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Alzheimer’s disease (AD) is the most widespread form of dementia, affecting about 
45 million people worldwide. Although the β-amyloid peptide (Aβ) remains the most 
acknowledged culprit of AD, the multiple failures of Aβ-centric therapies call for alternative 
therapeutic approaches. Conceivably, the complexity of the AD neuropathological 
scenario cannot be solved with single-target therapies, so multiple-target approaches 
are needed. Core targets of AD to date are soluble oligomeric Aβ species and 
neuroinflammation, in an intimate detrimental dialogue. Aβ oligomers, the most 
neurotoxic species, appear to induce synaptic and cognitive dysfunction through the 
activation of glial cells. Anti-inflammatory drugs can prevent the action of Aβ oligomers. 
Neuroinflammation is a chronic event whose perpetuation leads to the continuous 
release of pro-inflammatory cytokines, promoting neuronal cell death and gross brain 
atrophy. Among the possible multi-target therapeutic alternatives, this review highlights 
the antibiotic tetracyclines, which besides antimicrobial activity also have pleiotropic 
action against amyloidosis, neuroinflammation, and oxidative stress. A particular focus 
will be on doxycycline (Doxy), a second-generation tetracycline that crosses the blood–
brain barrier more easily and has a safer clinical profile. Doxy emerged as a promising 
preventive strategy in prion diseases and gave compelling pre-clinical results in mouse 
models of AD against Aβ oligomers and neuroinflammation. This strongly supports its 
therapeutic potential and calls for deciphering its exact mechanisms of action so as to 
maximize its effects in the clinic.
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INTRODUCTION

Alzheimer’s disease (AD) is a subtle and so far incurable neurodegenerative disease that makes 
patients completely unable to run their daily life activities, remember their past and relatives 
(Selkoe, 2011). It affects about 45 million people worldwide with an enormous socio-economic 
burden, likely to increase further because of longer life expectancy, and aging as a major risk factor 
(Garre-Olmo, 2018).

The brains of AD patients present two main lesions: extracellular senile plaques and intracellular 
neurofibrillary tangles. Senile plaques, rich in aggregates of the β-amyloid peptide (Aβ), act both 
as a reservoir of the most neurotoxic Aβ soluble species, namely Aβ oligomers (AβOs), and a 
determinant of neuritic dystrophy and neuronal network interruption (Mucke and Selkoe, 2012). 
Neurofibrillary tangles are rich in hyperphosphorylated tau protein, which dissociates from 
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microtubules, causing their destabilization. Mitochondria are 
also compromised (Desler et al., 2018). Neuroinflammation is a 
chronic neurotoxic event (Heneka et al., 2015), and the vascular 
system is damaged due to the accumulation of Aβ on the vessel 
wall (Daulatzai, 2017). On the functional level, synaptic activity 
is severely impaired and responsible for the onset of cognitive 
deficits (Mucke and Selkoe, 2012). Progressive neuronal loss 
culminates in gross brain atrophy (Pini et al., 2016).

The drama of AD lies in the fact that when cognitive deficits 
arise bringing patients to clinical attention, their brain is already 
severely compromised and the pathology has progressed for 
about 10–15 years. This makes the identification of an efficacious 
therapy a very hard challenge and suggests that the complexity 
of AD means we must abandon single-target therapies and move 
on to multi-level approaches. All the single-target “Aβ-centric” 
clinical trials so far have failed to produce significant benefits 
(Panza et al., 2019).

The present review will focus on two vital therapeutic AD 
targets, AβOs and neuroinflammation, that have recently attracted 
much attention among scientists fighting AD. We highlight the 
possibility of counteracting AβOs’ detrimental activities and 
neuroinflammation with doxycycline (Doxy), a second generation-
tetracycline antibiotic, which has anti-AβOs, anti-inflammatory 
activities (Balducci et al., 2018), a good blood–brain barrier (BBB) 
penetration, and a safe pharmacological profile.

Aβ OLIGOMERS: THE MOST DANGEROUS 
SYNAPTIC ENEMY

The amyloid cascade hypothesis was first put forward by Hardy 
and Higgins in 1992, stating that: “Deposition of the Aβ peptide, 
the main component of senile plaques, is the primary event in 
the pathogenesis of AD” (Hardy and Higgins, 1992). About 
10 years later this theory underwent a significant revision, with 
Aβ plaques overtaken by smaller and soluble AβOs (Hardy and 
Selkoe, 2002).

AβOs are the first species originating from the amyloidogenic 
process, by which the Aβ peptide, with its remarked hydrophobicity 
and overload in AD brains, aggregates, leading to the formation of 
different-sized polymers including soluble oligomers, protofibrils, 
and insoluble fibrils.

AβOs are the small, soluble aggregates and the most potent toxic 
conformers of AD (Haass and Selkoe, 2007), as well as the best 
correlate of disease severity compared to plaques (Kuo et al., 1996; 
Lue et al., 1999; McLean et al., 1999). The number of Aβ plaques 
detectable many years before the onset of clinical symptoms (Perrin 
et al., 2009) does not correlate with the severity of the cognitive loss 
in patients (Lue et al., 1999; Naslund et al., 2000) and Aβ deposits 
are also found in cognitively healthy subjects.

Many experimental data have supported the important role of 
AβOs in synaptic dysfunction. From transgenic mouse models 
of AD, it emerged that the onset of synaptic and cognitive 
dysfunction preceded plaque deposition (Holcomb et al., 1998; 
Hsia et al., 1999; Mucke et al., 2000; Balducci et al., 2010b). 
Ultrastructural examination of AD mouse brains revealed the 
presence of AβOs in the synaptic compartment before plaque 

deposition (Balducci et al., 2010b). In vitro and in vivo data also 
indicated that the application of well-characterized synthetic 
AβO-enriched solutions, as well as oligomeric species extracted 
from patient brains or derived from AD mutated cell lines, 
abolished the formation of new dendritic spines, inhibiting 
synaptic plasticity and remodeling, thus impairing learning 
and memory when delivered in the brain of naive mice or rats 
(Cleary et al., 2005; Lesne et al., 2006; Poling et al., 2008; Shankar 
et al., 2008; Balducci et al., 2010a; Freir et al., 2011).

Also in humans, biochemical and morphological analyses 
indicate that AD represents, at least at the more initial stages of 
the pathology, an attack at the synapses. Indeed, the degree of 
cognitive decline has been correlated with a decrease of the pre-
synaptic marker synaptophysin in the hippocampal area and 
associated cortices. Notably, a 25% reduction in the expression 
of synaptophysin was described in the cortex of MCI or very 
mild AD subjects compared to aged-matched healthy controls 
(Selkoe, 2002).

In a virtual scenario, AβOs must be visualized as undisturbed 
dynamic entities, either newly formed or traveling in and out of 
plaques, perturbing the CNS at many functional levels (Benilova 
et al., 2012; Forloni et al., 2016).

For many years, synapses have been considered the main AβO 
target. Initial work supported this, by describing the ability of 
AβOs to interfere with post-synaptic receptors such as N-methyl 
D-aspartate receptors (NMDARs) (Balducci et al., 2010b; Yamin, 
2009), affecting calcium current, and α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptors (AMPARs), with 
the ultimate outcome of inhibition of synaptic plasticity and 
the induction of memory impairment through the prevention/
abolition of new dendritic spine formation where new memories 
are stored (Chidambaram et al., 2019). Action in the pre-synaptic 
compartment was also described, through an interaction with 
the nicotinic acetylcholine receptors α7-nAcChR (Dineley et al., 
2001; Puzzo et al., 2008). The cellular prion protein (PrPC) has 
been suggested to mediate AβO effects, although this remains 
controversial since we and others have confirmed direct binding 
between PrPC and AβOs, but not a functional contribution 
(Forloni and Balducci, 2011). Activation of the apoptotic 
machinery was also described as an AβO-mediated mechanism 
for synaptic loss (Jo et al., 2011).

However, compelling new theories have emerged in more 
recent years, bringing to light an intimate mutual interaction 
between AβOs and glial cells, responsible for synaptic perturbation 
and loss.

NEUROINFLAMMATION: THE OTHER 
SPECIAL CULPRIT TO WATCH OUT FOR

Neuroinflammation has re-emerged as a driving force 
of neurodegeneration (McManus and Heneka, 2017). 
Microglia are important in brain tissue homeostasis, secreting 
neurotrophic factors, and patrolling the microenvironment 
through the release of cytokines and chemokines that influence 
astrocytes and neurons, particularly after infection or cell 
injury. This triggers inflammatory events normally calling a 
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transient immune response followed by tissue repair. Under 
pathological conditions, resolution (Serhan et al., 2007; Serhan, 
2010) can fail, promoting chronic neuroinflammation and 
neurodegeneration.

Microglia are found in a chronic activated state in AD around 
senile plaques, and through the continuous release of pro-
inflammatory cytokines they drive neuropathology from the very 
early disease stages (Heneka et al., 2015). Neuroinflammation in 
the AD brain is chronic presumably because it is never resolved, 
as indicated by studies showing low levels of specialized pro-
resolving mediators (Wang et al., 2015).

A relation between the detrimental action of AβOs and 
microglial cells is illustrated by the fact that microglia are also 
crucial in the control of synapse modelling and activity, and 
consequently of cognitive functions. Resting-state microglia 
survey neuronal activity by establishing intimate contacts 
with neurons. They are highly dynamic and plastic cells which 
continuously extend and retract their processes and contact 
synapses in an activity- and experience-dependent manner 
(Morris et al., 2013). However, under pathological conditions, 
when microglial cell activation is chronic as in AD, synaptic 
surveillance is lost and cognitive functions are perturbed.

Substantial data have corroborated the existence of a 
“dangerous liaison” between AβOs and microglial cells, by which 
they mutually sustain their detrimental effects on synapses. A 
series of studies comparing the effect of AβOs with that of Aβ 
fibrils demonstrated that AβOs foster microglial activation to 
a greater extent and apparently in a conformation-dependent 
manner (Heurtaux et al., 2010), with the lightest oligomeric 
species more likely to induce neuroinflammation. Michelucci 
et al. (2009) reported that AβOs are stronger inducers of the M1 
microglial pro-inflammatory phenotype than fibrils. Then, He 
et al. (2012) described a more pronounced pro-inflammatory 
action of AβOs after chronic delivery inside the hippocampus 
of C57BL/6 mice, closely correlated with more severe cognitive 
deficit, altered neuronal organization, and ultrastructural 
changes. They also showed that AβOs increased the expression of 
toll-like receptor-4 (TLR4) and TNFα.

TLR4 belong to a well-known family of pattern recognition 
receptors initiating the innate immune response and are critically 
involved in AD (Drouin-Ouellet and Cicchetti, 2012). Using an 
AβO-induced acute mouse model, we also demonstrated that a 
single intracerebroventricular injection (ICV) of AβOs in C57BL/6 
naive mice induced a transient memory impairment in the novel 
object recognition test (Balducci et al., 2010a), associated with 
transient activation of glial cells and an increase in the expression 
of pro-inflammatory cytokines in the hippocampus within a 
2–24 h time window (Balducci et al., 2017), a crucial interval in 
the elaboration, and consolidation of long-term memory (Sutton 
and Schuman, 2006). Pre-treatment with anti-inflammatory drugs 
abolished the AβO-mediated memory impairment. While seeking 
further insight on the molecular mechanisms linking AβOs 
and microglial activation toward memory impairment, we also 
confirmed that TLR4 are vital, since neither memory impairment 
nor glial activation was observed in TLR4 null mice receiving 
AβOs ICV (Balducci et al., 2017).

Beside synaptic dysfunction and cognitive deficits, microglia 
activation also comes on stage to explain synapse loss. In a very 
elegant paper, Hong et al. (2016) demonstrated that microglia 
mediates abnormal synapse engulfment through C1q and 
C3 complement factors. C1q is the initiating protein of the 
classical complement pathway and, together with C3, localizes 
on synapses to mediate synaptic pruning through microglial 
phagocytosis (Presumey et al., 2017). In pathological conditions, 
such as AD, their expression is increased and localized on post-
synaptic proteins, exacerbating synapse loss. The fact that this 
phenomenon was detectable at very early pre-plaque ages in 
AD-mutated mice suggested that most likely soluble Aβ species 
were involved. This was confirmed by specifically injecting AβOs 
ICV in wild-type mice and demonstrating an increase in C1q 
synaptic deposition, as well as the C1q-mediated C3 opsonization 
marking synapses for their elimination (Hong et al., 2016).

TETRACYCLINES IN THE THERAPY 
OF AD: NOT ONLY ANTIBIOTICS

One of the most difficult challenges in AD is identifying an 
efficacious therapy to delay the onset, halt its progression, and 
prevent or reverse cognitive dysfunction. To date most attempts 
have focused on the Aβ peptide, with scarce or no beneficial effects 
(Panza et al., 2019). There might be several reasons to explain 
these multiple failures: wrong treatment timing, inappropriate 
treatment regimen, and poor or inadequate selection of patients. 
Although they are all valid possibilities, one of the main problems 
limiting therapeutic success may lie in the multi-factorial nature 
of AD, probably requiring multi-target therapies.

We therefore propose the antibiotic tetracyclines as a 
promising multi-target therapeutic approach, with a special 
focus on Doxy, a second-generation tetracycline with a safer 
pharmacological profile and a better passage across the BBB.

Interest in the tetracyclines in AD raised around the early 2000s 
when it was found, using cell-free approaches, that tetracyclines 
could inhibit the aggregation of both the synthetic PrP residues 
106–126 and 82–146 of human PrP and the Aβ peptide. Facilitation 
of PrP and Aβ disaggregation as well as the sensitivity of their 
aggregates to proteases were also described (Tagliavini et al., 2000; 
Forloni et al., 2001). These anti-amyloidogenic effects were later 
confirmed for a series of other misfolding proteins responsible 
for neurodegenerative disorders, including Huntington’s and 
Parkinson’s disease (reviewed in Stoilova et al., 2013).

Neuroprotective activities of tetracyclines were first 
demonstrated against PrP in vitro, and in vivo again using the 
synthetic PrP residues 82–146 and 106–126 and through infection 
with the pathological form of the PrP, namely PrP scrapie (PrPsc). 
In vitro, tetracycline prevented the PrP 106–126-mediated 
neurotoxicity and astroglial proliferation (Tagliavini et al., 
2000); in vivo pretreatment with either tetracycline or Doxy in 
experimental scrapie reduced infectivity, delayed the onset of 
pathology, and increased survival when intracerebrally injected in 
Syrian hamsters (De Luigi et al., 2008). Incubation of 263K PrPsc-
infected brain homogenate with 1 mM tetracycline or doxycycline 
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resulted in more than 80% reduction in the PK-resistant core of 
PrPsc. It was also reported that these compounds can interact 
with partially purified PrPsc from patients with the new variant of 
Creutzfeldt–Jakob disease (CJD) (Forloni et al., 2002).

At the clinical level, Doxy gave positive results in the initial 
observational studies in CJD patients, which, however, were not 
confirmed in a double blind against placebo trial in subjects with 
a diagnosis of definitive or probable sporadic CJD or genetic 
forms of the disease (Haik et al., 2014). Later it was reported that 
an asymptomatic CJD patient given Doxy for 4 years survived 
longer (Assar et al., 2015; Pocchiari and Ladogana, 2015), and 
Varges and coworkers (2017) showed a longer survival in early-
stage CJD patients, suggesting a preventive action of the drug.

In AD, Doxy has been tested in two clinical trials in mild to 
moderate patients, yielding both positive and negative results 
(Loeb et al., 2004; Molloy et al., 2013). In the first study there was 
less decline in cognitive abilities and functional behavior, whereas 
no benefits were obtained in the second one. The two trials were 
comparable in terms of patients’ stage of disease at enrolment. 
Doxy was given orally at the dose of 200 mg/day together with 
rifampin 300 mg/day in the first study. The same doses were used 
in the second trial, with the sole difference that Doxy was given 
at the dose of 100 mg twice a day, rather than one. The main 
difference lies in the fact that in the former, patients were treated 
for 3 months, whereas in the latter one, treatment continued for 
12 months. As stated by the authors, one possible explanation 
for the failure in the later study is that Doxy might have some 
negative properties that become evident when treatment is 
longer than 3 months. Unfortunately, the therapeutic effects were 
investigated only at the behavioral and functional levels, with no 
assessment of Aβ and tau levels in plasma and/or CSF, or of the 
inflammatory state.

Despite these controversies at the clinical level, preclinical 
studies indicated the therapeutic potential of Doxy. Initial 
investigation was done in two simple in vivo models. Diomede 
et al. (2010) tested Doxy in Caenorhabditis elegans (C. elegans), 
a simplified invertebrate model of AD where intracellular Aβ 
deposits caused C. elegans paralysis. Doxy protected against 
this damage by directly interacting with the Aβ aggregates and 
reducing the load of AβOs. Subsequently, Costa and colleagues 
(2011) demonstrated that Doxy treatment of Aβ42-expressing 
Drosophilae melanogaster did not improve their lifespan but 
slowed the progression of their locomotor deficits and partially 
rescued the toxicity of Aβ in the developing eye.

We recently found that Doxy had beneficial effects in acute 
and chronic mouse models of AD (Balducci et al., 2018). Chronic 
treatment with 10 mg/kg Doxy for 20 days or 2 months, injected 
intraperitoneally in APP/PS1dE9 transgenic mice, significantly 
restored memory independently of plaque reduction, but lowered 
the expression of the 18-mer oligomeric species. Interestingly, 
an acute treatment also led to memory recovery. On the basis 
of this evidence, and the lack of changes in plaque number, we 
assumed that Doxy was restoring memory by interfering with the 
oligomeric species. This was confirmed in the AβO-induced acute 
mouse model described above (Balducci et al., 2010a; Balducci 
and Forloni, 2014), which demonstrated that C57BL/6 naive mice 
treated ICV specifically with AβOs and pre-treated with Doxy 

were no longer impaired in their recognition memory. Moreover, 
because of the close relation between microglial activation and 
AβO detrimental cognitive effects (He et al., 2012; Balducci 
et al., 2017), we further show that the memory protection was 
associated with abolition of AβO-mediated microglial activation. 
The anti-inflammatory effect of Doxy together with memory 
recovery was also proved in the APP/PS1dE9 mice chronically 
treated with Doxy, and in LPS-treated mice, which present an 
AβO-independent inflammatory context (Balducci et al., 2018). 
The anti-inflammatory effect of Doxy has been demonstrated in 
a series of other pathological contexts (reviewed in Stoilova et al., 
2013). Figure 1 depicts all Doxy effects described above in our 
AD mouse models.

Although we did not find direct AβO-Doxy binding, we 
assume that—as described for AβOs and tetracycline—an atypical 
supramolecular interaction might occur, which will result in the 
formation of colloid structures sequestering and abolishing AβO 
toxicity in vitro (Airoldi et al., 2011). Accordingly, Costa et al. 
(2011), using transmission electron microscopy, dynamic light 
scattering, and thioflavin T binding, demonstrated that Doxy 
leads to the formation of smaller, non-amyloid and non-toxic Aβ 
aggregates. Figure 2 summarizes the expected Doxy-mediated 
changes in the brain of AD patients.

FIGURE 1 | Doxy-mediated effects in AD mouse models. AβOs are the 
most powerful toxic species in AD brain, which are responsible for the 
memory impairment. Such detrimental effect is associated with microglial cell 
activation, a chronic event in AD responsible for both cognitive dysfunction, 
synaptic loss, and neurodegeneration. Doxy apparently interferes with either 
the action of AβOs by directly neutralizing their effects at both neuronal and 
glial level, and/or exerting a direct anti-inflammatory effect. All these actions 
culminate in a positive outcome at the cognitive level by restoring memory to 
normal.

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Doxycycline in the Therapy of Alzheimer’s DiseaseBalducci and Forloni

5 July 2019 | Volume 10 | Article 738Frontiers in Pharmacology | www.frontiersin.org

Beside their anti-amyloidogenic and anti-inflammatory effects, 
tetracyclines also have anti-oxidative and anti-apoptotic activities 
(Stoilova et al., 2013; Santa-Cecília et al., 2019). Oxidative stress 
and apoptosis are typical features of AD, whose resolution in the 
intricate pathological scenario will help to better restore brain 
physiology.

This evidence and the favorable pharmacological features of Doxy 
in a translational prospect suggest that this drug holds a considerable 
therapeutic potential for AD and other neurodegenerative diseases. 
A recently published comprehensive review describes well the 
protective effect of Doxy also in Parkinson’s disease and multiple 
sclerosis (Santa-Cecília et al., 2019).

Despite the beneficial effects of Doxy, clinical trials tell us 
that not all treatment protocols are effective, or stages of disease 
adequate for patient enrollment. Patients with too advanced 

disease are apparently unlikely to respond (Assar et al., 2015; 
Pocchiari and Ladogana, 2015). This does not necessarily 
imply that the drug is ineffective, just that it must be used more 
appropriately. Because of this, Doxy deserves one more chance 
in AD therapy, more likely with application at a prodromal 
stage, and a “precision medicine” approach. The latter is strongly 
recommended, since it will enable us to define the clinical 
profile (i.e., inflammatory profile) of responders compared to 
non-responders.
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FIGURE 2 | The multiple beneficial actions of Doxy in AD brains. In (A), an AD brain before treatment with Doxy. Different-sized Aβ plaques are widely deposited 
with activated microglial cells surrounding them. AβOs are freely circulating entities closer to or far from plaques, which, in concert with neuroinflammation, lead to 
memory impairment. (B) A Doxy-treated AD brain, where the beneficial effects of the drug are summarized. Plaque load can be reduced by long treatment. AβOs 
interact with Doxy, probably producing non-amyloidogenic and non-toxic structures; microglial cells move closer to a resting state. Both reduction in AβO load and 
microglial activation may be responsible for the Doxy-mediated memory recovery.
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