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The prediction of biological targets of bioactive molecules from machine-readable materials 
can be routinely performed by computational target prediction tools (CTPTs). However, the 
prediction of biological targets of bioactive molecules from non-digital materials (e.g., printed 
or handwritten documents) has not been possible due to the complex nature of bioactive 
molecules and impossibility of employing computations. Improving the target prediction 
accuracy is the most important challenge for computational target prediction. A minimum 
structure is identified for each group of neighbor molecules in the proposed method. Each 
group of neighbor molecules represents a distinct structural class of molecules with the 
same function in relation to the target. The minimum structure is employed as a query to 
search for molecules that perfectly satisfy the minimum structure of what is guessed crucial 
for the targeted activity. The proposed method is based on chemical similarity, but only 
molecules that perfectly satisfy the minimum structure are considered. Structurally related 
bioactive molecules found with the same minimum structure were considered as neighbor 
molecules of the query molecule. The known target of the neighbor molecule is used as a 
reference for predicting the target of the neighbor molecule with an unknown target. A lot 
of information is needed to identify the minimum structure, because it is necessary to know 
which part(s) of the bioactive molecule determines the precise target or targets responsible 
for the observed phenotype. Therefore, the predicted target based on the minimum structure 
without employing the statistical significance is considered as a reliable prediction. Since 
only molecules that perfectly (and not partly) satisfy the minimum structure are considered, 
the minimum structure can be used without similarity calculations in non-digital materials 
and with similarity calculations (perfect similarity) in machine-readable materials. Nine tools 
(PASS online, PPB, SEA, TargetHunter, PharmMapper, ChemProt, HitPick, SuperPred, 
and SPiDER), which can be used for computational target prediction, are compared with 
the proposed method for 550 target predictions. The proposed method, SEA, PPB, and 
PASS online, showed the best quality and quantity for the accurate predictions.

Keywords: pharmacophore, structural similarity (SSIM), mechanism of action (MOA), minimum structure, target 
identification

Abbreviation: CTPT, computational target prediction tool.
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INTRODUCTION

Bioactive molecules such as drugs and pesticides are produced 
in large numbers by many commercial and academic groups 
around the world (Orchard et al., 2011). Most bioactive 
molecules perform their actions by interacting with proteins 
or other macromolecules (Gfeller et al., 2013). However, for 
a significant fraction of bioactive molecules, targets remain 
unknown (Gfeller et al., 2013). Moreover, even for well-studied 
molecules, our knowledge of their targets is far from complete 
(Gfeller et al., 2013).

Target-identification and mechanism-of-action studies 
have important roles in bioactive molecule probe and drug 
and pesticide discovery (Schenone et al., 2013). Experimental 
and computational approaches are used to predict biological 
targets that interact with bioactive molecules. Experimental 
approaches are usually more costly and slower than 
computational approaches. Computational approaches make 
predictions based on models with several approximations 
(Schomburg and Rarey, 2014). The common drawbacks of 
these models are that the real predictability beyond training 
space cannot always be guaranteed (Cheng et al., 2011). 
Computational approaches can facilitate the study of biological 
targets of bioactive molecules and assist the  discovery of 
on-target and off-target effects and understand the mechanism 
of action of bioactive molecules, thereby playing a crucial 
role in many scientific projects (Wang et al., 2013a). With 
the ever-increasing public availability of chemical structures, 
bioactivity data, and receptor structures (Bento et al., 2014), 
it is possible to construct reliable target prediction models 
(Wang et al., 2016) for CTPTs in machine-readable materials 
using chemical structure similarity searching (Keiser et al., 
2009), data mining/machine learning (Nidhi et al., 2006), 
panel docking (Li et al., 2006), and bioactivity spectra-based 
algorithms (Cheng et al., 2011). The target of these CTPTs may 
be a protein, cell line, whole organism, or biological activity. 
However, bioactivity data have not been increased in all areas. 
For example, databases are rich in human targets and molecules 
that modulate these targets, but contain limited information 
when it comes to bacterial targets (Koutsoukas et al., 2011).

Generally, the available computational target prediction 
approaches fall into two major categories of target-based 
methods (also called structure-based or receptor-based) and 
ligand-based methods (Liu et al., 2014b). Ligand-based methods 
incorporate chemical structures to predict targets (Schenone 
et al., 2013). Hence, the chemical similarity criteria for bioactive 
molecules play key roles in ligand-based modeling (Wang et al., 
2016). Target-based methods rely on three-dimensional (3D) 
receptor structures to predict receptor–bioactive molecule 
interactions (Haupt and Schroeder, 2011). While ligand-based 
methods are fast, target-based methods take considerably more 
computational resources for a docking run against hundreds, or 
even thousands, of targets while still not achieving reliable results 
(Koutsoukas et al., 2011).

Databases that can be used for the ligand-based target 
prediction have grown tremendously in size in the past 
(Koutsoukas et al., 2011) but are still far from perfect. The 

screening data in databases are less rigorous than those 
in peer-reviewed articles and contain many false positives 
(Baker, 2006). Deposited data are not curated, and hence, 
mistakes in structures, units, and other characteristics can and 
do occur (Baker, 2006). Worse, since structural similarity does 
not guarantee similar bioactivity, chemical structures without 
other data are not always useful (Baker, 2006). In addition, 
chemical structures in some journals are not provided 
as  machine-readable descriptions, which can be deposited 
in databases.

The prediction of biological targets of bioactive molecules 
from machine-readable materials can be routinely performed 
by CTPTs. However, the prediction of biological targets of 
bioactive molecules from non-digital materials (e.g., printed or 
handwritten documents) has not been possible due to the complex 
nature of bioactive molecules and impossibility of employing 
computations. Despite many advances over the last decades, 
computational target prediction is still a very challenging task, 
as reflected by the low experimental target validation success 
rate (Liu et al., 2014b). The removal of false positives reduces 
the risk of yielding predictions that could incorrectly affect 
the downstream experiments for drug and pesticide discovery 
(Wang et al., 2013a).

An attempt to improve the target prediction success rate 
led to the creation of an innovative method based on chemical 
similarity. The proposed method is significantly different 
from the available methods based on chemical similarity. The 
proposed method not only refers to the application of chemical 
similarity without employing statistical methods to use in 
both formats of non-digital and machine-readable materials 
but also helps in improving the target prediction success 
rate. The  proposed method has several distinctive features 
compared to the available computational target prediction 
methods. First, the prediction is performed without employing 
statistical methods. Second, it is highly accurate. Third, it 
can be used appropriately without similarity calculations in 
non-digital materials and with similarity calculations (perfect 
similarity) in machine-readable materials. Fourth, it enables 
us to gain a deeper understanding (more informative) of 
the relationship between the chemical structure and the 
target. Fifth, little knowledge regarding high-performance 
computing techniques or algorithms does not prevent its 
implementation.

METHODS

The proposed method steps for target prediction of bioactive 
molecules from chemical structures include i) query molecule, 
ii)  similarity searching, iii) data collection, iv) minimum 
structure identification, and v) target prediction. The proposed 
method process of target prediction from chemical structures 
can be found in a hypothetical example with a simple expression 
in Figure S1.

It is well known that drugs and pesticides interact with 
multiple targets rather than with a single target (called the off-
target effect) (Wang et al., 2016), and this fact can be beneficial 
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(Solomon and Lee, 2009) or harmful (known as side effect or 
toxicity) (Henney, 2000). For instance, a recent study on a set 
of 802 drugs and drug interactions data assembled from seven 
different databases has shown that known drugs have on average 
six molecular targets on which they exhibit activity (Mestres 
et al., 2009). Also, because one target may have thousands 
of structurally diverse ligands, one unique model may not 
recover all features, and the prediction performance may not be 
satisfying (Wang et al., 2013a). Hence, a minimum structure is 
identified for each group of neighbor molecules in the proposed 
method. Each group of neighbor molecules represents a distinct 
structural class of molecules with the same function in relation 
to the target. The proposed method is not applicable in cases 
where no neighbor bioactive molecules for a target exist, since 
in these situations no training on the minimum structure-based 
information is possible.

Query Molecule
A bioactive molecule such as a drug or a pesticide is used as a 
query molecule. The query molecule may have a known or an 
unknown target. The query molecule with a known target can be 
used as a reference to predict the target of neighbor molecules 
with an unknown target.

Similarity Searching
The query molecule is used to search for structurally related 
bioactive molecules with similar chemical scaffold (molecules 
are compared to each other as a whole) and similar substructures 
(the specified substructures in molecules are compared to each 
other). However, it must be born in mind that structurally 
related analogs may bind in a slightly or considerably different 
manner (Poulos and Howard, 1987). The main shortcoming 
of most ligand-based methods is that it results in insufficient 
extrapolation in practice since only molecules are compared to 
each other as a whole (Koutsoukas et al., 2011). It should also 
be pointed out that our proposed method can predict unseen 
interactions between bioactive molecules and potential targets in 
other methods. KEGG (Kanehisa et al., 2017), PubChem (Kim 
et al., 2019), DrugBank (Wishart et al., 2018), and ChEMBL 
(Gaulton et al., 2017) databases provide common names and 
chemical structures for large numbers of bioactive molecules 
and, in some cases, their targets. All four databases support 
structure similarity searches.

Data Collection
The target information is collected for all structurally related 
bioactive molecules. If the target of the query molecule is not 
known, information on the structure–activity relationship 
(the consistent correlation of structural features or groups 
with the biological activity of molecules in a given biological 
assay; Bleicher et al., 2003) and the pharmacophore (the spatial 
orientation of various functional groups or features necessary 
for activity at a biomolecular target; Bleicher et al., 2003) will 
be collected for all structurally related bioactive molecules. If 
the target of the query molecule is known, information on the 

structure–activity relationship and the pharmacophore will be 
collected only for structurally related bioactive molecules with 
the same target as the query molecule. Information on the target, 
the structure–activity relationship, and the pharmacophore are 
obtained from databases with the annotated target (e.g., KEGG, 
PubChem, DrugBank, and ChEMBL databases), scientific 
literature, and pharmacophoric descriptors (including hydrogen 
bonds as well as hydrophobic and electrostatic interaction sites; 
Wolber et al., 2006). The proposed method criteria for allocation 
of target–bioactive molecule interactions are not limited to cell-
based and/or in vivo evidence, and binding data are not necessary 
to find out interactions.

Minimum Structure Identification
A minimum structure does not represent a real molecule or a 
real association of functional groups, but is a part of a molecular 
structure that is necessary to ensure the target prediction of 
bioactive molecules. The minimum structure describes the 
presence or absence of chemical features in the molecule. It can be 
employed for distinguishing bioactive molecules based on their 
targets without similarity calculations in non-digital materials 
and with similarity calculations (perfect similarity) in machine-
readable materials. Ligand-based approaches employ statistical 
methods to link structural features to biological activities (Huang 
et al., 2010), whereas the minimum structure involves specific 
structural features of a ligand required for interacting with its 
target without employing statistical methods. In the proposed 
method, unlike ligand-based approaches, it is necessary to 
know which part(s) of the bioactive molecule determines the 
precise target or targets responsible for the observed phenotype. 
Ligand-based approaches suffer from the problem of activity 
cliff, which is defined as pairs of structurally similar molecules 
with large differences in potency (Maggiora, 2006; Hu et al., 
2013). The minimum structure is identified using data collection 
about structurally related bioactive molecules. The minimum 
structure consists of the core with or without the peripheral 
part. Here, the peripheral part is shown as the comment. The 
core plays an essential role in a bioactive molecule. Furthermore, 
modifying at some key position on the peripheral part can make 
a big change in the target or the activity of a bioactive molecule. 
Thus, the peripheral part can be useful for distinguishing 
bioactive molecules based on their targets. Since the minimum 
structure depends on structurally related bioactive molecules 
and information about them, when they become available, the 
minimum structure can be updated to further refine it.

Target Prediction
The minimum structure is employed as a query to search for 
molecules that perfectly satisfy the minimum structure of what 
is guessed crucial for the targeted activity. The proposed method 
is based on chemical similarity, but only molecules that perfectly 
satisfy the minimum structure are considered. Structurally 
related bioactive molecules found with the same minimum 
structure were considered as neighbor molecules of the query 
molecule. The known target of the neighbor molecule is used as a 
reference for predicting the target of the neighbor molecule with 
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an unknown target. A lot of information is needed to identify the 
minimum structure, because it is necessary to know which part(s) 
of the bioactive molecule determines the precise target or targets 
responsible for the observed phenotype. Therefore, the predicted 
target based on the minimum structure without employing the 
statistical significance is considered as a reliable prediction. 
Since only molecules which perfectly (and not partly) satisfy the 
minimum structure are considered, the minimum structure can 
be used without similarity calculations in non-digital materials 
and with similarity calculations (perfect similarity) in machine-
readable materials. Without doubt, the assessment of molecule 
similarity for activity cliff definition and analysis is the most 
difficult task, for several reasons: first, the quantification of 
molecule similarity is strongly dependent on chosen molecular 
representations (descriptors), and second, there are no generally 
accepted similarity measures (Hu et al., 2013).

RESULTS

We evaluate our predictive performance by applying it to 550 
drugs and pesticides with a known or an unknown target and 
comparing results to those from the CTPTs. These drugs and 
pesticides include fungicides and bactericides that may be used 
for medical, veterinary, and agricultural applications. Common 
name, CAS Registry Number, InChIKey, InChI, SMILES, primary 
target, chemical structure, and pharmacophore for 550 bioactive 
molecules of the present study have been shown in Table S1.

Phenotypic effects of bioactive molecules result from 
interactions of bioactive molecules with protein targets, i.e., 
primary targets for which they were designed for as well as 
off-targets (Schomburg and Rarey, 2014). It is well known that 
the majority of bioactive molecules have more than one target 
(Gfeller et al., 2013), and predictable targets may vary in the 
CTPTs. Therefore, in this study, only the prediction of primary 
targets of bioactive molecules was considered, because primary 
targets should be identified before other targets.

Here, the primary target information on 381 bioactive 
molecules was collected from scientific literature (Table S2) and 
databases (Table S3). The databases include KEGG (Kanehisa 
et al., 2017), PubChem (Kim et al., 2019), DrugBank (Wishart 
et al., 2018), and ChEMBL (Gaulton et al., 2017). Of these 
381 bioactive molecules, scientific literature and databases 
contain the primary target information on 372 (97.6%) and 
160 (42%) bioactive molecules, respectively. Here, a part of 
primary targets of bioactive molecules has been extracted from 
databases. However, the primary target information has not been 
collected from annotated targets in bioactivity assays and target 
predictions of databases, because in those parts, primary targets 
are not distinguished from other targets. Three hundred eighty-
one bioactive molecules with known primary targets were used 
for the identification of eight minimum structures. Then, these 
eight minimum structures were employed to predict primary 
targets of 169 bioactive molecules with unknown primary targets. 
Finally, predictions made by the proposed method (Tables 1–4) 
were compared with those 381 bioactive molecules with known 
primary targets and 169 bioactive molecules with unknown 

primary targets in nine CTPTs (Table S5). The nine CTPTs 
include PASS online (Lagunin et al., 2000), PPB (Awale and 
Reymond, 2017), SEA (Keiser et al., 2007), TargetHunter (Wang 
et al., 2013a), PharmMapper (Wang et al., 2017), ChemProt 
(Kringelum et al., 2016), HitPick (Liu et al., 2013), SuperPred 
(Nickel et al., 2014), and SPiDER (Reker et al., 2014).

The whole list of predicted targets with any statistical 
significance, including high confidence targets (e.g., low 
p-value, low target rank, high probability of being active, or low 
probability of being inactive) and low confidence targets (e.g., 
high p-value, high target rank, low probability of being active, 
or high probability of being inactive), was considered to obtain 
the maximum prediction potential in the CTPTs. Also, since the 
CTPTs are not able to distinguish between a primary target and 
other targets, the primary target found in the target list predicted 
by the CTPT was considered as an accurate prediction. Predictive 
results of the proposed method and the CTPTs are presented in 
eight groups.

Validation
Results of bioactivity assays and target predictions from ChEMBL 
database were applied to 169 bioactive molecules with unknown 
primary targets to assess the prediction accuracy of our proposed 
method. ChEMBL_24 contains 1,828,820 distinct bioactive 
molecules, 12,091 targets, and 15,207,914 bioactivity entries 
from 69,861 publications. Each bioactivity data of ChEMBL 
database was applied only if it had an activity value of IC50, EC50, 
or Ki. Activity values were classified as potent (value ≤ 1 μM), 
moderate (1 μM < value ≤ 10 μM), weak (10 μM < value ≤ 30 
μM), and inactive (value > 30 μM). The following formula was 
used to convert the activity value from μg/mL to μM (or μM/L).

Activity value ( M)
molecular weight (g/mol)

µ = [ ]1

×× ×[ ]acivity value ( g/mL)µ 1000

Of 169 bioactive molecules, 111 bioactive molecules were 
not found in ChEMBL database. Also, the target data for 51 
predictions were not found in ChEMBL database. Therefore, 
the target data were available only for seven predictions. Of 
these seven predictions, two predictions were reported as potent 
activity, three predictions were reported as moderate activity, 
and two predictions were reported as inactive. Activity values 
of PubChem CID-122195336 (DNA gyrase; IC50 = 0.17 µM; 
Itoh et al., 2015) and PubChem CID-122195337 (DNA gyrase; 
IC50 = 0.41 µM; Itoh et al., 2015) were reported as potent activity; 
binfloxacin (topoisomerase IV subunit A; IC50 = 10 µM; Gaulton 
et al., 2017), ecenofloxacin (topoisomerase IV subunit A; IC50 = 
10 µM; Gaulton et al., 2017), and irloxacin (topoisomerase IV 
subunit A; IC50 = 10 µM; Gaulton et al., 2017) were reported 
as moderate activity; and PD 118362 (DNA gyrase; IC50 = 
66.75 µM; Domagala et al., 1988) and PD 111834 (DNA gyrase; 
IC50 = 201 µM; Domagala et al., 1986) were reported as inactive.

Fifty-one molecules without target data and 111 molecules 
not found for predictions of the proposed method in ChEMBL 
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database were used to search for molecules with a structural 
similarity of 85% and more in ChEMBL database. Results of 
bioactivity assays and target predictions of structural similarity 
molecules from ChEMBL database were applied to evaluate 
new target predictions of the proposed method in 51 molecules 
without target data and 111 molecules not found in ChEMBL 
database. Activity values of structural similarity molecules in 
ChEMBL database found with predicted targets of the proposed 
method were reported 56.45% as moderate activity (613 
activities), 22% as potent activity (239 activities), 11.33% as weak 
activity (123 activities), and 10.22% as inactive (111 activities) 
(Table S4).

Recently, authors applied the proposed method to predict 
22 targets and 15 mechanisms of action against more than 100 
herbicides, two of which were validated in vivo and in vitro to be 
potent. The utility of the proposed method was documented by 
predicting and confirming the mechanism of action and target 
of tiafenacil and ipfencarbazone. The proposed method is well 
suited to provide insights into mechanisms of action and targets of 
bioactive molecules. For example, tiafenacil herbicide mechanism 
of action was predicted as protoporphyrinogen oxidase (PPG 
oxidase or protox) inhibition based on the proposed method 
(Forouzesh et al., 2015). Later, Park et al. (2018) proved tiafenacil 
mechanism of action as an inhibitor of PPG oxidase or protox 
with an IC50 of 22–28 nM through biochemical and physiological 
experiments. For example, the target and mechanism of action 
of ipfencarbazone herbicide were predicted as very long chain 

fatty acid (VLCFA) synthesis inhibition (K3 group) and mitosis 
inhibition (15 group), respectively, on the basis of the proposed 
method (Forouzesh et al., 2015). Ipfencarbazone inhibited 
the incorporation of [2-14C] malonyl-CoA into stearoyl-CoA 
(C18:0) and arachidoyl-CoA (C20:0) in rice and late watergrass 
microsomes at a low concentration (IC50 less than 1 µM), similar to 
cafenstrole, a known VLCFA synthesis inhibitor (Kasahara et al., 
2019). Therefore, the target of ipfencarbazone was considered to 
be VLCFA synthesis inhibition (Kasahara et al., 2019).

4-Pyridone Group From DNA Gyrase 
and Topoisomerase IV Inhibitors
The primary target information on 135 bioactive molecules was 
collected from scientific literature (Table S2) and databases 
(Table S3). Of these 135 bioactive molecules, scientific literature 
and databases contain the primary target information on 134 
(99.3%) and 48 (35.6%) bioactive molecules, respectively.

Based on the proposed method, the primary target can be 
identified for all 135 bioactive molecules with a known primary 
target. In addition, the primary target can be predicted for 59 
bioactive molecules with an unknown primary target by the use 
of the proposed method. Generally, 4-pyridone group contains 
194 bioactive molecules with a predictable primary target on the 
basis of the proposed method (Table 1).

PASS online, SEA, PPB, ChemProt, TargetHunter, PharmMapper, 
and SuperPred applied to 135 bioactive molecules with a known 

TABLE 1 | The bioactive molecules with primary target of bacterial type IIA topoisomerase (DNA gyrase and topoisomerase IV) inhibition predicted by the minimum 
structure.

Minimum structure Bioactive molecules

4(1H)-Pyridinone
or 4-Pyridone

A 57132, A 57241, A 57274 (A 62917), A 60919 (PD 118106), A 61867 (BRN 4276829), A 62251 (A 57531; 
PD 137954), A 62255, A 62824, A 65326, ACH 702, Acorafloxacin (avarofloxacin), ADDNC (A 65485), 
Alalevonadifloxacin, Alatrofloxacin, Amifloxacin, Antofloxacin, AT 4929, Balofloxacin, BAY Y-3118 free base, 
Besifloxacin, Binfloxacin, BMY 40062, BMY 40397, BMY 42230, BMY 43261, BMY 43748, BMY 45243, 
BMY 45706, BRN 4913428 (PD 131199), Cadrofloxacin, Cetefloxacin, Chinfloxacin, CI 990 (PD 131112), 
Ciprofloxacin, Clinafloxacin, CP 100964, CP 104830, CP 105532 (PD 125275), CP 115953, CP 115955, 
CP 135803, CP 67015, CP 67804, CP 74667, CP 92121, CP 99433, Danofloxacin, DC 159a free base, 
Delafloxacin, Desfluorociprofloxacin (SQ 4004), Difloxacin, DJ 6783, DK 507k, DN 9494, Droxacin, DS 8587 
free base, DU 6611, DU 6668, DV 7751a (DV 7751), DW 8186, DX 619, E 3604, E 3846, E 4441, E 4474, 
E 4480, E 4497, E 4501, E 4502, E 4527, E 4528, E 4534, E 4535, E 4695, Ecenofloxacin, EN 272, Enoxacin, 
Enrofloxacin, Esafloxacin, FA 103, Fandofloxacin, Finafloxacin, Fleroxacin, Flumequine, Garenoxacin, Gatifloxacin, 
Gemifloxacin, Grepafloxacin, Ibafloxacin, Irloxacin, K 12, KB 5246, KPI 10 free base (WQ 3810), Lascufloxacin, 
Levofloxacin, Levonadifloxacin, Levonadifloxacin arginine (WCK 771), Lomefloxacin, Marbofloxacin, Merafloxacin, 
Metioxate, MF 5101, MF 5103, MF 5112 free base, MF 5126, MF 5137, MF 5143, MF 5168, Miloxacin, 
Moxifloxacin, Nadifloxacin, Nalidixic acid, Nemonoxacin, Norfloxacin, NSFQ 104, NSFQ 105, Ofloxacin, 
Olamufloxacin, Orbifloxacin, Oxolinic acid, Ozenoxacin, Pazufloxacin, PD 111834, PD 112388, PD 114111, 
PD 115311, PD 116507, PD 117596, PD 118362, PD 119344, PD 129626, PD 131628, PD 135042 (AM 1147), 
PD 135144 (BMY 33315), PD 137156, PD 138312, PD 140248, PD 163449, PD 164488, Pefloxacin, Pipemidic 
acid, Piromidic acid, Piroxacin, Pradofloxacin, Premafloxacin, Prulifloxacin, PubChem CID-11531032, PubChem 
CID-11566845, PubChem CID-11610627, PubChem CID-11696318, PubChem CID-11844920, PubChem 
CID-11996799, PubChem CID-11996800, PubChem CID-11997263, PubChem CID-25022869, PubChem 
CID-44408626, PubChem CID-44408894, PubChem CID-44408896, PubChem CID-44408994, PubChem 
CID-44409001, PubChem CID-44409010, PubChem CID-53236573, PubChem CID-53236796, PubChem 
CID-122195336, PubChem CID-122195337, QA 241 free base, RO 13-5478, RO 14-9578, Rosoxacin, 
Rufloxacin, S 25932, S 31076, Sarafloxacin, Sitafloxacin, Sparfloxacin, T 14097, Temafloxacin, Tioxacin, 
Tosufloxacin, Trovafloxacin, Ulifloxacin, Vebufloxacin (benofloxacin), VG 6/1, WCK 1152 free base, WIN 57273, 
WIN 57294, WIN 58161, WQ 2743, WQ 2756, WQ 2908, WQ 2942, WQ 3330, Y 688, Zabofloxacin

Comments:
X1 ≠ H (weak inhibitory activity)
X3 = -COO; isothiazol-3(2H)-one (a) fused to the 
core
X8 = aromatic ring
Active ingredient ≠ non-fused aromatic ring or 
chain attached to an aromatic ring at X8 (here X8 
means six-membered aromatic ring fused to the 
core at X5) in position 6; the core fused to more 
than two (if X3 = -COO) or three (if X3 = isothiazol-
3(2H)-one fused to the core) aromatic rings
a
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primary target led to make accurate predictions on 135 (100%), 
131 (97%), 126 (93.3%), 112 (83%), 51 (37.8%), 36 (26.7%), and 
1 (0.7%) bioactive molecules, respectively (Table S5). Also, PASS 
online, PPB, SEA, ChemProt, PharmMapper, TargetHunter, and 
SuperPred applied to 59 bioactive molecules with an unknown 
primary target led to make accurate predictions on 58 (98.3%), 
57 (96.6%), 54 (91.5%), 47 (79.7%), 15 (25.4%), 12 (20.3%), 
and 0 (0%) bioactive molecules, respectively (Table S5). Since 
the primary target information on the 4-pyridone group is not 
available in HitPick and SPiDER, these tools are not able to 
predict the primary target of bioactive molecules of this group.

For example, six molecules of Figure S2 were used to predict 
the DNA gyrase and topoisomerase IV inhibition by the 
proposed method and the CTPTs. Only molecule 3 in Figure S2 
is a DNA gyrase and topoisomerase IV inhibitor, based on 
the proposed method. Among the CTPTs, PASS online, PPB, 
ChemProt, and TargetHunter predicted molecule 3 as a DNA 
gyrase and topoisomerase IV inhibitor. Georgopapadakou 
et al. (1987) proved the target of molecule 3 as a DNA gyrase 
inhibitor by applying molecule 3 in Escherichia coli and 
Staphylococcus aureus.

PPB predicted molecule 6 as a DNA gyrase inhibitor, whereas 
molecule 6 is a highly selective HIV-1 integrase inhibitor with 
a potent antiviral activity against both B and non-B subtypes of 
HIV-1 (Matsuzaki et al., 2006).

PPB, ChemProt, and TargetHunter predicted molecule 2 
as a DNA gyrase inhibitor, whereas molecule 2 (particularly as 
its potassium salt) is a plant growth regulator that is used as 
a chemical hybridization agent for commercial hybrid seed 
production (Kim et al., 2019).

PPB predicted molecule 5 as a DNA gyrase inhibitor, whereas 
preliminary clinical studies suggest that molecule 5 has marked 
diuretic and natriuretic activities (Van Dijk et al., 1976).

PASS online, SEA, and TargetHunter predicted molecule 
1 as a DNA gyrase and topoisomerase IV inhibitor, whereas 
molecule 1 is nontoxic according to Brooks and Hurley (2010) 
and Balasubramanian et al. (2011).

The target data of molecules 1, 2, 4, 5, and 6 and molecules 
with a structural similarity of 85% and more to molecules 
1, 2, 4, 5, and 6 for the DNA gyrase and topoisomerase IV 
inhibition were not found in ChEMBL database, but based on 
the obtained information, it is unlikely that the target of these 
molecules is DNA gyrase and topoisomerase IV inhibition. 
Employing the minimum structure in 4-pyridone group for 
identifying a bioactive molecule with the target of DNA gyrase 
and topoisomerase IV inhibition has been shown in Figure S2.

2,4(or 5)-Diaminocyclohexanol Group 
From Small Ribosomal Subunit Inhibitors
The primary target information on 64 bioactive molecules was 
collected from scientific literature (Table S2) and databases 
(Table S3). Of these 64 bioactive molecules, scientific literature 
and databases contain the primary target information on 63 
(98.4%) and 26 (40.6%) bioactive molecules, respectively.

Based on the proposed method, the primary target can be 
identified for all 64 bioactive molecules with a known primary 

target. In addition, the primary target can be predicted for 74 
bioactive molecules with an unknown primary target by the use of 
the proposed method. Generally, 2,4(or 5)-diaminocyclohexanol 
group contains 138 bioactive molecules with a predictable 
primary target on the basis of the proposed method (Table 2).

PASS online, PharmMapper, TargetHunter, and ChemProt 
applied to 64 bioactive molecules with a known primary target 
led to make accurate predictions on 64 (100%), 51 (79.7%), 41 
(64.1%), and 16 (25%) bioactive molecules, respectively (Table S5). 
Also, PASS online, PharmMapper, TargetHunter, and ChemProt 
applied to 74 bioactive molecules with an unknown primary 
target led to make accurate predictions on 74 (100%), 49 (66.2%), 
46 (62.2%), and 10 (13.5%) bioactive molecules, respectively 
(Table S5). Since the primary target information on the 2,4(or 
5)-diaminocyclohexanol group is not available in PPB, SEA, 
HitPick, SPiDER, and SuperPred, these tools are not able to 
predict the primary target of bioactive molecules of this group.

For example, six molecules of Figure S3 were used to predict 
the small ribosomal subunit inhibition by the proposed method 
and the CTPTs. Only molecule 2 in Figure S3 is a small ribosomal 
subunit inhibitor, based on the proposed method. Among the 
CTPTs, PASS online and PharmMapper predicted molecule 2 as a 
small ribosomal subunit inhibitor. Molecule 2 is a 30S ribosomal 
subunit (small ribosomal subunit) inhibitor, as shown by 
experiments on reconstituted 70S ribosomes containing subunits 
from sensitive and from resistant ribosomes (Davies et al., 1965).

PASS online and PharmMapper predicted molecule 4 and 
molecule 6 as small ribosomal subunit inhibitors, whereas 
molecule 4 and molecule 6 are trehalase inhibitors (Xu et al., 2009).

PASS online and PharmMapper predicted molecule 5 as a 
small ribosomal subunit inhibitor, whereas molecule 5 is used as 
the substrate of 3-ketovalidoxylamine A C–N lyase (Zhang et al., 
2007). One of the three key enzymes in production of valienamine 
is 3-ketovalidoxylamine A C–N lyase, which is a potent glucosidase 
inhibitor from validamycin A (Zhang et al., 2007).

PASS online predicted molecule 3 as a small ribosomal 
subunit inhibitor, whereas molecule 3 has roles as metabolite, 
antimutagen, and antioxidant (Ammar et al., 2007).

PASS online predicted molecule 1 as a small ribosomal 
subunit inhibitor, whereas molecule 1 binds to large ribosomal 
subunit and inhibits its peptidyl transferase activity (Kaminishi 
et al., 2015).

The target data of molecules 1, 3, 4, 5, and 6 and molecules 
with a structural similarity of 85% and more to molecules 1, 
3, 4, 5, and 6 for the small ribosomal subunit inhibition were 
not found in ChEMBL database, but based on the obtained 
information, it is unlikely that the target of these molecules is 
small ribosomal subunit inhibition. Employing the minimum 
structure in 2,4(or 5)-diaminocyclohexanol group for identifying 
a bioactive molecule with the target of small ribosomal subunit 
inhibition has been shown in Figure S3.

(4aRS,5aRS)-Sancycline Group From 
Small Ribosomal Subunit Inhibitors
The primary target information on 27 bioactive molecules was 
collected from scientific literature (Table S2) and databases 
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(Table S2). Of these 27 bioactive molecules, scientific literature 
and databases contain the primary target information on 26 
(96.3%) and 15 (55.6%) bioactive molecules, respectively.

Based on the proposed method, the primary target can be 
identified for all 27 bioactive molecules with a known primary 
target. In addition, the primary target can be predicted for 
seven bioactive molecules with an unknown primary target 
by the use of the proposed method. Generally, (4aRS,5aRS)-
Sancycline group contains 34 bioactive molecules with a 
predictable primary target on the basis of the proposed method 
(Table 2).

PASS online and PharmMapper applied to 27 bioactive 
molecules with a known primary target led to make accurate 
predictions on 27 (100%) and 20 (74.1%) bioactive molecules, 
respectively (Table S5). Also, PASS online and PharmMapper 
applied to seven bioactive molecules with an unknown primary 
target led to make accurate predictions on 7 (100%) and 3 
(42.9%) bioactive molecules, respectively (Table S5). Since the 
primary target information on the (4aRS,5aRS)-Sancycline group 
is not available in PPB, SEA, TargetHunter, ChemProt, HitPick, 
SPiDER, and SuperPred, these tools are not able to predict the 
primary target of bioactive molecules of this group.

For example, six molecules of Figure S4 were used to predict 
the small ribosomal subunit inhibition by the proposed method 
and the CTPTs. Only molecule 1 in Figure S4 is a small ribosomal 
subunit inhibitor, based on the proposed method. Among the 
CTPTs, PASS online and PharmMapper predicted molecule 1 as 
a small ribosomal subunit inhibitor. The target of molecule 1 was 
assessed using both cell-based and in vitro assays and confirmed 
target of 30S ribosomal subunit (Grossman et al., 2012).

PASS online predicted molecule 2 as a small ribosomal subunit 
inhibitor, whereas molecule 2 is a neuropeptide substance P 
binding inhibitor (Wong et al., 1993).

PASS online predicted molecule 3 and molecule 4 as small 
ribosomal subunit inhibitors, whereas the most prominent 
characteristic of chemically modified tetracycline analogs (e.g., 
molecule 3 and molecule 4) is their loss of antibacterial activity, 
accompanied by retention (or even enhancement) of their efficacy 
as inhibitors of mammal-derived matrix metalloproteinases (Liu 
et al., 2002).

PASS online predicted molecule 5 as a small ribosomal subunit 
inhibitor, whereas based on the studies carried out using blocked 
mutants, the first stable oxytetracycline intermediate is likely 
the fully aromatized tetracyclic compound called molecule 5,  

TABLE 2 | The bioactive molecules with primary target of small ribosomal subunit inhibition predicted by the minimum structure.

Minimum structure Bioactive molecules

2,4(or 5)-Diaminocyclohexan-1-ol
or 2,4(or 5)-Diaminocyclohexanol

1-Epidactimicin, A 396I (SS 56D), Ambistrin (streptoduocin), Amikacin, Apramycin (nebramycin II), Aprosamine, 
Arbekacin, Astromicin (fortimicin A), Astromicin B (fortimicin B), Bekanamycin (kanamycin B; nebramycin V), 
Betamicin (gentamicin B), Butikacin, Butirosin A, Butirosin B, Dactimicin, Destomycin A, Destomycin B, Dibekacin, 
Dihydrostreptomycin, Etimicin, Fortimicin AE, Fortimicin AH, Fortimicin AI, Fortimicin AK, Fortimicin AL, Fortimicin 
AM, Fortimicin AN, Fortimicin AO, Fortimicin AP, Fortimicin AQ, Fortimicin AS, Fortimicin C, Fortimicin D, Fortimicin 
E (fortimicin KH), Fortimicin KE, Fortimicin KF, Fortimicin KG, Fortimicin KL1, Fortimicin KR, Framycetin (neomycin 
B), Geneticin (gentamicin G-418), Gentamicin A, Gentamicin A1, Gentamicin A2, Gentamicin A3, Gentamicin 
A4, Gentamicin B1, Gentamicin C1, Gentamicin C1a, Gentamicin C2, Gentamicin C2a, Gentamicin X2, Hybrimycin 
A1, Hybrimycin A2, Hybrimycin B1, Hybrimycin B2, Hybrimycin C1, Hybrimycin C2, Hybrimycin D, Hygromycin 
B (A 396II), Isepamicin, Istamycin A (sannamycin A), Istamycin A0 (sannamycin B), Istamycin A1, Istamycin A2, 
Istamycin A3, Istamycin AO, Istamycin AP (sannamycin E), Istamycin B, Istamycin B0, Istamycin B1, Istamycin B3, 
Istamycin C, Istamycin C0, Istamycin C1, Istamycin KL1, Istamycin X0 (sannamycin G), Istamycin Y0 (sannamycin H), 
Kanamycin (kanamycin A), Kanamycin C, Kanamycin D, Kanamycin X, Lividamine (nebramycin IX), Lividomycin, 
Lividomycin B (3’-deoxyparomomycin I), Mannosylparomomycin, Micronomicin (gentamicin C2b), Neamine 
(neomycin A; nebramycin X), Nebramine (nebramycin VIII), Nebramycin III, Nebramycin IV, Nebramycin V’, 
Nebramycin XI, Nebramycin XII, Nebramycin XIII, Neomycin C, Neomycin F (paromomycin II), Netilmicin, NK 
1001, Oxyapramycin (nebramycin VII), Paromamine (neomycin D), Paromomycin (paromomycin I; neomycin E), 
Pentisomicin, Plazomicin, Propikacin, Pyrankacin, Ribostamycin, Saccharocin (KA 5685), Sannamycin C, 
Sannamycin F, Sannamycin J, Sannamycin K, Sannamycin KR, Sannamycin L, Seldomycin, Seldomycin 1 
(seldomycin factor 1), Seldomycin 2 (seldomycin factor 2), Seldomycin 3 (seldomycin factor 3), Seldomycin 
5 (seldomycin factor 5), Sisomicin, Sisomicin B, Sisomicin D, Spectinomycin, Sporaricin A, Sporaricin B, 
Sporaricin C, Sporaricin D, Sporaricin E, SS 56A, SS 56B, SS 56C, Streptomycin, Streptoniazid (streptonicozid), 
Tobramycin (nebramycin VI), Trospectomycin, Verdamicin, Verdamicin C2, Vertilmicin

Comment:
The active ingredient comprises a ring attached to 
the core directly or indirectly

(4S,12aS)-4-(Dimethylamino)-3,10,12,12a-
tetrahydroxy-1,11-dioxo-1,4,4a,5,5a,6,11,12a-
octahydrotetracene-2-carboxamide
or (4aRS,5aRS)-Sancycline

7-Iodosancycline, Amicycline, Apicycline, Bromotetracycline (bromtetracycline), Chlortetracycline 
(chlorotetracycline), Clomocycline, Demeclocycline, Demecycline, DMG-DMDOT (DMG-DM DOT), DMG-
MINO, Doxycycline, Eravacycline, Etamocycline, Glycocycline, Guamecycline, Lymecycline, Meclocycline, 
Meglucycline, Metacycline (methacycline), Minocycline, Morphocycline, Nitrocycline, Omadacycline, 
Oxytetracycline, Pecocycline, Penimepicycline, Penimocycline, Pipacycline, Rolitetracycline, Sancycline, 
Sarecycline, Tetracycline, Tigecycline, TP 271
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which then undergoes further processing and tailoring reactions 
of the fully formed tetracycline backbone (McCormick et al., 1965).

PASS online predicted molecule 6 as a small ribosomal 
subunit inhibitor, whereas molecule 6 is a neuropeptide Y 
receptor antagonist (Kodukula et al., 1995). Due to a lack of 
key pharmacophores of tetracycline antibiotics, molecule 
6 showed no antimicrobial activity against Staphylococcus 
aureus, Bacillus subtilis, Micrococcus luteus, Escherichia coli, 
and Saccharomyces cerevisiae at a concentration of 100 µg/mL 
(Kodukula et al., 1995).

The target data of molecules 2, 3, 4, 5, and 6 and molecules 
with a structural similarity of 85% and more to molecules 2, 
3, 4, 5, and 6 for the small ribosomal subunit inhibition were 
not found in ChEMBL database, but based on the obtained 
information, it is unlikely that the target of these molecules is 
small ribosomal subunit inhibition. Employing the minimum 
structure in (4aRS,5aRS)-Sancycline group for identifying a 
bioactive molecule with the target of small ribosomal subunit 
inhibition has been shown in Figure S4.

Cytosine Group From Large Ribosomal 
Subunit Inhibitors
The primary target information on 25 bioactive molecules was 
collected from scientific literature (Table S2) and databases 
(Table S3). Of these 25 bioactive molecules, scientific literature 
and databases contain the primary target information on 25 
(100%) and 1 (4%) bioactive molecules, respectively.

Based on the proposed method, the primary target can be 
identified for all 25 bioactive molecules with a known primary 
target. In addition, the primary target can be predicted for three 
bioactive molecules with an unknown primary target by the use 
of the proposed method. Generally, cytosine group contains 28 
bioactive molecules with a predictable primary target on the 
basis of the proposed method (Table 3).

PASS online, PharmMapper, and ChemProt applied to 
25 bioactive molecules with a known primary target led to 
make accurate predictions on 25 (100%), 14 (56%), and 0 
(0%) bioactive molecules, respectively (Table S5). Also, PASS 
online, PharmMapper, and ChemProt applied to three bioactive 
molecules with an unknown primary target led to make accurate 
predictions on 3 (100%), 0 (0%), and 0 (0%) bioactive molecules, 
respectively (Table S5). Since the primary target information on 
the cytosine group is not available in PPB, SEA, TargetHunter, 
HitPick, SPiDER, and SuperPred, these tools are not able to 
predict the primary target of bioactive molecules of this group.

For example, six molecules of Figure S5 were used to predict 
the large ribosomal subunit inhibition by the proposed method 
and the CTPTs. Only molecule 2 in Figure S5 is a large ribosomal 
subunit inhibitor, based on the proposed method. Among the 
CTPTs, PASS online and PharmMapper predicted molecule 2 
as a large ribosomal subunit inhibitor. The target of molecule 2 
was investigated and results suggest that the molecule blocks the 
peptidyl transferase center (large ribosomal subunit) (Feduchi 
et al., 1985).

PASS online predicted molecule 1 as a large ribosomal subunit 
inhibitor, whereas molecule 1 is a pyrimidine analogue that has 

an activity against fungal species by interfering with purine 
and pyrimidine uptake and deaminating to 5-fluorouracil and 
then converting to 5-fluorodeoxyuridylic acid monophosphate, 
a noncompetitive inhibitor of thymidylate synthetase that 
interferes with DNA synthesis (McManus, 2015).

PharmMapper predicted molecule 3 as a large ribosomal subunit 
inhibitor, whereas it has been shown that molecule 3 works by 
activating transient receptor potential vanilloid (TRPV) channels 
in insect chordotonal organs (Nesterov et al., 2015).

PASS online predicted molecule 4 as a large ribosomal subunit 
inhibitor, whereas molecule 4 is a dihydropteroate synthase 
inhibitor (Wang et al., 2013b).

PASS online and ChemProt predicted molecule 6 as a large 
ribosomal subunit inhibitor, whereas molecule 6 is an RNA-
directed DNA polymerase inhibitor (Tipples et al., 1996).

The target data of molecules 1, 3, 4, 5, and 6 and molecules 
with a structural similarity of 85% and more to molecules 1, 
3, 4, 5, and 6 for the large ribosomal subunit inhibition were 
not found in ChEMBL database, but based on the obtained 
information, it is unlikely that the target of these molecules is 
large ribosomal subunit inhibition. Employing the minimum 
structure in cytosine group for identifying a bioactive molecule 
with the target of large ribosomal subunit inhibition has been 
shown in Figure S5.

3-Glutarimidyl Group From Large 
Ribosomal Subunit Inhibitors
The primary target information on 15 bioactive molecules was 
collected from scientific literature (Table S2). Based on the 
proposed method, the primary target can be identified for all 15 
bioactive molecules with a known primary target. In addition, 
the primary target can be predicted for two bioactive molecules 
with an unknown primary target by the use of the proposed 
method. Generally, 3-glutarimidyl group contains 17 bioactive 
molecules with a predictable primary target on the basis of the 
proposed method (Table 3).

SEA, PASS online, PPB, TargetHunter, PharmMapper, 
ChemProt, and SPiDER applied to 15 bioactive molecules with 
a known primary target led to make accurate predictions on 13 
(86.7%), 12 (80%), 10 (66.7%), 10 (66.7%), 10 (66.7%), 7 (46.7%), 
and 2 (13.3%) bioactive molecules, respectively (Table  S5). 
Also, SEA, PASS online, PPB, TargetHunter, PharmMapper, 
ChemProt, and SPiDER applied to two bioactive molecules with 
an unknown primary target led to make accurate predictions 
on 2 (100%), 2 (100%), 2 (100%), 2 (100%), 0 (0%), 0 (0%), and 
0 (0%) bioactive molecules, respectively (Table S5). Since the 
primary target information on the 3-glutarimidyl group is not 
available in HitPick and SuperPred, these tools are not able to 
predict the primary target of bioactive molecules of this group.

For example, six molecules of Figure S6 were used to predict 
the large ribosomal subunit inhibition by the proposed method 
and the CTPTs. Only molecule 6 in Figure S6 is a large ribosomal 
subunit inhibitor, based on the proposed method. Among the 
CTPTs, SEA, PASS online, PPB, TargetHunter, and ChemProt 
predicted molecule 6 as a large ribosomal subunit inhibitor. 
Rao and Grollman (1967) showed molecule 6 as an inhibitor of 
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60S ribosomal subunit (large ribosomal subunit) in resistant and 
sensitive strains of Saccharomyces.

PASS online predicted molecule 5 as a large ribosomal subunit 
inhibitor, whereas molecule 5 binds at a distinct binding site 
associated with a Cl− ionopore at the GABAA receptor, increasing 

the duration of time for which the Cl− ionopore is open (Wishart 
et al., 2018).

PharmMapper predicted molecule 1 as a large ribosomal 
subunit inhibitor, whereas studies using purified mammalian 
DNA topoisomerase II suggest that molecule 1 and its structural 

TABLE 3 | The bioactive molecules with primary target of large ribosomal subunit inhibition predicted by the minimum structure.

Minimum structure Bioactive molecules

4-Aminopyrimidin-2(1H)-one
or Cytosine

Amicetin (allomycin), Antelmycin (anthelmycin), Arginomycin, 
Bagougeramine A, Bagougeramine B, Bamicetin, Blasticidin H, 
Blasticidin S, Cytimidine, Cytomycin (saitomycin), Cytosamine, 
Cytosaminomycin A, Cytosaminomycin B, Cytosaminomycin 
C, Cytosaminomycin D, Gougerotin, Mildiomycin, Mildiomycin 
B, Mildiomycin C, Mildiomycin D, Mildiomycin M, Norplicacetin, 
Oxamicetin, Oxyplicacetin (cytosaminomycin E), Plicacetin 
(amicetin B), Rodaplutin, SCH 36605, SF 2457

Comment:
The active ingredient contains at least one of the following components without a phosphorus 
group including 5-amino-5,6-dihydro-2H-pyran-2-yl (a), 5-aminotetrahydro-2H-pyran-2-yl (b) or 
4-formamidobenzoyl (c) 

a b c

2,6-Dioxo-4-piperidinyl
or 3-Glutarimidyl

9-Methylstreptimidone (S 632A2), Acetoxycycloheximide 
(streptovitacin E-73), Actiketal, Actiphenol (actinophenol), 
Cycloheximide, Epiderstatin, Inactone, Isocycloheximide, 
Isomigrastatin, Lactimidomycin, Naramycin B, 
Neoisocycloheximide, S 632A3, Streptimidone (S 632A1), 
Streptovitacin A, Streptovitacin B, Streptovitacin C2

Comments:
X1 = X3 = X5 = H
X4 ≠ H; straight-chain longer than 12-membered chain; components without -OH or -CO
Active ingredient = if there is a macrocyclic lactone ring, this ring will have at least one of the 
following components as part of the ring including (1R)-1-methyl-3-hydroxybutan-1-yl formate (a), 
(R)-1-methylbut-3-en-1-yl formate (b), (1R)-1-methyl-3-aminobutan-1-yl formate (c) or (1R)-1-
methyl-3-oxobutan-1-yl formate (d)

a b

c dd

(1R)-Propan-1-ol
or (1R)-Propanol

Azidamfenicol, Bromamphenicol (bromoamphenicol), 
Cetofenicol (cetophenicol), Chloramphenicol, Florfenicol, 
Monoiodoamphenicol, Racefenicol (racephenicol), Tevenel, 
Thiamphenicol, WIN 5094-2

Comments:
(1R)-Propanol ≠ cyclic bonds
X1 = aromatic ring
X2 = -NCO; -NSO2

X3 = O; F; Cl; Br; I
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analogs (e.g., mitonafide) represent a new class of intercalative 
topoisomerase II-active antitumor drugs (Hsiang et al., 1989).

PharmMapper predicted molecule 2 and molecule 4 as 
large ribosomal subunit inhibitors, whereas molecule 2 and the 
immunomodulatory drug, molecule 4, are therapeutically active 
in hematological malignancies (Lopez-Girona et al., 2012). 
The ubiquitously expressed E3 ligase protein cereblon has been 
identified as the primary teratogenic target of molecule 2 and 
molecule 4 (Lopez-Girona et al., 2012).

PharmMapper predicted molecule 3 as a large ribosomal 
subunit inhibitor, whereas molecule 3 is a tetralone-fused spiro-
glutarimide derivative mainly known for sedative and hypnotic 
activity (Mondal et al., 2018).

The target data of molecules 1, 2, 3, 4, and 5 and molecules 
with a structural similarity of 85% and more to molecules 1, 2, 3, 
4, and 5 for the large ribosomal subunit inhibition were not found 
in ChEMBL database, but based on the obtained information, it 
is unlikely that the target of these molecules is large ribosomal 
subunit inhibition. Employing the minimum structure in 
3-glutarimidyl group for identifying a bioactive molecule with 
the target of large ribosomal subunit inhibition has been shown 
in Figure S6.

(1R)-Propanol Group From Large 
Ribosomal Subunit Inhibitors
The primary target information on 10 bioactive molecules was 
collected from scientific literature (Table S2) and databases 
(Table S3). Of these 10 bioactive molecules, scientific literature 
and databases contain the primary target information on 9 (90%) 
and 6 (60%) bioactive molecules, respectively.

Based on the proposed method, the primary target can be 
identified for all 10 bioactive molecules with a known primary 
target (Table 3). PASS online, PharmMapper, and SEA applied 
to 10 bioactive molecules with a known primary target led to 
make accurate predictions on 10 (100%), 9 (90%), and 0 (0%) 
bioactive molecules, respectively (Table S5). Since the primary 
target information on the (1R)-propanol group is not available in 
PPB, ChemProt, TargetHunter, HitPick, SPiDER, and SuperPred, 
these tools are not able to predict the primary target of bioactive 
molecules of this group.

For example, six molecules of Figure S7 were used to predict the 
large ribosomal subunit inhibition by the proposed method and the 
CTPTs. Only molecule 4 in Figure S7 is a large ribosomal subunit 
inhibitor, based on the proposed method. Among the CTPTs, 
PASS online and PharmMapper predicted molecule 4 as a large 
ribosomal subunit inhibitor. Thiamphenicol and molecule 4 were 
shown to be as chloramphenicol in inhibiting peptidyl transferase 
activity specifically on 70S ribosomes (Cannon et al., 1990).

PASS online and SEA predicted molecule 1 as a large 
ribosomal subunit inhibitor, whereas molecule 1 (an amino 
acid) is an important intermediate in many syntheses (Mishra 
et al., 2003). Amino acids are extensively used in the synthesis 
of several products used in chemical, pharmaceutical, food, and 
health industries (Liu et al., 2014a).

PASS online predicted molecule 2 as a large ribosomal subunit 
inhibitor, whereas molecule 2  is an acetamide derivative of 

safingol. Safingol is a lysosphingolipid protein kinase C inhibitor 
that competitively interacts at the regulatory phorbol binding 
domain of protein kinase C (Sachs et al., 1995).

PASS online and PharmMapper predicted molecule 3 as a large 
ribosomal subunit inhibitor, whereas molecule 3 is a commonly 
used intense artificial sweetener, being approximately 200 times 
sweeter than sucrose (Sathyapalan et al., 2015). The interaction 
of sugars (or any sweet tasting ligand) with the T1R2+T1R3 
sweet receptor (taste receptor type 1 members 2 and 3) sets into 
motion a biochemical chain of events that impacts on the activity 
of the TRPM5 cation channel (transient receptor potential cation 
channel subfamily M member 5), which is critical for further 
propagation of the taste signal (Zhang et al., 2003).

PASS online and PharmMapper predicted molecule 5 as a 
large ribosomal subunit inhibitor, whereas findings by Heneka 
et al. (2010) suggest that norepinephrine or the norepinephrine 
precursor molecule 5 acts through an adrenergic receptor 
in nearby microglia to stimulate their migration toward and 
phagocytic clearance of Aβ aggregates.

PASS online and PharmMapper predicted molecule 6 
as a large ribosomal subunit inhibitor, whereas molecule 6 
(p-chlorophenyl-α-glycerol ether) has been recommended as 
an antibacterial and antifungal agent of pharmaceutical interest 
(Hartley, 1947). The glycerol ethers (e.g., molecule 6) are non-
irritant but possess the weakest antimicrobial action (Berger 
et al., 1953). The antimicrobial activity increased with the number 
of substituents on the benzene nucleus and, to a certain extent, 
was a function of the position of substitution (Berger et al., 1953).

The target data of molecules 1, 2, 3, 5, and 6 and molecules 
with a structural similarity of 85% and more to molecules 1, 2, 3, 
5, and 6 for the large ribosomal subunit inhibition were not found 
in ChEMBL database, but based on the obtained information, it 
is unlikely that the target of these molecules is large ribosomal 
subunit inhibition. Employing the minimum structure in 
(1R)-propanol group for identifying a bioactive molecule with 
the target of large ribosomal subunit inhibition has been shown 
in Figure S7.

Imidazol-1-yl Group From Sterol 
14α-Demethylase Inhibitors
The primary target information on 42 bioactive molecules was 
collected from scientific literature (Table S2) and databases 
(Table S3). Of these 42 bioactive molecules, scientific literature 
and databases contain the primary target information on 38 
(70.4%) and 30 (55.6%) bioactive molecules, respectively.

Based on the proposed method, the primary target can be 
identified for all 42 bioactive molecules with a known primary 
target. In addition, the primary target can be predicted for 12 
bioactive molecules with an unknown primary target by the use 
of the proposed method. Generally, imidazol-1-yl group contains 
54 bioactive molecules with a predictable primary target on the 
basis of the proposed method (Table 4).

PASS online, SEA, PPB, TargetHunter, ChemProt, SuperPred, 
and HitPick applied to 42 bioactive molecules with a known 
primary target led to make accurate predictions on 42 (100%), 
37 (88.1%), 26 (62%), 22 (52.4%), 18 (42.9%), 17 (40.5%), and 
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16 (38.1%) bioactive molecules, respectively (Table S5). Also, 
PASS online, SEA, PPB, TargetHunter, HitPick, SuperPred, and 
ChemProt applied to 12 bioactive molecules with an unknown 
primary target led to make accurate predictions on 12 (100%), 
11 (91.7%), 11 (91.7%), 8 (66.7%), 4 (33.3%), 3 (25%), and 
1  (8.3%) bioactive molecules, respectively (Table S5). Since 
the primary target information on the imidazol-1-yl group 
is not available in PharmMapper and SPiDER, these tools are 
not able to predict the primary target of bioactive molecules 
of this group.

For example, six molecules of Figure S8 were used to 
predict the sterol 14α-demethylase inhibition by the proposed 
method and the CTPTs. Only molecule 5 in Figure S8 is a sterol 
14α-demethylase inhibitor, based on the proposed method. 

Among the CTPTs, PASS online, SEA, and PPB predicted 
molecule 5 as a sterol 14α-demethylase inhibitor. Molecule 5 is 
a novel topical imidazole with a target similar to that of other 
azole antifungals, namely, lanosterol 14α-demethylase inhibition 
(Torres-Rodríguez et al., 1999).

PASS online, SEA, and PPB predicted molecule 1 as a sterol 
14α-demethylase inhibitor, whereas molecule 1 is an imidazole 
derivative that is devoid of antifungal activity (Vanden Bossche, 
1992). Molecule 1 is known to inhibit several cytochrome P-450 
enzymes, including retinoic acid 4-hydroxylase and aromatase 
(Bruynseels et al., 1990; De Coster et al., 1992).

PASS online predicted molecule 2 as a sterol 14α-demethylase 
inhibitor, whereas molecule 2 is used in agriculture in seed 
treatment, only in mixture with other fungicides, to control 

TABLE 4 | The bioactive molecules with primary target of sterol 14α-demethylase inhibition predicted by the minimum structure.

Minimum structure Bioactive molecules

1H-Imidazol-1-yl
or Imidazol-1-yl

Comments:
X1 = hydrophobic group (directly or indirectly)
X1 ≠ methylbenzonitrile (a); methylphenylacetonitrile (b)
X2 = X4 = X5 = H
Active ingredient = if there is a fused aromatic ring, the molecule will have an aromatic 
ring with a halogen in position 2 or 4
Active ingredient ≠ carbanilate (c); an imidazol-1-yl at one end of the molecule and a 
carboxylate (-COO) at the other end; single (S)-enantiomer in the molecule with one 
atom stereocenter

a b c

N
H

O

O•

1-Dodecylimidazole (N-dodecylimidazole), AFK 108, Aliconazole, 
Arasertaconazole, Azalanstat, BAY C-9263, BAY D-9603, Becliconazole, 
Bifonazole, Brolaconazole, Butoconazole, Cisconazole, Climbazole, 
Clotrimazole, Croconazole, Democonazole, Dichlorophenyl 
imidazoldioxolan (elubiol), Doconazole, Eberconazole, Econazole, 
Fenapanil, Fenticonazole, Flutrimazole, Imazalil (enilconazole), Isoconazole, 
Ketaminazole, Ketoconazole, Lanoconazole, Lombazole, Luliconazole, 
MH 0685, Miconazole, Neticonazole, OK 8705, OK 8801, Omoconazole, 
Orconazole, Oxiconazole, Oxpoconazole, Parconazole, Pefurazoate, 
PR 967-234, Prochloraz, R 31000, Sertaconazole, SM 4470, SSF 
105, Sulconazole, Tioconazole, Triflumizole, UK 38667, Valconazole, 
Zinoconazole, Zoficonazole

1H-1,2,4-Triazol-1-yl
or 1,2,4-Triazol-1-yl

Comments:
X1 = hydrophobic group (directly or indirectly)
X1 ≠ methylbenzonitrile (a); methylphenylacetonitrile (b)
X3 = X5 = H
Active ingredient = if there is a fused aromatic ring, the molecule will have an aromatic 
ring with a halogen in position 2 or 4
Active ingredient ≠ carbanilate (c); single (S)-enantiomer in the molecule with one atom 
stereocenter

a b c

N
H

O

O•

Albaconazole, Alteconazole, Azaconazole, BAS 110, BAS 111, 
BAS 45406F, Bitertanol, Bromuconazole, Cyproconazole, D 0870, 
Diclobutrazol, Difenoconazole, Diniconazole, Efinaconazole, Embeconazole, 
Epoxiconazole, Etaconazole, Fenbuconazole, Fluconazole, Fluotrimazole, 
Fluquinconazole, Flusilazole, Flutriafol, Fosfluconazole, Furconazole, 
Genaconazole (SCH 39304), Hexaconazole, ICI 153066, ICI 195739, 
Imibenconazole, Ipconazole, Ipfentrifluconazole, Isavuconazole, 
Itraconazole, LAB 158241F, LAB 170250F, Mefentrifluconazole, 
Metconazole, Myclobutanil, Penconazole, Posaconazole, PP 969, 
Pramiconazole, Propiconazole, Quinconazole, Ravuconazole, 
Saperconazole, SCH 42427, SCH 51048, SDZ 89-485, Simeconazole, 
SSF 109 (huanjunzuo), SSY 726, SYN 2506, SYN 2836, SYN 2869, SYN 
2903, SYN 2921, T 8581, TAK 187, TAK 456, Tebuconazole, Terconazole 
(triaconazole), Tetraconazole, Triadimefon, Triadimenol, Triticonazole, UK 
47265, UK 51486, Uniconazole, UR 9746, UR 9751, Vibunazole (BAY 
N-7133), Voriconazole, YH 1715R
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a range of fungal diseases (European Food Safety Authority, 
2011). Molecule 2 is a contact and non-systemic fungicide; 
target organisms are killed on contact with the fungicide, 
although the mode of action is not known (European Food 
Safety Authority, 2011).

PASS online, SEA, PPB, SuperPred, and HitPick predicted 
molecule 3 as a sterol 14α-demethylase inhibitor. Molecule 
3 (an anticancer drug) is a racemate comprising equimolar 
amounts of cis-isomer and trans-isomer. Molecule 3 isomers 
represent a class of chemical compounds that are unique 
in that in mammalian cells only the cis-isomer inhibits 
tubulin polymerization, whereas the trans-isomer does not 
(Geuens et al., 1985). Structurally, molecule 3 is related to a 
β-tubulin inhibitor called diethofencarb due to the carbanilate 
(phenylcarbamate) moiety.

PASS online predicted molecule 4 as a sterol 14α-demethylase 
inhibitor, whereas it is now clear that farnesyl pyrophosphate 
synthase is a major site of action of the nitrogen-containing 
bisphosphonates (e.g., molecule 4) (Van Beek et al., 1999).

PASS online and SEA predicted molecule 6 as a sterol 
14α-demethylase inhibitor, whereas it has been suggested 
that molecule 6 is a selective thromboxane synthase inhibitor 
(Iizuka et al., 1981). OKY (development code) is a group 
of selective thromboxane A2 biosynthesis inhibitors that 
have been collaboratively developed by the two companies 
(Kitamura et al., 1984). As a result of screening of OKY 
derivatives synthesized by the two companies, molecule 6 was 
selected (Kitamura et al., 1984).

The target data of molecules 1, 2, 3, 4, and 6 and molecules 
with a structural similarity of 85% and more to molecules 1, 2, 3, 
4, and 6 for the sterol 14α-demethylase inhibition were not found 
in ChEMBL database, but based on the obtained information, 
it is unlikely that the target of these molecules is sterol 
14α-demethylase inhibition. Employing the minimum structure 
in imidazol-1-yl group for identifying a bioactive molecule with 
the target of sterol 14α-demethylase inhibition has been shown 
in Figure S8.

1,2,4-Triazol-1-yl Group From Sterol 
14α-Demethylase Inhibitors
The primary target information on 63 bioactive molecules was 
collected from scientific literature (Table S2) and databases 
(Table S3). Of these 63 bioactive molecules, scientific literature 
and databases contain the primary target information on 62 
(98.4%) and 34 (54%) bioactive molecules, respectively.

Based on the proposed method, the primary target can be 
identified for all 63 bioactive molecules with a known primary 
target. In addition, the primary target can be predicted for 12 
bioactive molecules with an unknown primary target by the 
use of the proposed method. Generally, 1,2,4-triazol-1-yl group 
contains 75 bioactive molecules with a predictable primary target 
on the basis of the proposed method (Table 4).

PASS online, SEA, PPB, TargetHunter, ChemProt, SuperPred, 
and HitPick applied to 63 bioactive molecules with a known 
primary target led to make accurate predictions on 63 (100%), 
62 (98.4%), 57 (90.5%), 47 (74.6%), 32 (50.8%), 24 (38.1%), and 

13 (20.6%) bioactive molecules, respectively (Table S5). Also, 
PASS online, SEA, PPB, TargetHunter, ChemProt, HitPick, and 
SuperPred applied to 12 bioactive molecules with an unknown 
primary target led to make accurate predictions on 12 (100%), 
12 (100%), 11 (91.7%), 7 (58.3%), 3 (25%), 2 (16.7%), and 2 
(16.7%) bioactive molecules, respectively (Table S5). Since 
the primary target information on the 1,2,4-triazol-1-yl group 
is not available in PharmMapper and SPiDER, these tools are 
not able to predict the primary target of bioactive molecules of 
this group.

For example, six molecules of Figure S9 were used to 
predict the sterol 14α-demethylase inhibition by the proposed 
method and the CTPTs. Only molecule 2 in Figure S9 is a sterol 
14α-demethylase inhibitor, based on the proposed method. 
Among the CTPTs, PASS online predicted molecule 2 as a 
sterol 14α-demethylase inhibitor. Molecule 2 is known to bind 
and inhibit fungal sterol 14α-demethylase, a cytochrome P450 
enzyme found in plants, animals, fungi, and  Mycobacteria 
(Kapteyn et al., 1994).

Molecule 3 in PASS online, SEA, PPB, and ChemProt, as 
well as molecule 5 in PASS online and SEA are predicted as 
sterol 14α-demethylase inhibitors, whereas molecule 3 and 
molecule 5 are non-steroidal molecules that potently inhibit 
aromatase in vitro and in vivo (Wouters et al., 1989a; Wouters 
et al., 1989b; Bhatnagar et al., 1990). Also, molecule 5, in 
contrast to the azole antifungal agents, is devoid of effects on 
the P450-dependent ergosterol and cholesterol synthesis 
(Vanden Bossche et al., 1990).

PASS online and SEA predicted molecule 4 as a sterol 
14α-demethylase inhibitor, whereas molecule 4 is a potent, highly 
selective 5-HT1B/1D receptor agonist with rapid onset of action for 
acute treatment of migraine (Street et al., 1995).

PASS online and PPB predicted molecule 6 as a sterol 
14α-demethylase inhibitor, whereas molecule 6 is an organotin 
miticide whose target is to disrupt oxidative phosphorylation 
by inhibition of the mitochondrial ATP synthase (Linnett and 
Beechey, 1979).

The target data of molecules 1, 3, 4, 5, and 6 and molecules 
with a structural similarity of 85% and more to molecules 1, 
3, 4, 5, and 6 for the sterol 14α-demethylase inhibition were 
not found in ChEMBL database, but based on the obtained 
information, it is unlikely that the target of these molecules is 
sterol 14α-demethylase inhibition. Employing the minimum 
structure in 1,2,4-triazol-1-yl group for identifying a bioactive 
molecule with the target of sterol 14α-demethylase inhibition has 
been shown in Figure S9.

DISCUSSION AND CONCLUSION

Altogether, PASS online, SEA, PPB, ChemProt, TargetHunter, 
PharmMapper, SuperPred, HitPick, and SPiDER applied to 381 
bioactive molecules with known primary targets led to make 
accurate predictions on 378 (99.2%), 243 (63.8%), 219 (57.5%), 
185 (48.6%), 171 (44.9%), 140 (36.7%), 42 (11%), 29 (7.6%), and 
2 (0.5%) bioactive molecules, respectively (Table S5). Also, PASS 
online, PPB, SEA, TargetHunter, PharmMapper, ChemProt, 
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HitPick, SuperPred, and SPiDER applied to 169 bioactive 
molecules with unknown primary targets led to make accurate 
predictions on 168 (99.4%), 81 (47.9%), 79 (46.7%), 75 (44.4%), 
67 (39.6%), 61 (36.1%), 6 (3.6%), 5 (3%), and 0 (0%) bioactive 
molecules, respectively (Table S5).

If groups that do not have the primary target information or 
the neighbor molecule in the CTPTs are removed from results 
of the CTPTs, then we will have predictions of the CTPTs 
as follows: a) Prediction results of PASS online, SEA, PPB, 
ChemProt, TargetHunter, PharmMapper, HitPick, SuperPred, 
and SPiDER on bioactive molecules with known primary targets 
led to make accurate predictions on 99.2%, 91.7%, 85.9%, 53.8%, 
53.6%, 50.7%, 27.6%, 17.5%, and 13.3% bioactive molecules, 
respectively. b) Prediction results of PASS online, PPB, SEA, 
TargetHunter, PharmMapper, ChemProt, HitPick, SuperPred, 
and SPiDER on bioactive molecules with unknown primary 
targets led to make accurate predictions on 99.4%, 95.3%, 92.9%, 
47.2%, 46.2%, 37.7%, 25%, 6%, and 0% bioactive molecules, 
respectively. Among the CTPTs, PASS online, SEA, and PPB had 
the most accurate predictions. Unlike the other six CTPTs, the 
accuracies of predictions on bioactive molecules with unknown 
primary targets in PPB, SEA, and PASS online were respectively 
9.4%, 1.2%, and 0.2% higher than those on bioactive molecules 
with known primary targets. This means that PPB, SEA, and 
PASS online can predict unseen interactions between bioactive 
molecules and potential targets better than other six CTPTs.

It should be noted that results presented for the CTPTs include 
all targets of the prediction list with any statistical significance. 
The approach of each CTPT compared to other CTPTs to provide 
prediction results may vary greatly in terms of the number of 
targets on the prediction list and the use of statistical methods. 
For example, PASS online and SEA, unlike each other, contain a 
large number and a small number of targets on the prediction list, 
respectively. In the present study, results of accurate predictions 
of some CTPTs, which use a large number of targets on the 
prediction list, may change with consideration of the statistical 
significance. For example, in the present study, all of accurate 
predictions of SEA have high chances of the statistical significance, 
but approximately 41% of accurate predictions of PASS online 
are unlikely to exhibit the activity in experiment (if Pa < 0.5, the 
molecule is unlikely to exhibit the activity in experiment).

The CTPTs have made significant advances and improvements, 
but are still far from perfect. For example, molecule 3 and molecule 
4 in Figure S4 are considered as effective inhibitors of mammal-
derived matrix metalloproteinases (Liu et al., 2002), whereas 
activity probabilities of molecule 3 and molecule 4 for matrix 
metalloproteinase are predicted to be 0.065 and 0.04, respectively 
(if Pa < 0.5, the molecule is unlikely to exhibit the activity in 
experiment) by PASS online. Also, according to Liu et al. (2002), 
molecule 3 and molecule 4 in Figure S4 have lost their antibacterial 
activity, whereas activity probabilities of molecule 3 and molecule 
4 for antibacterial activity are predicted to be 0.573 and 0.512, 
respectively (if 0.5 < Pa < 0.7, the molecule is likely to exhibit the 
activity in experiment) by PASS online. For example, molecule 2 
in Figure S4 is an inhibitor of neuropeptide substance P binding 
(Wong et al., 1993), whereas the activity probability of molecule 2 
for neurokinin 1 and neurokinin is predicted to be 0.089 and 0.071, 

respectively, by PASS online. For example, molecule 1 in Figure S7, 
which is an important intermediate for the synthesis of several 
products used in the chemical industry (Mishra et al., 2003; Liu 
et al., 2014a), is predicted as a 60S ribosomal protein L19-A by SEA, 
whereas molecule 4 in Figure S7, which is a peptidyl transferase 
activity inhibitor (Cannon et al., 1990), is not predicted as a ribosomal 
activity inhibitor by SEA. For example, molecule 5 in Figure S8 
is a novel topical imidazole with a target similar to that of other 
azole antifungals, namely, lanosterol 14α-demethylase inhibition 
(Torres-Rodríguez et al., 1999), whereas molecule 5 is predicted 
for cytochrome P450 51 and lanosterol 14-alpha demethylase with 
rankings 85 and 134, respectively, by PPB. For example, molecule 
3 in Figure S8, which is a tubulin inhibitor (Geuens et al., 1985), 
is predicted as a microtubule-associated protein tau with p-value 
>0.01 by PPB, whereas molecule 3 is predicted as a cytochrome 
P450 51 with p-value ≤0.01 by PPB. For example, molecule 3 in 
Figure S8 is a racemate comprising equimolar amounts of cis-
isomer and trans-isomer. Molecule 3 isomers represent a class of 
chemical compounds that are unique in that in mammalian cells 
only the cis-isomer inhibits tubulin polymerization, whereas the 
trans-isomer does not (Geuens et al., 1985). The CTPTs applied to 
the cis-isomer and the trans-isomer of molecule 3 showed the same 
predicted targets (also the relevant statistical significance) for these 
two isomers. The available information on stereochemistries from 
suppliers is usually ambiguous (configuration of the stereocenter is 
not resolved) and also molecules in the CTPTs are often processed as 
non-stereo; hence, large differences in the potency of stereoisomers 
of a molecule are not distinguished in the CTPTs.

The high accuracy of the proposed method in target 
prediction can be attributed to several causes. First, information 
on the target and the structure–activity relationship is mainly 
collected from peer-reviewed articles. A wealth of information 
on the activity of bioactive molecules exists in the literature, 
and access to this information can enable many types of 
analysis and making the right decision (Gaulton et al., 2012). 
Second, information obtained from various sources including 
scientific literature, databases, and pharmacophoric descriptors 
is checked for mistakes. Third, while information on the target, 
the chemical structure, the structure–activity relationship, and 
the pharmacophore is valid in its own right, the confidence in the 
observed outcome is significantly increased by a multi-validation 
method. Fourth, the nature of the proposed method is based on 
minimal mistakes because it is necessary to know which part(s) 
of the bioactive molecule determines the precise target or targets 
responsible for the observed phenotype in the proposed method.

The proposed method was applied to 550 target predictions, 
of which 169 are new predictions. Results of bioactivity assays 
and target predictions from ChEMBL database were available 
for seven predictions of the proposed method, which confirmed  
five targets predicted by the proposed method, two of which were 
validated in vitro to be potent with affinities less than 1 µM. Recently, 
the proposed method has been applied to predict mechanisms of 
action and targets in herbicides, two of which were confirmed by 
in vivo and in vitro experiments with an IC50 of less than 1 µM. If 
the reliable prediction of bioactive molecule targets from non-
digital materials is not the most important achievement in this 
field, it is undoubtedly one of the most important achievements. 
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The proposed method can be a prelude to future studies and 
facilitate solving complex scientific puzzles about the behavior of 
bioactive molecules.
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