
1 June 2019 | Volume 10 | Article 699

ORIGINAL RESEARCH

doi: 10.3389/fphar.2019.00699
published: 28 June 2019

Frontiers in Pharmacology | www.frontiersin.org

Edited by: 
Mohamed M. Abdel-Daim,  

Suez Canal University,  
Egypt

Reviewed by: 
Islam M. Saadeldin,  

King Saud University,  
Saudi Arabia 

Yasuhiko Tabata,  
Kyoto University, Japan 

Ayman Samir Farid,  
Benha University, Egypt

*Correspondence: 
Rebeca Blázquez 

rblazquez@ccmijesususon.com

†These authors have contributed 
equally and share first authorship.

Specialty section: 
This article was submitted to 
Inflammation Pharmacology,  

a section of the journal  
Frontiers in Pharmacology

Received: 27 November 2018
Accepted: 29 May 2019

Published: 28 June 2019

Citation: 
Blázquez R, Sánchez-Margallo FM, 

Reinecke J, Álvarez V, López E, 
Marinaro F and Casado JG 
(2019) Conditioned Serum 

Enhances the Chondrogenic and 
Immunomodulatory Behavior of 

Mesenchymal Stem Cells.  
Front. Pharmacol. 10:699.  

doi: 10.3389/fphar.2019.00699

Conditioned Serum Enhances 
the Chondrogenic and 
Immunomodulatory Behavior 
of Mesenchymal Stem Cells
Rebeca Blázquez 

1,2*†, Francisco Miguel Sánchez-Margallo 
1,2†, Julio Reinecke 

3, 
Verónica Álvarez 

1, Esther López 
1, Federica Marinaro 

1 and Javier G. Casado 
1,2

1 Stem Cell Therapy Unit, “Jesús Usón” Minimally Invasive Surgery Centre, Cáceres, Spain, 2 CIBER de Enfermedades 
Cardiovasculares (CIBER-CV), Madrid, Spain, 3 Research and Development Department, ORTHOGEN AG, Düsseldorf, 
Germany

Osteoarthritis is one of the most common chronic health conditions associated with pain and 
disability. Advanced therapies based on mesenchymal stem cells have become valuable 
options for the treatment of these pathologies. Conditioned serum (CS, “Orthokine”) has 
been used intra-articularly for osteoarthritic patients. In this work, we hypothesized that 
the rich content on anti-inflammatory proteins and growth factors of CS may exert a 
beneficial effect on the biological activity of human adipose-derived mesenchymal stem 
cells (hAdMSCs). In vitro studies were designed using hAdMSCs cocultured with CS 
at different concentrations (2.5, 5, and 10%). Chondrogenic differentiation assays and 
immunomodulatory experiments using in vitro-stimulated lymphocytes were performed. 
Our results demonstrated that CS significantly enhanced the differentiation of hAdMSCs 
toward chondrocytes. Moreover, hAdMSCs pre-sensitized with CS reduced the 
lymphocyte proliferation as well as their differentiation toward activated lymphocytes. 
These results suggest that in vivo coadministration of CS and hAdMSCs may have a 
beneficial effect on the therapeutic potential of hAdMSCs. Moreover, these results indicate 
that intra-articular administration of CS might influence the biological behavior of resident 
stem cells increasing their chondrogenic differentiation and inherent immunomodulatory 
activity. To our knowledge, this is the first in vitro study reporting this combination.

Keywords: autologous conditioned serum, mesenchymal stem cells, chondrogenic, immunomodulation, 
osteoarthritis, Orthokine

INTRODUCTION

Osteoarthritis is one of the most common chronic health conditions associated with pain and 
disability (Allen and Golightly, 2015), being the most common form of arthritis followed by 
rheumatoid arthritis, gout, lupus, fibromyalgia, and others (Barbour et al., 2017). Osteoarthritis is a 
highly prevalent joint disorder worldwide affecting approximately 15% of the population (Johnson 
and Hunter, 2014), which is mainly characterized by cartilage destruction (Manek and Lane, 2000), 
affecting to the entire joint structure (Pelletier et al., 2001).

The traditional treatments of osteoarthritis are mainly based on a combination of pharmacological 
and non-pharmacological options aiming to reduce pain and gain quality of life in the patient 
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(Hunter, 2011). These treatments do not address the cause of 
the disease being frequently associated to renal, cardiovascular, 
and gastrointestinal secondary effects mainly due to the use of 
nonsteroidal anti-inflammatory drugs. In the most severe cases, 
surgical joint prosthesis implantation is performed, also with 
serious side effects (Tonge et al., 2014).

At the present, great efforts are being made to develop new 
therapeutic tools for arthritic diseases. In this sense, platelet-
rich plasma (PRP) has emerged in the last years as a promising 
therapeutic option for cartilage degeneration, demonstrating 
its chondroprotective effect (Andia and Maffulli, 2013; Moussa 
et al., 2017) and a temporal pain relief together with a functional 
improvement of the involved joint (Laver et al., 2017). However, 
the variation between different preparations makes difficult the 
establishment of its therapeutic potential (Richards et al., 2016), 
and postinjection pain seems to be more frequent after PRP intra-
articular administration than with other treatments using the 
same route (Ornetti et al., 2016).

At the end of the 1990s, a method based on the exposure of blood 
leukocyte to pyrogen-free surfaces (medical-grade glass beads) has 
become a valuable option for the treatment of these pathologies. 
This autologous conditioned serum (ACS), firstly described by 
Meijer et al. in 2003, has shown a high concentration on interleukin 
1 receptor antagonist (IL-1Ra) and other anti-inflammatory 
cytokines and growth factors such as interleukins 4 (IL-4), 6 (IL-6), 
and 10 (IL-10) epidermal growth factor (EGF), vascular endothelial 
growth factor (VEGF), hepatocyte growth factor (HGF), insulin-
like growth factor 1 (IGF1), platelet-derived growth factor (PDGF), 
and transforming growth factor beta 1 (TGFβ1) (Meijer et al., 
2003; Wehling et al., 2007). As IL-1 is a major contributor to 
osteoarthritis pathogenesis, stimulating chondrocytes and synovial 
fibroblasts to upregulate matrix metalloproteases that damage the 
cartilage, the blockade of this cytokine offers important benefits 
(Richards et al., 2016). This biological treatment has been assayed 
in veterinary medicine for the treatment of osteoarthritis in horses 
(Frisbie et al., 2007). Clinical trials have demonstrated its beneficial 
effect in knee osteoarthritis (Baltzer et al., 2009; Baselga García-
Escudero and Miguel Hernández Trillos, 2015), lumbar radicular 
compression (Becker et al., 2007; Godek, 2016), supraspinatus 
pathology (von  Wehren et al., 2016), and after anterior cruciate 
ligament surgery (Darabos et al., 2011) being superior to 
traditional treatments such as hyaluronan (for osteoarthritis) and 
triamcinolone (for lumbar radicular compression).

On the other hand, the administration of mesenchymal stem 
cell (MSC)-based therapies, either locally or systemically, has 
emerged in the last years as an encouraging therapeutic tool 
for the treatment of inflammatory-based diseases (de Witte et 
al., 2015). It has been demonstrated that they can also decrease 
the adverse effect of IL-1β in osteoarthritis (Jin et al., 2017). In 
veterinary medicine, intra-articular injections of MSCs have 
been administered in horses using xenogeneic, allogeneic, and 
autologous approaches (Pigott et al., 2013). These cells have 
demonstrated to exert an immunomodulatory effect on cells from 
the innate and adaptive immune system. More recently, they have 
shown very promising results in clinical trials addressing the 
treatment of osteoarticular diseases (Jorgensen and Noël, 2011; 
Pers and Jorgensen, 2016).

Putting together these new therapies, a review comparing 
bone marrow aspirates, PRP, and ACS as alternative treatment 
options for musculoskeletal diseases concluded that while 
bone marrow aspirates and PRP are successful in treating 
early arthritis, ACS is a better option for chronic joint arthritis 
(Patel and Strauss, 2015). In a recent review from Fotouhi et al., 
different treatments for knee osteoarthritis were discussed from 
a historical perspective. The authors suggest that PRP, stromal 
vascular fraction, and ACS seem to have favorable and promising 
results (Fotouhi et al., 2018).

In this work, we hypothesized that the rich content on anti-
inflammatory proteins and growth factors of pooled ACS (CS) 
may exert a beneficial effect on the biological activity of human 
adipose-derived MSCs (hAdMSCs). Our results indicate that 
CS is an appropriate vehicle for MSCs administration, as their 
viability and proliferative behavior are comparable with standard 
culture conditions. Moreover, the in vitro experiments showed 
that CS induces the chondrogenic differentiation of hAdMSCs and 
enhances their immunomodulatory potential. This study suggests 
that CS sensitization may exert a beneficial effect on the therapeutic 
potential of hAdMSCs that needs to be further addressed in 
an appropriate in vivo model to confirm these results. To our 
knowledge, this is the first in vitro study reporting this combination.

Finally, it is important to note that our in vitro observations 
could be translated to the clinical situation when ACS is 
intra-articularly administered. In this sense, the induction 
of chondrogenic differentiation and the enhancement of the 
immunomodulatory potential of articular resident stem cells 
could be triggered by the administration of ACS.

MATERIAL AND METHODS

Collection of Human Conditioned Serum
Human CS was obtained from three volunteers as previously 
described (Wehling et al., 2007) by incubating 10 ml of venous 
blood in the presence of medical-grade glass beads (Orthogen, 
Düsseldorf, Germany) for 6 h at 37°C to ensure physiological 
conditions. These glass beads induce the production of anti-
inflammatory cytokines (IL-1Ra, IL-10, and IL-6) and growth 
factors (EGF, PDGF, TGF-β1, VEGF, HGF, and IGF-1) by white 
blood cells. After incubation, the blood-filled syringes were 
centrifuged at room temperature in a universal compact centrifuge 
(Hermle Z 200 A) in a fixed angle rotor at 2,100 g for 10 min. The 
serum supernatant was filtered by Millex GP 0.22 µm syringe tip 
filter, pooled, filtered again, aliquoted, and stored at −20°C until 
use. The biological samples were obtained after written informed 
consent under the auspices of the appropriate research and ethics 
committees and in accordance with the Declaration of Helsinki. 
This study was approved by Minimally Invasive Surgery Centre 
Research Ethics Committee (approval number: SITC215).

Isolation and Expansion of Human 
Adipose Mesenchymal Stem Cells
The human adipose-derived mesenchymal stem cells (hAdMSCs) 
were obtained from lipoaspirated human adipose tissue from 
healthy adult donors as previously described (DelaRosa et  al., 
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2012). Briefly, tissue was washed with phosphate-buffered 
saline (PBS) solution and digested at 37°C for 30 min with 
0.075% collagenase type I (Invitrogen, Carlsbad, CA, USA) in 
PBS. Samples were then washed with 10% fetal bovine serum 
(FBS), incubated with ammonium chloride 160 mM at room 
temperature for 10 min to lyse red blood cells, suspended in 
Dulbecco’s modified Eagle’s medium (DMEM) containing 10% 
FBS, and filtered by a 40 μm nylon mesh. After cell seeding, 
hAdMSCs were expanded at 37°C and 5% CO2, with medium 
replacement every 7 days. When 90% of confluence was reached, 
cells were detached with a 0.25% trypsin solution and seeded 
again at a density of 5,000 cells/cm2 into new culture flasks to 
continue cell expansion. Three cell lines from different healthy 
donors were used for subsequent experiments. The biological 
samples were obtained after written informed consent under the 
auspices of the appropriate Research and Ethics Committees and 
in accordance with the Declaration of Helsinki. This study was 
approved by Minimally Invasive Surgery Centre Research Ethics 
Committee (approval number: SITC215).

Phenotypic Analysis
For flow cytometric analysis by fluorescence-activated cell sorting 
(FACS), the hAdMSCs were cultured in the presence of CS or FBS 
(GE Healthcare Hyclone, GE Healthcare, Chicago, IL, USA) at 
different concentrations (2.5, 5, and 10%) in the culture medium 
(DMEM supplemented with 1% penicillin/streptomycin and 
1% glutamine). After 6 days, cells were trypsinized and labeled 
with fluorescein isothiocyanate (FITC)-conjugated human 
monoclonal antibodies (mAbs) against CD44, CD45, CD90, and 
human leucocyte antigen DR (HLA-DR), and phycoerythrin (PE)-
conjugated human mAb against CD73 (BD Biosciences, San Jose, 
CA, USA). After incubating 200,000 cells with manufacturer’s 
suggested concentration of mAbs in PBS with 2% FBS at 4°C for 
30 min, cells were washed with PBS and resuspended again. A 
FACScalibur cytometer (BD Biosciences, San Jose, CA, USA) 
was used for the cytometric analysis. A total of 100,000 events 
were acquired, and a selection based on forward and side scatter 
properties was performed before fluorescence analysis with 
CellQuest software (BD Biosciences, San Jose, CA, USA). Mean 
relative fluorescence intensity was obtained by dividing the mean 
fluorescent intensity by the mean fluorescent intensity of its 
negative control (isotype-matched antibodies).

Cell Proliferation Assays
Cell proliferation was determined using Cell Counting Kit 
8 (CCK-8), which measures the activity of living cells by 
assessing their mitochondrial activity. The reaction product 
is directly proportional to the number of living cells and 
can be spectrophotometrically quantified. To perform this 
determination, cells were seeded at a density of 5,000 cells/well in 
96-well plates in DMEM medium with different concentrations 
(2.5, 5, and 10%) of CS or FBS. The proliferative activity was 
measured at 0 and 6 days. For that, the culture medium was 
replaced by 200 μl of phenol-red free DMEM, and 20 μl of CCK-8 
(WVR, Radnor, PA, USA) were added. The absorbance of the 
supernatants was read 2 h later at 450 nm.

Viability Determination
The viability of the hAdMSCs cultured for 6 days in standard 
culture conditions (10% FBS) and with different concentrations 
(2.5, 5, and 10%) of CS was calculated by a trypan blue dye-
exclusion assay using the Countess® Automated Cell Counter 
(Thermo Fisher Scientific Inc., Waltham, MA, USA).

Chondrogenic Differentiation Assay
For the chondrogenic differentiation assay, hAdMSCs at 80% of 
confluence with CS or FBS at different concentrations (2.5, 5, 
and 10%) were cultured for 15 days in standard culture medium 
(DMEM supplemented with 1% penicillin/streptomycin and 
1% glutamine), with or without StemPro Chondrogenesis 
Supplement (Thermo Fisher Scientific, Gibco™) and replacing 
the medium every 3 days. To evidence the chondrogenic 
differentiation, cultured cells were fixed, and an Alcian Blue 8GX 
staining was performed, as recommended by the International 
Society of Cellular Therapy (Dominici et al., 2006). To quantify 
the differentiation degree, cells were lysed with 6 M guanidine–
HCl to extract the colorant, and the absorbance of extracts was 
read at 600 nm.

Active and Latent TGF-β Determination 
on Conditioned Serum
The quantification of active and latent TGF-β1 in CS was performed 
by emzyme-linked immunosorbent assay (ELISA) using the 
LEGEND MAX™ Free active TGF-β1 and LEGEND MAX™ Latent 
TGF-β1 ELISA kits (Biologend, San Diego, CA, USA) according to 
manufacturer’s instructions. Active and latent TGF-β1 were directly 
measured in CS and in a 1:10 dilution (CS in DMEM).

Lymphocytes Isolation and Preservation
Peripheral blood lymphocytes (PBLs) were isolated from 
peripheral blood samples of three healthy donors obtained after 
written informed consent under the auspices of the appropriate 
research and ethics committees and in accordance with the 
Declaration of Helsinki. Peripheral blood was diluted in PBS and 
centrifuged over Histopaque-1077 (Sigma, St. Louis, MO, USA) 
at 400 g for 20 min with brakes off. PBL-containing fraction was 
recovered, washed twice with PBS, and resuspended in FBS with 
10% dimethyl sulfoxide (DMSO) for liquid nitrogen preservation. 
For thawing, aliquots were submerged in 37°C water and diluted 
in 10 ml Roswell Park Memorial Institute (RPMI) medium 1640. 
Subsequent centrifugation at 1,500 rpm for 5 min was performed 
to eliminate DMSO remnants. Cell pellet was resuspended in 
DMEM and used for experiments.

In Vitro Stimulation of T Cells and 
Coculture With Conditioned Serum-
Sensitized Human Adipose-Derived 
Mesenchymal Stem Cells
To determine the immunomodulatory effect of CS-sensitized 
hAdMSCs on in vitro-stimulated PBLs, a previously described 
protocol was used (Blazquez et al., 2014). Briefly, 200 μl of a  
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1 × 106 PBLs/ml suspension was seeded per well in 96-well 
plates. A T cell activation/expansion kit (Miltenyi Biotec Inc, 
San Diego, CA, USA) was used to stimulate PBLs, following 
the manufacturer’s recommendations. Stimulated PBLs were 
cocultured for 6 days in contact with previously sensitized 
hAdMSCs. This sensitization was performed after seeding 
5,000 hAdMSCs/well in a 96-well plate, by culturing them in 
the presence of different concentration (2.5, 5, and 10%) of CS 
or FBS in the culture medium (DMEM supplemented with 1% 
penicillin/streptomycin and 1% glutamine) for 6 days before 
the coculture with PBLs in the same culture medium. Negative 
controls (non-stimulated PBLs) and positive controls (stimulated 
PBLs without hAdMSCs) were used in all the experiments.

Carboxyfluorescein Succinimidyl Ester 
Proliferation Assay
To determine the proliferative behavior of T lymphocytes, 
these cells were stained with carboxyfluorescein succinimidyl 
ester (CFSE) using the CellTrace™ CFSE Cell Proliferation Kit 
(Invitrogen, Eugene, OR, USA) according to manufacturer’s 
instructions. Briefly, PBLs were incubated for 10 min at 37°C with 
the reagent at a final concentration of 10 μM. Culture medium 
(DMEM supplemented with 1% penicillin/streptomycin and 1% 
glutamine) was then added in order to remove dye remnants. 
Stained PBLs were cultured in the presence of CS-sensitized 
hAdMSCs for 6 days as described in “In Vitro Stimulation of 
T Cells and Co-culture With CS-Sensitized hAdMSCs”. These 
PBLs in suspension were collected from wells and stained with 
fluorescence-labeled human mAbs against CD4 and CD8 (BD 
Biosciences, San Jose, CA, USA).

For the fluorescence analysis, 200,000 cells were incubated 
with manufacturer’s suggested concentration of mAbs in PBS 
with 2% FBS at 4°C for 30 min, washed with PBS, and resuspended 
again. The FACScalibur cytometer (BD Biosciences, San Jose, 
CA, USA) was used for the cytometric analysis. A total of 100,000 
events were acquired, and a selection based on forward and side 
scatter properties was performed before fluorescence analysis 
with CellQuest software (BD Biosciences, San Jose, CA, USA). 
Isotype-matched negative control antibodies were used in all the 
experiments. The percentage of proliferative cells was calculated 
as the percentage of CFSE-low fluorescence intensity cells on 
gated CD4+ and CD8+ T cells.

Differentiation/Activation Markers 
Expression Analysis on In Vitro-Stimulated 
PBLs
For flow cytometric analysis of in vitro-stimulated PBLs, these 
cells were collected from wells by recovering the supernatant after 
6 days of culture in the presence of CS-sensitized hAdMSCs. The 
cells were stained with fluorescence-labeled human mAbs against 
CD62L and CD45RA (BD Biosciences, San Jose, CA, USA).

For the fluorescence analysis, 200,000 cells were incubated 
with manufacturer’s suggested concentration of mAbs in PBS 
with 2% FBS at 4°C for 30 min, washed with PBS, and resuspended 
again. The FACScalibur cytometer (BD Biosciences, San Jose, 
CA, USA) was used for the cytometric analysis. A total of 100,000 

events were acquired, and a selection based on forward and side 
scatter properties was performed before fluorescence analysis 
with CellQuest software (BD Biosciences, San Jose, CA, USA). 
Isotype-matched negative control antibodies were used in all 
the experiments. The percentage of naïve cells was determined 
as the percentage of CD45RA+/CD62L+ cells on forward scatter 
(FSC)/side scatter (SSC)-gated cells.

Statistical Analysis
Data were statistically analyzed using a one-way ANOVA test. 
When statistically significant differences were found, Fisher’s 
least significant difference test was performed comparing 
equivalent concentrations of CS and FBS, C− and C+, and C+ 
with each treatment group. The p-values ≤0.05 were considered 
statistically significant. All the statistical determinations were 
made using SPSS-21 software (SPSS Chicago, IL, USA).

RESULTS

Phenotypic Profile of Surface Markers 
on Human Adipose-Derived Mesenchymal 
Stem Cells Cultured in the Presence 
of Conditioned Serum
In order to compare the phenotype of hAdMSCs cultured in the 
presence of FBS with those cultured in the presence of CS, the 
expression of stem cell markers was analyzed by flow cytometry. 
The stem cell phenotype of hAdMSCs cultured with 2.5, 5, and 
10% of FBS or CS was determined after 6 days by flow cytometry 
using commercially available mAbs against CD44, CD45, CD73, 
CD90, and HLA-DR. Our results showed that the phenotype 
profiles of hAdMSCs under different conditions were similar. As 
shown in Figure 1, the surface marker expression was CD44+/
CD45-/CD73+/CD90+/HLA-DR- for both culture conditions. 
However, CD90 expression was more pronounced on hAdMSCs 
cultured with CS.

Proliferative Ability of Human Adipose-
Derived Mesenchymal Stem Cells Cultured 
in the Presence of Conditioned Serum
To determine whether CS has an effect on hAdMSCs’ proliferative 
behavior, the proliferation rate of hAdMSCs cultured in the 
presence of FBS or CS (2.5, 5, and 10%) was compared by a 
CCK-8 assay. The proliferation rate was quantified at day 0 
(negative control) and at day 6. Our results showed no significant 
differences when comparing the proliferative behavior of cells 
cultured in the presence of different concentrations of FBS or CS. 
These results demonstrate that the proliferation rate of hAdMSCs 
was unaffected by the presence of CS. Interestingly, as shown 
in Figure 2, there was an increase, although it does not reach 
statistical significance (0.05 ≤ p ≤ 0.1), in the proliferative rate 
of hAdMSCs cultured in the presence of 2.5 and 10% CS (when 
compared with the same concentrations of FBS). Additionally, 
viability of hAdMSCs cultured in the different conditions was 
determined by a trypan blue dye-exclusion assay, without any 
significant difference (Supplementary Figure 1).
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Chondrogenic Differentiation of Human 
Adipose-Derived Mesenchymal Stem Cells 
Cultured in the Presence of Conditioned 
Serum
In order to assess the chondrogenic differentiation potential 
of hAdMSCs cultured in the presence of CS, cells were in vitro 
cultured for 15 days with standard culture medium or chondrogenic 
differentiation medium. These cells were also cultured in the 

presence of different concentration of FBS or CS (2.5, 5, and 10%). 
The chondrogenic differentiation was then quantified using Alcian 
Blue staining, which indicates glycosaminoglycan depositions in the 
hAdMSCs. Our results showed that, when cultured with standard 
culture medium (in the absence of chondrogenic differentiation 
medium), no significant differences could be observed in those 
cells cocultured in presence of growing concentrations of CS 
when compared with equivalent concentrations of FBS (negative 
control) (Figure 3A). However, when cultured with a chondrogenic 
differentiation-specific medium, the glycosaminoglycan 
depositions were significantly higher in hAdMSCs cultured with 
the different concentration of CS compared with those with 
equivalent concentrations of FBS (positive control) (Figure 3B). In 
summary, these results demonstrate that under pro-chondrogenic 
differentiation conditions, the chondrocyte differentiation of 
hAdMSCs was significantly enhanced by CS.

Concentration of Active and Latent 
TGF-β1 in Conditioned Serum
The concentration of both active and latent TGF-β1 in CS was 
determined by ELISA tests. The results obtained for active TGF-
β1 showed a concentration of 65.99 pg/ml in 100% CS and 
0.71 pg/ml in 10% CS (1:10 dilution). For latent TGF-β1, the 
concentrations were 125.06 ng/ml in 100% CS and 26.24 ng/ml 
in 1:10 diluted CS.

Proliferative Behavior of In Vitro-
Stimulated T Cells Cocultured in the 
Presence of Conditioned Serum-
Sensitized Human Adipose-Derived 
Mesenchymal Stem Cells
In order to study the hypothetical effect of CS on the 
immunomodulatory activity of hAdMSCs, we firstly aimed to 

FIGURE 1 | Phenotypic analysis of human adipose-derived mesenchymal stem cells (hAdMSCs) cultured in the presence of fetal bovine serum (FBS) or conditioned 
serum (CS). Different hAdMSCs cell lines (n = 3) were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 1% penicillin/streptomycin and 
1% glutamine and in the presence of FBS or CS at different concentrations (2.5, 5, and 10%). After 6 days, the presence/absence of different surface markers was 
analyzed by flow cytometry. Representative histograms together with the relative expression of cell surface markers (mean ± SD) are shown. The relative expression 
is represented as mean relative fluorescence intensity, which is calculated by dividing the mean fluorescent intensity (filled histogram) by its negative control (gray-
lined histogram).

FIGURE 2 | In vitro proliferation of hAdMSCs cultured in the presence 
of FBS or CS. The cells were cultured in DMEM supplemented with 1% 
penicillin/streptomycin and 1% glutamine and in the presence of FBS or CS 
at different concentrations (2.5, 5, and 10%). The proliferative behavior of 
cells was determined through a Cell Counting Kit 8 (CCK-8) assay, where 
the mitochondrial activity of living cells was spectrophotometrically quantified 
at 450 nm at days 0 and 6. The graph shows the increase or decrease of 
absorbance at day 6 normalized and expressed according to absorbance at 
day 0. Individual values (n = 3) as well as mean ± SD are shown. Data were 
statistically analyzed using a one-way ANOVA test followed by a Fisher’s least 
significant difference test to compare equivalent concentrations of CS and 
FBS. p-values <0.1 are shown.
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determine the proliferative ability of in vitro-stimulated T cells 
cultured in the presence of CS-sensitized hAdMSCs. For that, 
CFSE-labeled PBLs were in vitro stimulated and cocultured for 
6 days with 2.5, 5, and 10% FBS-sensitized or CS-sensitized 
hAdMSCs. The percentage of proliferative cells was calculated as 
the percentage of CFSE-low fluorescence intensity cells on gated 
CD4+ and CD8+ T cells. As shown in Figure 4A, the proliferation 
of CD4+ T cells was significantly reduced when PBLs were 
cocultured with 10% CS-sensitized hAdMSCs, compared with 
positive control. Also, significant differences were found when 
equivalent concentrations of FBS and CS were compared, 
observing that PBLs cocultured with 5 and 10% CS-sensitized 
hAdMSCs showed a significantly lower proliferation than 
their FBS counterparts. Similarly, as shown in Figure 4B, the 
proliferation of CD8+ T cells was significantly decreased when 
PBLs were cocultured in the presence of 5 and 10% CS-sensitized 
hAdMSCs, compared with the positive control, and also when 
cultured with 10% CS-sensitized hAdMSCs compared with 10% 
FBS-sensitized hAdMSCs.

Differentiation of In Vitro-Stimulated 
T Cells Cocultured in the Presence of 
Conditioned Serum-Sensitized Human 
Adipose-Derived Mesenchymal Stem Cells
To continue with the study of the immunomodulatory activity 
of CS-sensitized hAdMSCs, the percentage of naïve cells 
(CD45RA+/CD62L+) was determined by flow cytometry on in 
vitro-stimulated T cells cultured in the presence of CS-sensitized 
hAdMSCs. For that, CFSE-labeled PBLs were in vitro stimulated 
and cocultured with 2.5, 5, and 10% FBS- or CS-sensitized 
hAdMSCs. After 6 days, PBLs were stained with fluorescence-
labeled human mAbs against CD62L and CD45RA and analyzed 

by flow cytometry. The percentage of naïve cells was determined 
as the percentage of CD45RA+/CD62L+ cells on FSC/SSC-
gated cells.

As expected, positive control (stimulated PBLs without 
hAdMSCs) showed a significant decrease of naïve T cells 
when compared with non-stimulated PBLs (negative control). 
Significant differences were found when comparing in vitro-
stimulated PBLs cocultured with FBS-sensitized hAdMSCs 
and cocultured with CS-sensitized hAdMSCs. As shown in 
Figure 5, when PBLs were cocultured with 2.5 and 5% FBS-
sensitized hAdMSCs, the percentage of naïve cells significantly 
decreased in comparison with positive control. Additionally, 
no statistically significant differences were found when 
comparing the different treatment groups with the positive 
control. Interestingly, there were significant increases in the 
percentage of naïve cells in those PBLs cocultured with 5 and 
10% CS-sensitized hAdMSCs when compared with their FBS 
counterparts. These results suggest that CS sensitization in 
hAdMSCs induced a higher immunomodulatory effect of these 
stem cells against T cell activation.

DISCUSSION

Osteoarthritis is the most common form of arthritis, representing 
a major cause of disability, especially in elderly patients and 
causing an ever growing burden for health care systems 
(Mobasheri and Henrotin, 2015). Osteoarthritis is characterized 
by progressive cartilage degeneration, and emerging therapies 
are focused in the activation of cartilage regenerative potential 
to slow its degeneration and preserving joint function (Li et al., 
2017). Osteoarthritis has been hypothesized to be a “chronic 
wound”-type disease (Scanzello et al., 2008; Wu and Henry, 

FIGURE 3 | Chondrogenic differentiation potential of hAdMSCs cultured in the presence of FBS or CS. Cells were cultured in the presence of FBS or CS at 
different concentrations (2.5, 5, and 10%) for 15 days in standard medium (DMEM supplemented with 1% penicillin/streptomycin and 1% glutamine) as negative 
control (A) or in chondrogenic differentiation specific medium (B). Chondrogenic differentiation was confirmed by Alcian Blue 8GX staining that evidences 
the presence of accumulated glycosaminoglycans. For the quantification of the differentiation degree, cells were lysed to release the colorant, which was 
spectrophotometrically measured at 600 nm. Graphs represent individual values (A, n = 3; B, n = 9) as well as mean ± SD of three independently performed 
experiments. Data were statistically analyzed using a one-way ANOVA test followed by a Fisher’s least significant difference test to compare equivalent 
concentrations of CS and FBS. **p ≤ 0.01; ****p ≤ 0.0001.
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2012) characterized among others by a chronically upregulated 
innate immune system. Interestingly, similar mechanisms are 
observed in chronic tendon injuries (Klatte-Schulz et al., 2018). 
These processes—far from perfectly understood—may have a 
major impact not only on osteoarthritis degenerative pathology 
but also on pain perception.

CS is a practical and relatively inexpensive method to generate 
IL-1Ra (Evans et al., 2016). There is a consensus in the literature 
that suggests that CS can reduce degenerative mechanisms and 
enhance tissue regeneration (Frizziero et al., 2013). Moreover, it 
is widely accepted that the local treatment is a safe and effective 
therapy (Fotouhi et al., 2018).

The aim of this work was to evaluate—under in vitro 
culture conditions—the effect of CS on the chondrogenic and 
immunomodulatory potential of hAdMSCs. Both CS (which 
contains anti-inflammatory cytokines and growth factors) and 
hAdMSCs (with a potent anti-inflammatory effect) are currently 
considered as some of the most promising emerging treatments for 
cartilage repair (de Girolamo et al., 2016). However, at present, there 
are no studies that explore the combination of these two therapies.

Our study was firstly conducted to evaluate the phenotype, 
viability, and proliferative behavior of hAdMSCs cultured in 
the presence of CS. Our results showed that the phenotypic 

profile and viability of hAdMSCs cocultured with CS were 
similar or equivalent to hAdMSCs cultured under standard 
culture conditions (supplemented with FBS). Uniquely, CD90 
was increased in the CS groups, which could be directly related 
to the cell confluence (Dudakovic et al., 2014). These results 
suggest that, in future clinical trials aiming to combine CS and 
hAdMSCs, CS could be considered as an optimal delivery vehicle 
for stem cell administration.

Once demonstrated that CS does not exhibit any adverse 
effect on hAdMSCs, we aimed to determine the chondrogenic 
potential of hAdMSCs in the presence of CS. Interestingly, the 
chondrogenic differentiation of hAdMSCs was significantly 
enhanced by CS in the presence of a specific differentiation 
medium. These results may have a clinical relevance in stem 
cell-based therapies using CS as a vehicle and suggest that CS 
may improve the chondrogenic potential of implanted stem 
cells. Further studies should be conducted to determine if the 
therapeutic effect of CS (in terms of cartilage reparation) in 
osteoarthritis patients could be mediated, at least in part, by 
the chondrogenic activation of resident stem cells after intra-
articular injections of CS. Interestingly, a muscle contusion 
mouse model showed increased numbers of satellite cells in the 
healing tissue after local CS injection vs saline, and clinically, 

FIGURE 4 | Proliferative ability of in vitro-stimulated T cells cocultured in the presence of FBS or CS-sensitized hAdMSCs. After 6 days of hAdMSCs sensitization 
with different concentrations (2.5, 5, and 10%) of FBS or CS in the culture medium (DMEM supplemented with 1% penicillin/streptomycin and 1% glutamine), 
these hAdMSCs (three different cell lines) were cocultured for 6 days with carboxyfluorescein succinimidyl ester (CFSE)-labeled peripheral blood lymphocytes (PBLs) 
(three different donors) during in vitro stimulation with T cell activation/expansion beads. As positive control (C+), stimulated PBLs without hAdMSCs were used, 
and as negative control (C−), non-stimulated PBLs were included. After coculture with hAdMSCs, PBLs were collected and stained with anti-CD4 and anti-CD8. 
The CFSE dilution assay allowed us to identify proliferative T cells (CFSE low) and non-proliferative T cells (CFSE high). Graphs representing individual values (n = 9), 
as well as mean ± SD of three independently performed experiments, together with representative histograms of each condition, are shown for CD4+ T cells 
(A) and CD8+ T cells (B). Data were statistically analyzed using a one-way ANOVA test followed by a Fisher’s least significant difference test to compare equivalent 
concentrations of CS and FBS, C− with C+, and C+ with each treatment group. *p ≤ 0.05; **p ≤ 0.01; ****p ≤ 0.0001.
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this finding correlated to a significantly faster recovery of muscle 
injuries in athletes (Wright-Carpenter et al., 2004).

Although the identification of soluble factors involved in the 
chondrogenic activation of hAdMSCs is not the main issue of 
this paper, we hypothesize that the presence of TGF-β1 in CS 
could be a major mediator for the enhancement of chondrogenic 
differentiation. The role of TGF-β1 in the chondrogenic 
differentiation has been widely described in different cell lines such 
as MSCs (Cals et al., 2012), chondrocytes (Murphy et al., 2015), and 
human synovium-derived stem cells (Kim et al., 2014). Previous 
studies have also demonstrated that TGF-β1 is significantly 
increased in CS (Rutgers et al., 2010). Similarly to Rutgers et al., 
our quantitative analyses of TGF-β1 demonstrated that both active 
and latent TGF-β were abundant in CS (>50 pg/ml of active TGF-
β1 and >100 ng/ml of latent TGF-β1). The hypothesis of TGF-β 
involvement in the chondrogenic activation of hAdMSCs could 
also be supported by previous studies that demonstrated that total 
TGF-β in CS from 80 patients was very high (97.93 ± 113.41 ng/
ml) (Wehling et al., 2007). In contrast, although FBS contains total 
TGF-β (10–20 ng/ml), its concentration is about 10 times lower 
than in CS (Oida and Weiner, 2010).

Finally, it has been recently reported that IGF-1 (also 
present in CS) plays a role in the chondrogenic differentiation 
(Zhou et al., 2016), so we should not discard that the chondrogenic 
response of stem cells could also be mediated by IGF-1.

On the other hand, equivalent results on activated PRP have 
also been described. In a recent work published by Van Pham et al., 

the authors showed that activated PRP promoted the proliferation 
of hAdMSCs as well as their differentiation toward chondrocytes 
(Van Pham et al., 2013). Similarly, adipose- and bone marrow-
derived stem cells seeded in PRP-derived scaffolds showed a higher 
proliferative rate and chondrocyte differentiation when compared 
with control cells (Xie et al., 2012). These reports suggest that both 
CS and PRP are providing a suitable environment for stem cell 
proliferation and differentiation toward chondrogenic lineage.

Regarding the differences between PRP and CS, in terms 
of soluble factors, the main difference has been previously 
described for IL-1Ra, which is high in CS but almost absent 
in PRP (Wehling et al., 2007; Mussano et al., 2016). This may 
explain the differences between CS and PRP in terms of duration 
of the achieved positive effects and the positive impact on the 
arthrologic status (Shirokova et al., 2017). Another issue with PRP 
upon intra-articular injection is the sudden presence of a high 
number of cells that originally do not belong to the joint. Both 
platelets and leukocytes may—in the presence of appropriate 
stimulus—act as amplifiers of innate immune reactions leading 
to transient intense pain in 1 out of 10 patients (Standford 
University Medical Center—Department of Radiology).

Considering that the therapeutic effect of adult stem cells 
has been attributed to their immunomodulatory effect in the 
inflammatory process, our experiments were conducted to 
evaluate the immunomodulatory capacity of hAdMSCs sensitized 
with CS. This immunomodulatory capacity was evaluated 
against in vitro-stimulated T cells using anti-CD2, anti-CD3, 
and anti-CD28 that partially mimic the stimulation by antigen-
presenting cells (Trickett and Kwan, 2003). Based on previous 
methodologies from our group (Blazquez et al., 2014; Álvarez 
et al., 2018), the immunomodulation was assessed by measuring 
the proliferative behavior of T cells and the percentage of naïve 
T cells according to the co-expression of CD45RA and CD62L 
(Foster et al., 2004; Prabhu et al., 2016).

Our results showed that CS-sensitized hAdMSCs significantly 
decreased the proliferation and differentiation potential of in 
vitro-stimulated T cells. Although previous studies have reported 
that the immunomodulatory ability of MSCs can be triggered 
by different cytokines such as IFN-γ, TNF-α, IL-1β, or IL-17A 
(Prasanna et al., 2010; Gray et al., 2015; Mohammadpour et al., 
2015; Sivanathan et al., 2015), here, we hypothesize that TGF-
β1 may trigger this immunomodulatory effect on hAdMSCs. 
Supporting this hypothesis, de Witte et al. have previously 
shown on umbilical cord MSCs that TGF-β1-sensitized MSCs 
were able to significantly reduce T cell proliferation (de Witte 
et al., 2017). Finally, apart from TGF-β1, which has been also 
associated to MSCs migration and proliferation (Sun et al., 2013; 
Zhang et al., 2015; Tyurin-Kuzmin et al., 2016), the presence of 
different growth factors in CS such as VEGF or HGF has been 
demonstrated to be a key factor for the therapeutic effect of 
MSCs (Deuse et al., 2009; Tögel et al., 2009; Zisa et al., 2009).

To our knowledge, this is the first in vitro study that analyzes 
the combination of CS and hAdMSCs. Here, we demonstrate that 
CS enhances the chondrogenic potential and immunomodulatory 
activity of hAdMSCs, suggesting that CS pre-sensitization or 
in vivo coadministration may have a beneficial effect on the 
therapeutic potential of hAdMSCs. Moreover, these results 

FIGURE 5 | Activation and differentiation of in vitro-stimulated PBLs 
cultured in the presence of FBS or CS-sensitized hAdMSCs. After 6 days 
of hAdMSCs sensitization with different concentrations (2.5, 5, and 10%) of 
FBS or CS in the culture medium (DMEM supplemented with 1% penicillin/
streptomycin and 1% glutamine), these hAdMSCs (three different cell lines) 
were cocultured for 6 days with PBLs (three different donors) during in vitro 
stimulation with T cell activation/expansion beads. As positive control (C+), 
stimulated PBLs without hAdMSCs were used, and as negative control 
(C−), non-stimulated PBLs were included. After coculture with hAdMSCs, 
CD45RA and CD62L co-expression was analyzed on PBLs by multicolor flow 
cytometry on FSC/SSC-gated cells. The graph shows individual values (n = 
9) for the percentage of naïve T cells (CD45RA+/CD62L+), as well as mean 
± SD of three independently performed experiments. Data were statistically 
analyzed using a one-way ANOVA test followed by a Fisher’s least significant 
difference test to compare equivalent concentrations of CS and FBS, C− with 
C+, and C+ with each treatment group. *p ≤ 0.05; **p ≤ 0.01; ****p ≤ 0.0001.
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suggest that intra-articular administration of CS might influence 
the biological behavior of resident stem cells, increasing their 
chondrogenic differentiation and immunomodulatory activity.
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