brain tissues and 35 cases of normal control subjects 
(An et al., 2017). MiR-124 expression was significantly reduced 
in AD brain tissues compared with the control group (An et al., 
2017). In addition, inhibition of miR-124 significantly increased 
BACE1 levels in human neuroblastoma (SH-SY5Y) cells while 
miR-124 overexpression significantly suppressed BACE1 
expression (An et al., 2017). In brain tissue taken at autopsy 
from patients with AD and from those with severe primary 
age-related tauopathy, it was found that miR-219 measured by 
RT-qPCR analysis is downregulated (Santa-Maria et al., 2015). 
In addition, in the Drosophila model (that produces human tau), 
it was demonstrated that reduction of miR-219 exacerbates tau 
toxicity, while overexpression of miR-219 partially abrogates this 
effect (Santa-Maria et al., 2015).

Neuronal regeneration can be achieved by overexpressing 
other miRNAs. In AD animal models, it was shown that 
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miR-302/367 convert astrocytes to neurons that replace dead 
ones (Ghasemi-Kasman et al., 2018) while miR-9 stimulates 
the differentiation of neuronal stem cells into neurons (Li 
et al., 2017).

Recovery of cognitive functions can occur by upregulation of 
miRNAs acting at the synaptic level. Upregulation of members 
of the miR-188 family was found to be effective in enhancing 
synaptic activity and, importantly, restoring cognitive functions 
in AD mouse models (Zhang et al., 2014; Lee et al., 2016). Instead, 
miR-214 (Zhang et al., 2016) and miR-let-7f-5p (Han et  al., 
2018) may positively act on cognitive deficits by inhibition of 
autophagy, leading to increased viability and decreased caspase-
mediated apoptosis.

In contrast, overexpression of other classes of miRNAs 
has negative effects on neurons, and they therefore need to 
be downregulated. In cell cultures, it has been observed that 
inhibition of miR-128 decreases Aβ-mediated cytotoxicity 
through inactivation of the NF-κB pathway (Geng et al., 2018). 
In addition, miR-125b (Ma et al., 2017) and miR-146a (Wang 
et al., 2016) overexpression promotes neuronal apoptosis and 
tau phosphorylation in AD cellular models. Moreover, other 

negative effects on neuronal survival elicited by miRNAs include 
the downregulation of neurotrophic factor expression, as 
demonstrated in human neuroblastoma cells (Croce et al., 2013) 
and AD transgenic mice (Lee et al., 2012).

These are only a few of the most recent examples of direct 
miRNA applications as a therapeutic approach. The action 
of many other miRNAs was investigated and comprehensive 
reviews on the matter already exist (Di Meco and Praticò, 2016; 
Gupta et al., 2017).

The pharmacological modulation of miRNAs can be achieved 
by the use of many compounds. For example, it was shown 
that anti-inflammatory drugs could be of benefit in preventing 
the progression of AD via modulation of miRNA expression 
(Shadfar et al., 2015; Huang et al., 2017). In addition, natural 
compounds known for their potential as neuroprotective agents 
in AD, such as resveratrol (Khou et al., 2017) and osthole, 
seem to exert their action by modulating specific miRNAs 
and activating processes such as autophagy and neuronal 
regeneration (Li et al., 2017). Furthermore, recent data 
support the hypothesis that exosomes, small vesicles secreted 
by neurons and glial cells, may serve as therapeutic agents to 

TABLE 1 | Most recent MiRNAs associated with AD pathophysiological hallmarks.

Direction of 
changes 

MiRNA
(known target)

Reference Pathologic process Biomarker Therapeutic 
target

miR-342-3p Takousis et al., 2017 Aβ accumulation X
miR-455-3p Kumar and Reddy, 2018 X
miR-146a
(NF-κB pathway)

Kiko et al., 2014; 
Wang et al., 2016

Aβ accumulation
Inflammation

X X

Upregulated miR-34a Cosín-Tomás et al., 2016 Cell death X
miR-30a-5p
(BDNF)

Croce et al., 2013 Synaptic dysfunction X

miR-206
(BDNF)

Lee et al., 2012 X

miR-128
(NF-κB pathway)

Geng et al., 2018 Tau toxicity X

miR-106b Huang et al., 2017 X
miR-330
(MAPK pathway)

Zhou et al., 2018 X

miR-195
(BACE1)

Zhu et al., 2012 Aβ accumulation X

miR-200
(mTOR)

Higaki et al., 2018 X

miR-9 Li et al., 2017 Aβ accumulation
Inflammation

X

Downregulated miR-15
(BACE1)

Li and Wang, 2018 Aβ accumulation
Tau toxicity
Cell death

X

miR-93 Dong et al., 2015 X
miR-127-3p Takousis et al., 2017 Cell death X
miR-214 Zhang et al., 2016 X
miR-let-7f-5p Han et al., 2018 X
miR-124
(BACE1)

An et al., 2017 Synaptic dysfunction X

miR-188 Lee et al., 2016; 
Zhang et al., 2014

X

miR-219 Santa-Maria et al., 2015 Tau toxicity X

Alterations of several miRNAs are present in Alzheimer’s disease and may be responsible for its pathophysiological hallmarks by altering the expression of the genes involved in the 
pathologic process. AD, Alzheimer’s disease; BDNF, brain-derived neurotrophic factor; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; BACE1, Beta-secretase  1; 
mTOR, mammalian target of rapamycin.
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deliver miRNAs and/or short interfering RNA (siRNA) in AD 
patients (Chen et al., 2017).

As evinced, the field of intervention of miRNAs as therapeutic 
agents in AD is very wide and it is likely to be further extended 
in the next years by the use of computerized gene analyses 
(Pang et al., 2017). Nonetheless, possible limitations to clinical 
application come from delivery difficulties and the specificity 
of miRNA silencing. In fact, each single miRNA may have very 
pleiotropic effects to the genome, and thus alteration of miRNA 
expression in humans may lead to undesired side effects in AD 
patients (Junn and Mouradian, 2012).

CONCLUSIONS AND FUTURE 
DIRECTIONS

In this review, we summarized existing evidence about miRNAs 
as biomarkers or as therapeutic agents (Table 1). These two fields 
of investigation are constantly evolving; thus, the amount of data 
available is enormous and difficult to synthesize. The current 
evidences suggest that miRNAs may serve as both biomarkers 
and therapeutic agents in AD.

The field of miRNAs as biomarkers is more advanced in 
terms of human data, and it is likely that miRNAs will be used 
successfully as biomarkers in the near future. However, as 
previously mentioned, it is more probable that, given the huge 
number of miRNAs potentially involved in diagnostics, miRNA 
panels will be used for specific functions. These functions include 
the stage of the disease, the risk prediction of conversion from 
MCI to AD, and disease progression.

The field instead of miRNAs as therapeutics is rapidly 
developing, and it offers a huge variety of solutions. These include 
positive effects related to Aβ or tau reduction (Li and Wang, 2018), 

increased number of neurons (Geng et al., 2018), inhibition of 
apoptosis (Zhang et al., 2017), protection of synapses (Lee et al., 
2016), transformation of other cellular elements into missing/
deficient neurons in AD (Ghasemi-Kasman et al., 2018),  
and so on.

In the near future, it is predictable that both areas of research 
will be carried forward. However, given the current absence of an 
AD therapy able to stop, if not reverse, the disease, it is desirable 
to accelerate research on miRNAs as therapeutic agents.
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