

Efficacy and Safety of Multiple Dosages of Fostamatinib in Adult Patients With Rheumatoid Arthritis: A Systematic Review and Meta-Analysis

Yaqi Kang^{1†}, Xinrui Jiang^{1†}, Dalian Qin^{1,2}, Long Wang^{1,2}, Jing Yang^{1,2}, Anguo Wu^{1,2}, Feihong Huang^{1,2}, Yun Ye^{1,3*} and Jianming Wu^{1,2,3*}

OPEN ACCESS

Edited by:

Ye Fang, Corning Inc., United States

Reviewed by:

Sunita Nair, Decision Resources Group, India Robert L. Lins, Retired, Antwerp, Belgium

*Correspondence:

Jianming Wu jianmingwu@swmu.edu.cn Yun Ye yeyun8622@163.com

[†]These authors have contributed equally to this work.

Specialty section:

This article was submitted to Pharmaceutical Medicine and Outcomes Research, a section of the journal Frontiers in Pharmacology

Received: 12 May 2019 Accepted: 16 July 2019 Published: 14 August 2019

Citation:

Kang Y, Jiang X, Qin D, Wang L, Yang J, Wu A, Huang F, Ye Y and Wu J (2019) Efficacy and Safety of Multiple Dosages of Fostamatinib in Adult Patients With Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Front. Pharmacol. 10:897. doi: 10.3389/fphar.2019.00897 ¹ School of Pharmacy, Southwest Medical University, Luzhou, China, ² Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China, ³ Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China

Background: Rheumatoid arthritis is a type of systemic and complex autoimmune other disease characterized by chronic joint inflammation. Spleen tyrosine kinase (Syk) inhibitors are regarded as an effective alternative to existing drugs for the treatment of this disease. However, studies evaluating fostamatinib, a new Syk inhibitor, are either invalid or insufficient. Through a systematic review and meta-analysis, we evaluated the efficacy and safety of fostamatinib at different dosages in rheumatoid arthritis patients that display an inadequate response to methotrexate or disease-modifying antirheumatic drugs.

Methods: Randomized controlled trials published between January 2000 and November 2018 were retrieved from PubMed, Embase, Medline, Web of Science, and The Cochrane Library. We also searched a relevant website (www.clinicaltrials.gov) for retrieval of unpublished data. These studies compared different dosages of fostamatinib to placebo, including the intake of 100 mg fostamatinib twice per day (bid) for 4 weeks followed by 150 mg once per day (qd) vs. the intake of 100 mg bid.

Results: Two investigators analyzed 11 randomized placebo-controlled trials consisting of 3,680 patients. Compared to placebo, fostamatinib resulted in an obvious reduction in the American College of Rheumatology 20% response standard [weighted mean difference (WMD) 1.96, 95% confidence interval (CI) [1.46, 2.61], P < 0.001] and disease activity score < 2.6 (WMD 4.70, 95% CI [3.14, 7.03], P < 0.001). Regarding safety, the incidence of serious adverse reactions was higher in the fostamatinib group than in the placebo group [risk ratio (RR) 2.10, 95% CI [1.57, 2.80], P < 0.001]. The same was true for other adverse events [RR 1.63, 95%CI [1.33, 2.01], P < 0.001].

Conclusions: Fostamatinib is an effective and safe therapeutic medicine administered to patients with rheumatoid arthritis over 24 weeks. It can alleviate the degree of swelling

1

and inflammation of the joints. Furthermore, 100 mg bid can be considered the most beneficial regimen over a 24-week period. More data are however needed to clarify the incidence of other adverse events and serious adverse reactions.

Keywords: fostamatinib, rheumatoid arthritis, ACR 20, DAS23-CRP, SF-36, HAQ-DI response, systematic review

INTRODUCTION

Rationale

Rheumatoid arthritis (RA) is one of the world's most common chronic inflammatory joint diseases (Smolen et al., 2016) caused by the innate and adaptive immune systems. Initially, it is mainly characterized by a chronic, joint synovial inflammation, which is a type of systemic autoimmune dysfunction (Cecchi et al., 2018) that ultimately results in pathological deformities of the joint (Cecchi et al., 2018). Although genetic factors have been estimated to be the main cause (about 50%) of RA, environmental factors, female sex hormones, and infections may also act as a trigger for RA (Scott et al., 2010). The prevalence of RA is relatively stable at 0.5-1.0% of adults in developed countries with 5-50 per 100,000 of incident cases annually (Silman and Pearson, 2002; Scott et al., 2010). Findings of population-based research show that RA is more frequently observed in women and elderly people, with its highest prevalence in women older than 65 years. This suggests that hormonal factors may also play a pathogenic role (Scott et al., 2010). Not only does quality of life decreases and the risk of co-infection increases, but also the working ability of patients with RA reduces (Cross et al., 2014). RA therefore places a heavy burden on society and individuals, warranting the establishment of an early diagnosis and treatment to reduce and prevent subsequent damages.

Existing studies have shown that the pathogenesis of RA is related to the release of interleukin (IL)-1, IL-6, IL-17, IL-23, and tumor necrosis factor- α (TNF- α) (Karmakar et al., 2010). To add, IL-10, transforming growth factor-β (TGF-β), and IL-6 release in osteoclasts promotes the progression of inflammation (Lam et al., 2000; Li et al., 2010). Nevertheless, the exact pathogenesis of RA is yet to be revealed. Through experimental models of arthritis, researchers (Cecchi et al., 2018) revealed that neutrophils are important players in the progression of the disease. Several types of drugs for RA are currently available: 1) traditional disease-modifying antirheumatic drugs (DMARDs) such as sulfasalazine and methotrexate (MTX); 2) biologic DMARDs such as TNF inhibitors, abatacept, and rituximab; and 3) glucocorticoids. However, all three categories of therapies may result in a lack of or an inadequate response. Spleen tyrosine kinase (Syk) inhibitors are therefore considered as an effective alternative to existing drugs.

Syk is a vital non-receptor-type protein tyrosine kinase (PTK) that activates downstream MAPKs and the PI3K pathway to increase the production of IL-6 and matrix metalloproteinase (MMP). Syk is still present in patients with RA synovitis and its activated form plays an important role in the production of

fibroblast-like synoviocytes induced by TNF- α (Pine et al., 2007). Fostamatinib (R935788) is the prodrug of R406 that acts as a potent Syk inhibitor (Scott, 2011). Fostamatinib has excellent physiochemical properties and can be rapidly and extensively metabolized to R406 by intestinal alkaline phosphatase, allowing easy absorption of the highly hydrophobic R406 (Scott, 2011). Fostamatinib was demonstrated to have potent anti-inflammatory effects through selectively abrogating the B-cell receptor signaling pathway, suppressing joint swelling, joint synovitis, bone erosion, and pannus formation (Liu and Mamorska-Dyga, 2017). This finding has also been confirmed in rats (Pine et al., 2007). Experiments in healthy volunteers have also demonstrated that fostamatinib is appropriate for clinical development (Baluom et al., 2013).

Objectives

To evaluate the efficacy and safety of multiple doses of fostamatinib in patients with active RA through a systematic review and meta-analysis.

Research Question

To date, many clinical trials on fostamatinib have been completed and some have evaluated its safety and effectiveness (Kunwar et al., 2016). However, a study comparing the efficacy of multiple dosages and different administration methods has not been performed. This is due to limitations such as outcome indicators and the inability to evaluate the quality of life of patients. Nonetheless, a study identified a significant improvement using the health assessment questionnaire (HAQ) and physical component scores (PCS) in the group administered fostamatinib (Kawalec et al., 2013). We conducted a systematic review and meta-analysis to evaluate the efficacy and safety of multiple doses of fostamatinib in patients with active RA.

METHODS

Study Design

A meta-analysis based on articles and randomized controlled trials (RCTs) related to fostamatinib for the treatment of RA selected from various databases.

Systematic Review Protocol

Two investigators (K.Y.Q and J.X.R) independently reviewed the title and abstract of studies related to fostamatinib for the treatment of RA and selected RCTs. Published or unpublished RCTs were searched in databases without language restriction. All selected studies were read in detail and those that met the inclusion criteria were selected for final analysis. All trials had the following conditions (Table 1):

- 1) Patients: any race, older than 18 years, and diagnosed with inadequate response to MTX or DMARDs for RA.
- 2) Interventions: use of fostamatinib in multiple dosages as therapy, with an intervention duration of at least 6 weeks.
- 3) Comparison: A) multiple doses of fostamatinib compared to placebo at 24 weeks. B) 100 mg twice per day (bid) for 4 weeks followed by 150 mg once per day (qd) compared to 100 mg bid.
- 4) Outcomes: the following indicators were reported from the studies: a) American College of Rheumatology response criteria of 20, 50, 70 percentage (ACR20/50/70); b) American College of Rheumatology index of RA improvement (ACRn);
 c) Disease activity score based on a count of swollen and tender joints (out of 28 joints), C-reactive protein (blood test measures of inflammation) and the patient's own assessment

TABLE 1 | PICOS criteria for inclusion and exclusion of studies.

Parameter	Inclusion criteria	Exclusion criteria
Patients	Adults of any race, older than 18 years; Diagnosed with rheumatoid arthritis and inadequate response to treatment with MTX or DMARDs.	Patients under the age of 18; Females who are pregnant or breast feeding; Healthy people without rheumatoid arthritis.
Intervention	Fostamatinib in 50 mg bid, 75 mg bid, 100 mg bid dosages as therapy; Duration of at least 6 weeks.	Other doses of fostamatinib, such as 150 mg qd, 100 mg qd.
Comparator	Multiple doses of fostamatinib vs. placebo. Fostamatinib 100 mg twice per day (bid) for 4 weeks followed by 150 mg once per day (qd) vs. fostamatinib 100 mg bid.	Comparing with adalimunab.
Outcomes	Primary outcome: ACR 20; Second outcomes: ACR50/70 and ACRn, DAS28-CRP<2.6 or DAS28-CRP \leq 3.2, DAS28-CRP EULAR ResponseSF-36 in PCS and SF-36 in MCS, HAQ-DI \geq 0.22; Adverse effects or complications related to the use of fostamatinib.	Studies without defined clinical outcomes; Research only based or Radiography.
Study	Randomized controlled trials.	Review, case reports,
design		no-human studies, conference abstract,

PICOS, patients, intervention, comparator, outcomes, study design; RCTs, Randomized clinical trials; qd, once per day. ACR20/50/70, American College of Rheumatology response criteria of 20, 50, 70 percentage; ACRn, American College of Rheumatology index of RA improvement; DAS28-CRP, Disease activity score based on a count of swollen and tender joints (out of 28 joints), C-reactive protein (blood test measures of inflammation) and the patient's own assessment; SF-36, 36-item short form health survey, evaluation of the indicators of a healthy quality of life; PCS, Physical component scores, a scale of 0 to 100; MCS, Mental component scores, a scale of 0 to 100; HAQ-DI ≥ 0.22, HAQ−disability index response that compares change (≥0.22) from baseline. (DAS28-CRP). DAS28-CRP < 2.6 or DAS28-CRP \leq 3.2, DAS28-CRP by using European League Against Rheumatism (EULAR) response; d) SF-36, which is a 36-item short form health survey, evaluation of the indicators of a healthy quality of life. PCS: Physical component scores, a scale of 0 to 100. MCS: Mental component scores, a scale of 0 to 100. A higher score can represent a better quality of life; e) HAQ-DI \geq 0.22: HAQ - disability index response which compares change (\geq 0.22) from baseline; and f) serious adverse events (SAEs) and other AEs. Exclusion criteria included non-randomized trials, animals, healthy volunteers, case reports, or conference abstract.

Search Strategy

We systematically searched PubMed, Medline, Embase, Web of Science, the Cochrane Library, and Clinical Trials (http:// www.clinicaltrials.gov), without language restriction, from their inception to November 2018, (**Figure 1**). We used Mesh database and the following search queries: (((((R788) OR fostamatinib) OR "fostamatinib" [Supplementary Concept])) AND ((("Arthritis, Rheumatoid" [Mesh]) OR rheumatoid arthritis) OR RA). The PROSPERO registration number is "CRD42018117737."

DATA EXTRACTION

Two investigators (YK and XJ) extracted the summary characteristics of the included studies (study design, number of patients, trial interventions, and outcomes), and participants' baseline characteristics (age, sex, race, background therapy, and locations). Sponsors were also considered.

Data Analysis

All primary and second outcomes were analyzed using RevMan 5.3 software (Nordic Cochrane Center, Copenhagen, Denmark; http://www.cochrane.org/). Odds ratio (OR) was calculated with 95% confidence intervals (CIs) for dichotomous data. For adverse events, risk ratio (RR) was computed with 95% CIs. Furthermore, we used weighted mean difference (WMD) with 95% CIs for continuous data. I² was calculated through statistics to estimate heterogeneity. If I² was < 50%, a fixed-effect model with the analyses conducted by the Mantel-Haenszel method was accepted by the two investigators; otherwise, the randomeffect model was adopted. Sensitivity analysis was also adopted to examine the possible influence of some of the single studies excluding possible extreme observations. Risk of bias was derived using Cochrane Collaboration's tool (Higgins et al., 2011) and was estimated separately for different outcomes of interest when considered appropriate by the investigators. Based on the limitations of the research design, the directness, consistency, accuracy, and publication bias of the evidence, the overall confidence of each result was assessed by the quality of evidence as determined by the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) assessment (Atkins et al., 2004). GRADE Pro Software (2014; www.gradepro.org)

pharmacokinetic studies

was used to separately score and chart these indices. All decisions to reduce or improve the quality of evidence were reasonable and presented in the evidence profile. Evidence summary table was in accordance with the GRADE guidelines.

RESULTS

Study Selection and Characteristics

We identified 528 publications in five databases at https:// www.clinicaltrials.gov/. After excluding duplicate entries, 312 publications were retained. After the exclusion of 137 reviews or meta-analyses, 30 non-human studies, irrelevant data, and 117 irrelevant articles, 27 were retained for further assessment. Only one case report was found. Finally, 11 RCTs (n = 3,680) met the final inclusion criteria for our meta-analysis (https://www.clinicaltrials. gov/1). Among them, the study by Waterton (4SS) was identified to be a sub-study of that of Taylor et al. (2015). To add, two of the clinical trials [(Weinblatt et al., 2010) and (Weinblatt et al., 2013)] shared the same NCT number (NCT 00665925).

Summary characteristics of the included studies are shown in **Table 2**. Patient characteristics in the included studies are

TABLE 2 | Summary characteristics of included studies.

Reference	Study design	Patients (N)	Trial interventions	Outcomes
Weinblatt et al. (2014)	1:1:1 Randomized double-blind Study start: September 2010	918	Intervention: Fostamatinib: oral treatment dose of 100 mg twice daily or 100 mg twice daily/150 mg once daily for 52-week treatment period Control: Placebo: oral treatment of 24 weeks twice daily then followed by fostamatinib 100 mg twice daily for 52-week treatment period	Primary: ACR20 at 24 week; Secondary: ACR50/ACR70/ACRn at 24week; DAS28-CRP < 2.6 and EULAR response at 12/24 Week; SF-36 - comparison of the change in PCS/MCS and HAQ-DI response at 24 week; Safety: Adverse events
NCT 01197534	1:1:1 Randomized double-blind Study start: September 2010	908	Intervention: Fostamatinib: oral treatment dose of 100 mg twice daily or 100 mg twice daily/150 mg once daily for 52-week treatment period Control: Placebo: oral treatment of 24 weeks twice daily then followed by fostamatinib 100 mg twice daily for 52-week treatment period	Primary: ACR20 at 24 week Secondary: ACR50/ACR70/ACRn at 24week; DAS28-CRP< 2.6 and EULAR response at 12/24 week; SF-36 comparison of the change in PCS/MCS and HAQ-DI response at 24 week Safety: Adverse events
Genovese et al. (2014)	1:1:1 Randomized double-blind Study start: September 2010	322	Intervention: Fostamatinib: oral treatment dose of 100 mg twice daily or 100 mg twice daily/150 mg once daily for 24-week treatment period Control: Placebo: oral treatment of 24-week treatment period twice daily treatment period	Primary: ACR20 at 24 week Secondary: ACR50/ACR70/ACRn at 24week; DAS28-CRP < 2.6/< = 3.2/EULAR response at 12/24 week; SF-36 comparison of the change in PCS/MCS and HAQ-DI response at 24 weeks Safety: Adverse events
Taylor et al. (2015)	1:1:2 Randomized double-blind Study start: December 2010	154	Intervention: Fostamatinib: oral treatment dose of 100 mg twice daily, 100 mg twice daily/150 mg once daily for 24-week treatment period Control: Placebo: oral treatment of 6 weeks twice daily then fosta 100 mg twice daily or Placebo 6 weeks then fosta 100 mg twice daily/150 mg once daily for 24-week treatment period	Primary: DAS28-CRP Score at week 6 Secondary: DAS28-CRP EULAR response at 6 weeks; ACR20/50/70/ACRn at 6–24 weeks; SF-36 comparison of the change in PCS/MCS at 24 weeks; HAQ-DI response at 6/24 weeks Safety: Adverse events
Waterton et al. (2017)	1:1 Randomized double-blind Study start: March 2014	62	Intervention: Fostamatinib: oral treatment dose of 100 mg twice daily, 100 mg twice daily/150 mg once daily for 24-week treatment period Control: Placebo: oral treatment of 6 weeks twice daily then fosta 100 mg twice daily or Placebo 6 weeks then fosta 100 mg twice daily/150 mg once daily for 24-week treatment period	DAS-CRP score at 6 weeks Safety: Adverse events
NCT 01569074	1:1:1:1 Randomized double-blind Study start: April 2012	163	Intervention: Fostamatinib: oral treatment dose of 100 mg/75 mg/50 mg twice daily or 100 mg twice daily/150 mg once daily for 12-week treatment period Control: Placebo: oral treatment of 12-week twice daily treatment period	Primary: ACR20 at 12 weeks Secondary: ACR50/70/ACRn at 12 weeks; DAS28-CRP< = 3.2 and EULAR response at 12 weeks; SF-36 comparison of the change in PCS/MCS and HAQ-DI response at 12/24 weeks; Safety: Adverse events
Kitas et al. (2014)	1:1 Randomized double-blind Study start: March 2012	135	Intervention: Fostamatinib: oral treatment dose of 100 mg twice daily for 4-week treatment period Control: Placebo: oral treatment of 4-week twice daily treatment period	DAS28-CRP improvement at 4 weeks Safety: Adverse events
Weinblatt et al. (2008)	1:1:1 Randomized double-blind Study start: May 2006	189	Intervention: Fostamatinib: oral treatment dose of 50 mg/100 mg twice daily for 12-week treatment period Control: Placebo: oral treatment of 12-week twice daily treatment period	Primary: ACR20 response rate at 3 months Secondary: ACR 50/70 at 12 weeks; DAS-CRF score at 12 weeks; Safety: Adverse events
Weinblatt et al. (2010 ⁾	1:1 Randomized double-blind Study start: May 2008	305	Intervention: Fostamatinib: oral treatment dose of 100 mg twice daily for 6-month treatment period Control: Placebo: Placebo: oral treatment of either once daily, or twice daily for 6-month	Primary: ACR20 at 6 months Secondary: ACR 50/70/ACRn at 3/6 months; DAS28-CRP < 2.6/< = 3.2 at 12/24 weeks; Safety: Adverse events
Weinblatt et al. (2013)	1:1 Randomized double-blind Study start: May 2008	305	Intervention: Fostamatinib: oral treatment dose of 100 mg twice daily for 6-month treatment period Control: Placebo: Placebo: oral treatment of either once daily, or twice daily for 6-month	SF-36 comparison of the change in PCS/MCS at 24 weeks; Safety: Adverse events
Genovese et al. (2011)	2:1 Randomized double-blind Study start: April 2008	219	Intervention: Fostamatinib: oral treatment dose of 100 mg twice daily for 3-month treatment period Control: Placebo: oral treatment of twice daily for 3-month treatment period	Primary: ACR20 response at 3 months; Secondary: ACR 50/70/ACRn at 3 months; DAS28-CRP < 2.6/< 3.2 at 3 months Safety: Adverse events

DB: double-blind.

provided in **Supplementary Table 1**. All studies were complete and the relevant data were published. There were nine published studies. Information for two clinical trials was found online. All included trials were randomized, double blind, placebocontrolled trials. Three trials lasted 1 to 12 weeks while eight trials lasted 1 to 24 weeks.

Each clinical trial was based on an inadequate or ineffective response to MTX (Weinblatt et al., 2014) or DMARDs. Hence, investigators compared 100 mg of the drug to placebo. To derive the optimal dosage regimen in the present meta-analysis, different dosing regimens were selected, six of which were 100 mg bid for 4 weeks followed by 150 mg qd. In addition to a 100 mg bid only, we also selected dosages below 100 mg bid (50 and 75 mg bid).

Risk of Bias

Seven of the 11 published trials were judged to be of high quality, but were sponsored by AstraZeneca and Rigel Pharmaceuticals. All included studies were randomized, double-blind, placebocontrolled studies with low risk of bias as evaluated by The Cochrane Collaboration's tool for assessing risk of bias (**Figure 2**). **Supplementary Table 2** summarizes the confidence findings for the GRADE estimates.

ACR

ACR20/50/70 Response

Compared to placebo, fostamatinib achieved a more effective ACR 20/50/70 response (WMD 1.96, 95% CI [1.46, 2.61],

FIGURE 2 | Summary (A) and graph (B) of the risk of bias in the included trials by Cochrane risk of bias tool. Assessments were based on the reviewers' judgment of each domain.

P < 0.00001; WMD 2.53, 95% CI [1.91, 3.36], P < 0.00001; WMD 3.60, 95% CI [2.26, 5.71], P < 0.00001, respectively; **Figures 3A**, **4A**, and **5A**). To add, the response efficiency of fostamatinib 100 mg bid was significantly higher than that of the placebo for ACR20/50/70 response (WMD 2.23, 95% CI [1.67, 2.97], P < 0.00001; WMD 2.99, 95% CI [2.36, 3.79], P < 0.00001; WMD 3.84, 95% CI [2.53, 5.84], P < 0.00001, respectively). However, an important outcome indicator, ACR20, had high heterogeneity

despite subgroup analysis (I² = 52% for fostamatinib 100 mg bid). With the removal of the study by Weinblatt et al. (2010) due to its better size effect compared to other trials, heterogeneity and effect size of ACR20 for fostamatinib 100 mg bid were significantly reduced (WMD 1.98, 95% CI [1.55, 2.53], P < 0.00001; I² = 26%). An explicit difference between fostamatinib 50 mg (WMD 1.11, 95% CI [0.49, 2.54], P = 0.80; WMD 0.83, 95% CI [0.35, 2.01], P = 0.69; WMD 0.50, 95% CI [0.04, 5.71], P = 0.58, respectively)

	Fostama	atinib	Place	bo		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.1.1 50 bid							
Michael E. Weinblatt 2008	15	46	18	47	7.2%	0.78 [0.33, 1.83]	
NCT01569074	13	28	9	28	5.2%	1.83 [0.62, 5.42]	
Subtotal (95% CI)		74		75	12.4%	1.11 [0.49, 2.54]	
Total events	28		27				
Heterogeneity: $Tau^2 = 0.12$; Test for overall effect: $Z = 0$.			(P = 0.23); I² = 3	2%		
1.1.2 75 bid							
NCT01569074	7	27	9	28	4.6%	0.74 [0.23, 2.38]	
Subtotal (95% CI)		27		28	4.6%	0.74 [0.23, 2.38]	
Total events	7		9				
Heterogeneity: Not applicab	le						
Test for overall effect: Z = 0.	.51 (P = 0.6	51)					
1.1.5 100 bid							
Mark C. Genovese 2011	56	146	27	73		1.06 [0.59, 1.89]	
Mark C. Genovese 2014	38	105	23	109	10.3%	2.12 [1.15, 3.90]	
Michael E. Weinblatt 2008	32	49	18	47	7.4%	3.03 [1.32, 6.97]	
Michael E. Weinblatt 2010	101	151	53	153	12.5%	3.81 [2.37, 6.13]	
Michael E. Weinblatt 2013	152	310	104	304	15.2%	1.85 [1.34, 2.56]	
NCT01197534	122	308	74	302		2.02 [1.43, 2.86]	
NCT01569074	14	26	9	28	5.0%	2.46 [0.81, 7.44]	
Peter C Taylor 2014	26	54 1149	10	52 1068	7.0% 83.0%	3.90 [1.63, 9.33]	
Subtotal (95% CI)		1149	040	1000	03.0%	2.23 [1.67, 2.97]	
Total events	541		318 7 (D = 0.0	4), 12 -	F 20/		
Heterogeneity: $Tau^2 = 0.08$; Test for overall effect: $Z = 5$.			(==0.0	4); 1* =	JZ70		
Total (95% CI)		1250		1171	100.0%	1.96 [1.46, 2.61]	•
Total events	576		354				
Heterogeneity: $Tau^2 = 0.12$;		'8. df = 1		01): l ² =	= 56%		
Test for overall effect: $Z = 4$.				.,, .			0.1 0.2 0.5 1 2 5 10 Favours [Placebo] Favours [Fostamatinib]

В 100mg bid 100mg bid then 150mg qd Odds Ratio Odds Ratio Study or Subgroup Total Events Total Weight M-H, Random, 95% Cl M-H, Random, 95% C Events 1.2.1 ACR20 at 12W NCT01569074 16 29 14 26 4 8% 1.05 [0.36, 3.05] Subtotal (95% CI) 29 26 4.8% 1.05 [0.36, 3.05] Total events 16 14 Heterogeneity: Not applicable Test for overall effect: Z = 0.10 (P = 0.92) 1.2.2 ACR20 at 24W Mark C. Genovese 2014 0.68 [0.38, 1.21] 30 108 38 105 14.5% Michael E. Weinblatt 2013 135 304 152 310 36.7% 0.83 [0.60, 1.14] NCT01197534 118 298 122 308 35.5% 1.00 [0.72, 1.38] Peter C Taylor 2014 27 48 22 54 8.4% 1.87 [0.85, 4.11] Subtotal (95% CI) 0.93 [0.70, 1.24] 758 777 95.2% Total events 310 334 Heterogeneity: Tau² = 0.03; Chi² = 4.83, df = 3 (P = 0.18); l² = 38% Test for overall effect: Z = 0.48 (P = 0.63) Total (95% CI) 787 803 100.0% 0.93 [0.74, 1.18] Total events 326 348 Heterogeneity: Tau² = 0.01; Chi² = 4.89, df = 4 (P = 0.30); I² = 18% 0.2 0.5 ż 5 Test for overall effect: Z = 0.58 (P = 0.57) 100mg bid 100mg bid then 150mg qd Test for subaroup differences: $Chi^2 = 0.05$, df = 1 (P = 0.83), $l^2 = 0\%$

FIGURE 3 | Forest plots for the effect of multiple doses on ACR20 at different time points. (A) Subgroups administered multiple doses (50, 75, and 100 mg bid) of fostamatinib vs. placebo at 24 weeks from baseline; (B) 100 mg bid for 4 weeks followed by 150 mg bid vs. 100 mg bid at 12 and 24 weeks.

R

	Fostama	tinib	Placel	bo		Odds Ratio	Odds Ratio
tudy or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
.1.1 50 bid					-		
lichael E. Weinblatt 2008	8	46	9	47	6.1%	0.89 [0.31, 2.55]	
ICT01569074	3	28	4	28	2.9%	0.72 [0.15, 3.56]	
Subtotal (95% CI)		74		75	9.0%	0.83 [0.35, 2.01]	
otal events	11		13				
leterogeneity: Tau ² = 0.00;	Chi ² = 0.05	, df = 1	(P = 0.83); I ² = 0	%		
est for overall effect: Z = 0.	40 (P = 0.6	9)		,.			
.1.2 75 bid							
ICT01569074	2	27	4	28	2.4%	0.48 [0.08, 2.87]	
ubtotal (95% CI)		27		28	2.4%	0.48 [0.08, 2.87]	
otal events	2		4				
leterogeneity: Not applicabl	le						
est for overall effect: $Z = 0$.	80 (P = 0.4	2)					
.1.3 100 bid							
lark C. Genovese 2011	32	146	9	73	9.6%	2.00 [0.90, 4.44]	
lark C. Genovese 2014	19	105	9	109	8.8%	2.45 [1.06, 5.71]	
lichael E. Weinblatt 2008	24	49	9	47	7.7%	4.05 [1.62, 10.14]	
lichael E. Weinblatt 2010	65	151	29	153	17.4%	3.23 [1.93, 5.42]	
lichael E. Weinblatt 2013	81	310	30	304	20.0%	3.23 [2.05, 5.09]	
ICT01197534	64	308	25	302	18.3%	2.91 [1.77, 4.76]	
ICT01569074	8	26	4	28	4.0%	2.67 [0.69, 10.25]	
eter C Taylor 2014	7	54	2	52	2.8%	3.72 [0.74, 18.84]	
ubtotal (95% CI)		1149		1068	88.6%	2.99 [2.36, 3.80]	•
otal events	300		117				
leterogeneity: Tau ² = 0.00;	Chi ² = 1.92	, df = 7	(P = 0.96); I² = 0	%		
est for overall effect: Z = 9.	06 (P < 0.0	0001)					
otal (95% CI)		1250		1171	100.0%	2.53 [1.91, 3.36]	◆
otal events	313		134				
leterogeneity: Tau ² = 0.05;	Chi2 - 12 1	2 df - 1	$\Omega (P - 0)$	221.12 -	- 240/	-	

	100mg bid then 15	0mg qd	100mg	bid		Odds Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C		M-H, Rand	lom, 95% Cl	
2.2.1 ACR50 at 12W										
NCT01569074	10	29	8	26	4.7%	1.18 [0.38, 3.67]			-	
Subtotal (95% CI)		29		26	4.7%	1.18 [0.38, 3.67]				
Total events	10		8							
Heterogeneity: Not applicab	le									
Test for overall effect: Z = 0	.29 (P = 0.77)									
2.2.2 ACR50 at 24W										
Mark C. Genovese 2014	14	108	19	105	10.8%	0.67 [0.32, 1.43]			<u> </u>	
Vichael E. Weinblatt 2013	56	304	81	310	40.9%	0.64 [0.43, 0.94]				
NCT01197534	54	298	64	308	37.3%	0.84 [0.56, 1.26]			<u> </u>	
Peter C Taylor 2014	9	48	11	54	6.3%	0.90 [0.34, 2.41]				-
Subtotal (95% CI)		758		777	95.3%	0.73 [0.57, 0.94]		\bullet		
Total events	133		175							
Heterogeneity: Tau ² = 0.00;	Chi ² = 1.18, df = 3 (P	= 0.76); l ²	= 0%							
Test for overall effect: Z = 2	.41 (P = 0.02)									
Total (95% CI)		787		803	100.0%	0.75 [0.59, 0.96]		•		
Fotal events	143		183							
Heterogeneity: Tau ² = 0.00;	Chi ² = 1.84, df = 4 (P	= 0.77); l²	= 0%				0.2	0.5		
Test for overall effect: Z = 2	.29 (P = 0.02)						0.2	100mg bid	100mg bid th	
Test for subaroup difference	es: Chi ² = 0.66. df = 1	(P = 0.42).	$ ^2 = 0\%$					rooning blu	roomy blu ti	ien i Joing

FIGURE 4 | Forest plots for the effect of multiple doses on ACR50 at different time points. (A) Subgroups administered multiple doses (50, 75, and 100 mg bid) of fostamatinib vs. placebo at 24 weeks from baseline; (B) 100 mg bid for 4 weeks followed by 150 mg bid vs. 100 mg bid at 12 and 24 weeks.

and 75 mg bid and placebo (WMD 0.74, 95% CI [0.23, 2.38], P = 0.42) (Figures 3A, 4A, and 5A) was not found.

Figure 3B indicates that for ACR20 response (WMD 0.93, 95% CI [0.74, 1.18], P = 0.57), a significant difference was not found between fostamatinib 100 mg followed by 150 mg qd and fostamatinib 100 mg bid at both 12 and 24 weeks. However, the statistical results for ACR50 (**Figure 4B**) and ACR70 (**Figure 5B**) response indicated that fostamatinib 100 mg bid had a better efficacy than fostamatinib

100 mg followed by 150 mg qd (WMD 0.75, 95% CI [0.59, 0.96], P = 0.02 and WMD 0.57, 95% CI [0.35, 0.94], P = 0.03).

ACRn Score

Based on the statistical results, despite a relatively high heterogeneity ($I^2 = 64\%$), ACRn score of fostamatinib was significantly higher than that of placebo (WMD 12.37, 95% CI [9.92, 14.81], P < 0.00001; **Figure 6A**). To add, subgroup analysis

	Fostama	tinib	Placel	00		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C		M-H, Random, 95% Cl	
3.1.1 50 bid									
Michael E. Weinblatt 2008	1	46	2	47	3.4%	0.50 [0.04, 5.71]			
NCT01569074	0	28	0	28		Not estimable			
Subtotal (95% CI)		74		75	3.4%	0.50 [0.04, 5.71]			
Total events	1		2						
Heterogeneity: Not applicable	Э								
Test for overall effect: Z = 0.5	56 (P = 0.5	8)							
3.1.2 75 bid									
NCT01569074	0	27	0	28		Not estimable			
Subtotal (95% CI)	0	27	0	28		Not estimable			
Total events	0		0	20		Not countable			
Heterogeneity: Not applicable			0						
Test for overall effect: Not ap									
rest for overall effect. Not ap	plicable								
3.1.3 100bid									
Mark C. Genovese 2011	13	146	4	73	11.9%	1.69 [0.53, 5.37]			
Mark C. Genovese 2014	15	105	3	109	10.3%	5.89 [1.65, 20.99]			
Michael E. Weinblatt 2008	16	49	2	47	7.6%	10.91 [2.35, 50.74]			
Michael E. Weinblatt 2010	43	151	16	153	24.9%	3.41 [1.82, 6.38]		 − ■ −	
Michael E. Weinblatt 2013	32	310	6	304	17.1%	5.72 [2.35, 13.88]			
NCT01197534	28	308	8	302	19.3%	3.67 [1.65, 8.20]		_ _	
NCT01569074	3	26	0	28	2.2%	8.49 [0.42, 172.76]			-
Peter C Taylor 2014	1	54	2	52	3.4%	0.47 [0.04, 5.37]			
Subtotal (95% CI)		1149		1068	96.6%	3.84 [2.53, 5.84]			
Total events	151		41						
Heterogeneity: Tau ² = 0.05; 0		,	(P = 0.31); l² = 1	5%				
Test for overall effect: Z = 6.2	29 (P < 0.0	0001)							
Total (95% CI)		1250		1171	100.0%	3.60 [2.26, 5.71]		•	
Total events	152		43						
Heterogeneity: Tau ² = 0.12; 0	Chi ² = 10.8	4, df = 8	B (P = 0.2	1); l² =	26%		+		<u> </u>
Test for overall effect: Z = 5.4			•				0.002	0.1 1 10	500
Test for subaroup differences			1(P = 0.1)	<u>11). </u> 2 :	= 61.8%			Favours [Placebo] Favours [Fostamatir	נמו

	100mg bid then 15)mg qd	100mg	bid		Odds Ratio		Odd	s Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Ran	dom, 95% Cl	
3.2.1 ACR70 at 12W										
NCT01569074	4	29	3	26	8.4%	1.23 [0.25, 6.08]			•	
Subtotal (95% Cl)		29		26	8.4%	1.23 [0.25, 6.08]				
Total events	4		3							
Heterogeneity: Not applicable)									
Test for overall effect: Z = 0.2	25 (P = 0.80)									
3.2.2 ACR70 at 24W										
Mark C. Genovese 2014	3	108	15	105	12.5%	0.17 [0.05, 0.61]		-		
Michael E. Weinblatt 2013	17	304	32	310	33.7%	0.51 [0.28, 0.95]			-	
NCT01197534	18	298	28	308	33.5%	0.64 [0.35, 1.19]			+	
Peter C Taylor 2014	5	48	5	54	11.9%	1.14 [0.31, 4.20]			 •	
Subtotal (95% CI)		758		777	91.6%	0.53 [0.31, 0.91]		\bullet		
Total events	43		80							
Heterogeneity: Tau ² = 0.11; C	Chi ² = 4.75, df = 3 (P	= 0.19); l ² :	= 37%							
Test for overall effect: Z = 2.3	2 (P = 0.02)									
Total (95% CI)		787		803	100.0%	0.57 [0.35, 0.94]		-		
Total events	47		83							
Heterogeneity: Tau ² = 0.09; C	Chi ² = 5.68, df = 4 (P	= 0.22); l ²	= 30%							20
Test for overall effect: Z = 2.2	1 (P = 0.03)						0.05	0.2	1 5	20
Test for subaroup differences	: Chi ² = 0.94. df = 1 (P = 0.33).	$ ^2 = 0\%$					100mg bid	100mg bid the	r roomg qu

FIGURE 5 | Forest plots for the effect of multiple doses on ACR70 at different time points. (A) Subgroups administered multiple doses of fostamatinib vs. placebo at 24 weeks from baseline; (B) 100 mg bid for 4 weeks followed by 150 mg bid vs. 100 mg bid at 12 and 24 weeks.

did not reduce this high level of heterogeneity at different doses. Subgroup analysis, however, revealed that there was no significant difference between fostamatinib 50 mg (WMD 4.94, 95% CI [-8.89, 18.77], P = 0.48) or 75 mg bid (WMD -7.35, 95% CI [-22.71, 8.01], P = 0.35) and placebo. In contrast, a statistically significant increase in the ACRn score was observed in the fostamatinib 100 mg bid group compared to placebo (WMD 13.14, 95% CI [10.62, 15.66], P < 0.00001), and this was accompanied by high heterogeneity (I² = 58%). The ACRn score of fostamatinib 100 mg

followed by 150 mg qd was lower than that of fostamatinib 100 mg bid (WMD -3.66, 95% CI [-6.65, -0.67], P = 0.02) (**Figure 6B**).

DAS28-CRP

DAS28-CRP < 2.6 and DAS28-CRP \leq 3.2

A DAS28-CRP score <2.6 indicated remission of RA symptoms while \leq 3.2 indicated low disease activity. Statistical results showed that fostamatinib was more effective than placebo in

FIGURE 6 | Forest plots for the effect of multiple doses on ACRn at different time points. (A) Subgroups administered multiple doses (50, 75, and 100 mg bid) of fostamatinib vs. placebo at 24 weeks from baseline; (B) 100 mg bid for 4 weeks followed by 150 mg bid vs. 100 mg bid at 12 and 24 weeks.

alleviating RA symptoms (WMD 4.51, 95% CI [3.00, 6.80], P < 0.00001) and reducing disease activity (WMD 3.10, 95% CI [1.93, 4.97], P < 0.00001). Among the subgroups compared by different doses, only fostamatinib 100 mg bid effectively alleviated disease progression (WMD 4.80, 95% CI [3.14, 7.36], P < 0.00001 for DAS28-CRP < 2.6; WMD 3.41, 95% CI [2.02, 5.77], P < 0.00001 for DAS28-CRP \leq 3.2) (**Figures 7A** and **8A**).

For the comparison of flexible doses and fostamatinib 100 mg bid, the efficacy of fostamatinib 100 mg bid remained better than the administration of 100 mg bid for 4 weeks followed by 150 mg qd (WMD 0.49, 95% CI [0.29, 0.85], P < 0.00001; **Figure 7B**). Subgroup analyses did not lessen the high level of heterogeneity with different treatment periods. One clinical trial (NCT01197534) was excluded as its effect size was larger than that of other trials, significantly reducing the heterogeneity of DAS28-CRP < 2.6. Nevertheless, for DAS28-CRP \leq 3.2, there was no difference between fostamatinib 100 mg bid and fostamatinib administered at 100 mg bid for 4 weeks followed by 150 mg qd (WMD 1.11, 95% CI [0.62, 1.99], P = 0.72; **Figure 8B**).

DAS28-CRP EULAR Response

According to the EULAR response criteria, the response of fostamatinib was better than that of placebo (WMD 3.39, 95% CI [2.53, 4.55], P < 0.00001; **Figure 9A**), especially fostamatinib 100 mg bid (WMD 3.53, 95% CI [2.47, 5.04], P < 0.00001). However, there was no observable difference between the group administered with fostamatinib 100 mg bid and that administered with fostamatinib 100 mg followed by 150 mg qd (WMD 0.70, 95% CI [0.44, 1.10], P = 0.12; I² = 60%) (**Figure 9B**). Because of the duration of administration, a subgroup analysis was performed; however, a high heterogeneity was still

	Fostama	tinib	Place	bo		Odds Ratio		(Odds Ra	itio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% (M-H, I	Random	, 95% CI	
5.1.1 50 bid					-						
Michael E. Weinblatt 2008 Subtotal (95% CI)	6	46 46	3	47 47	7.9% 7.9%	2.20 [0.52, 9.38 2.20 [0.52, 9.38]					
Total events	6		3								
Heterogeneity: Not applicab	le										
Test for overall effect: Z = 1	.07 (P = 0.2	9)									
5.1.3 100 bid											
Mark C. Genovese 2011	11	88	1	41	3.9%	5.71 [0.71, 45.85	1		+-		-
Mark C. Genovese 2014	12	105	4	109	12.3%	3.39 [1.06, 10.86	-			•	
Vichael E. Weinblatt 2008	11	49	3	47	9.2%	4.25 [1.10, 16.35	-				
Michael E. Weinblatt 2010	11	84	5	83	13.7%	2.35 [0.78, 7.09			+-		
Vichael E. Weinblatt 2013	32	310	6	304	21.3%	5.72 [2.35, 13.88					
NCT01197534	53	308	9	302	31.7%	6.77 [3.27, 13.99				-	
Subtotal (95% CI)		944		886	92.1%					•	
Total events	130		28								
leterogeneity: Tau ² = 0.00;	Chi ² = 3.04	, df = 5	(P = 0.69); I ² = 0	%						
est for overall effect: Z = 7	.22 (P < 0.0	0001)									
Total (95% CI)		990		933	100.0%	4.51 [3.00, 6.80]	I			•	
Total events	136		31								
Heterogeneity: Tau ² = 0.00;	01-12 - 4.00										
iotorogonony. ruu o.oo,	$Cn^{2} = 4.08$	i, df = 6	(P = 0.67); I ² = 0	%			0.1	1	10	1000
Test for overall effect: Z = 7	.22 (P < 0.0	0001)		,,			0.001	0.1 Favours [Place	1 ebol Fa	10 avours [Fost:	1000 amatinibl
Test for overall effect: Z = 7	.22 (P < 0.0	0001)		,,			0.001	0.1 Favours [Place	1 ebo] Fa		
Test for overall effect: Z = 7 Test for subgroup difference	.22 (P < 0.0	0001)		,,			0.001		1 ebo] Fa		
Fest for overall effect: Z = 7 Fest for subaroup difference	.22 (P < 0.0 es: Chi² = 1.	0001) 02. df =	` <u>1 (P = 0.</u>	31). I² =	2.4%	Odde Pati				avours [Fosta	
Test for overall effect: Z = 7 Test for subaroup difference	.22 (P < 0.0 es: Chi ² = 1. 100mg bid	00001) 02. df = then 15	` <u>1 (P = 0.</u>)mg qd	<u>31). l² =</u> 100m	: 2.4% g bid	Odds Rati	0	Favours [Place	Odds	avours [Fosta	amatinib]
Fest for overall effect: Z = 7 Fest for subaroup difference Study or Subgroup	.22 (P < 0.0 es: Chi ² = 1. 100mg bid Even	00001) 02. df = then 15	` <u>1 (P = 0.</u>)mg qd	<u>31). l² =</u> 100m	: 2.4% g bid	Odds Rati Weight M-H. Random	0	Favours [Place	Odds	avours [Fosta	amatinib]
Fest for overall effect: Z = 7 Test for subgroup difference Study or Subgroup 5.2.1 DAS28-CRP <2.6 at 12	.22 (P < 0.0 es: Chi ² = 1. 100mg bid Even 2W	00001) 02. df = then 15 ts	` <u>1 (P = 0.</u> Omg qd Total	31). I ² = 100m Event	g bid s Total	Weight M-H, Random	o . 95% Cl	Favours [Place	Odds	avours [Fosta	amatinib]
Fest for overall effect: Z = 7 Fest for subgroup difference Study or Subgroup 5.2.1 DAS28-CRP <2.6 at 12 Vichael E. Weinblatt 2013	.22 (P < 0.0 es: Chi ² = 1. 100mg bid Even 2W	00001) 02. df = then 15 ts 24	` <u>1 (P = 0.</u> Omg qd <u>Total</u> 304	<u>31). l² =</u> 100m	<u>g bid</u> <u>s Total</u> 2 310	Weight M-H. Random	o <u>. 95% Cl</u> 3, 1.30]	Favours [Place	Odds	avours [Fosta	amatinib]
Fest for overall effect: Z = 7 Fest for subgroup difference Study or Subgroup 5.2.1 DAS28-CRP <2.6 at 12 dichael E. Weinblatt 2013 ICT01197534	.22 (P < 0.0 es: Chi ² = 1. 100mg bid Even 2W	00001) 02. df = then 15 ts	` <u>1 (P = 0.</u> Omg qd Total	31). I ² = 100m Event	<u>g bid</u> <u>s Total</u> 2 310	Weight M-H, Random	o <u>. 95% Cl</u> 3, 1.30] 6, 0.93]	Favours [Place	Odds	avours [Fosta	amatinib]
Test for overall effect: Z = 7 Test for suboroup difference Study or Subgroup 5.2.1 DAS28-CRP <2.6 at 12 Michael E. Weinblatt 2013 NCT01197534 Subtotal (95% CI)	.22 (P < 0.0 es: Chi ² = 1. 100mg bid Even 2W	00001) 02. df = then 15 ts 24	<u>1 (P = 0.</u> Dmg qd <u>Total</u> 304 298	31). I ² = 100m Event	g bid s Total 2 310 3 308 618	Weight M-H. Random 20.3% 0.74 [0.4 21.7% 0.58 [0.3	o <u>. 95% Cl</u> 3, 1.30] 6, 0.93]	Favours [Place	Odds	avours [Fosta	amatinib]
Test for overall effect: Z = 7 Test for subgroup difference Study or Subgroup 5.2.1 DAS28-CRP <2.6 at 12 Vichael E. Weinblatt 2013 VCT01197534 Subtotal (95% CI) Total events	.22 (P < 0.0 es: Chi ² = 1. 100mg bid Even 2W	00001) 02. df = then 15 ts 24 32 56	1 (P = 0. Dmg qd Total 304 298 602	3 <u>1). ² =</u> 100m Event 3; 5 8	g bid s Total 2 310 3 308 618	Weight M-H. Random 20.3% 0.74 [0.4 21.7% 0.58 [0.3	o <u>. 95% Cl</u> 3, 1.30] 6, 0.93]	Favours [Place	Odds	avours [Fosta	amatinib]
Test for overall effect: Z = 7 Test for subgroup difference Study or Subgroup 5.2.1 DAS28-CRP <2.6 at 12 Wichael E. Weinblatt 2013 VCT01197534 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C	.22 (P < 0.0 es: Chi ² = 1. 100mg bid Even 2W	00001) 02. df = then 15 ts 24 32 56	1 (P = 0. Dmg qd Total 304 298 602	3 <u>1). ² =</u> 100m Event 3; 5 8	g bid s Total 2 310 3 308 618	Weight M-H. Random 20.3% 0.74 [0.4 21.7% 0.58 [0.3	o <u>. 95% Cl</u> 3, 1.30] 6, 0.93]	Favours [Place	Odds	avours [Fosta	amatinib]
Test for overall effect: Z = 7 Test for subgroup Study or Subgroup 5.2.1 DAS28-CRP <2.6 at 12 dichael E. Weinblatt 2013 vCT01197534 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 2.4	.22 (P < 0.0 as: Chi ² = 1. 100mg bid Even 2W Chi ² = 0.46, d 1 (P = 0.02)	00001) 02. df = then 15 ts 24 32 56	1 (P = 0. Dmg qd Total 304 298 602	3 <u>1). ² =</u> 100m Event 3; 5 8	g bid s Total 2 310 3 308 618	Weight M-H. Random 20.3% 0.74 [0.4 21.7% 0.58 [0.3	o <u>. 95% Cl</u> 3, 1.30] 6, 0.93]	Favours [Place	Odds	avours [Fosta	amatinib]
Test for overall effect: Z = 7 Test for subgroup Study or Subgroup	.22 (P < 0.0 as: Chi ² = 1. 100mg bid Even 2W Chi ² = 0.46, d 1 (P = 0.02)	00001) 02. df = then 15 ts 24 32 56	1 (P = 0. Dmg qd Total 304 298 602	3 <u>1). ² =</u> 100m Event 3; 5 8	g bid s Total 2 310 3 308 618 5	Weight M-H. Random 20.3% 0.74 [0.4 21.7% 0.58 [0.3	o <u>. 95% Cl</u> 3, 1.30] 6, 0.93] 5, 0.92]	Favours [Place	Odds	avours [Fosta	amatinib]
Test for overall effect: Z = 7 Test for subgroup difference Study or Subgroup Study or	.22 (P < 0.0 as: Chi ² = 1. 100mg bid Even 2W Chi ² = 0.46, d 1 (P = 0.02) 4W	00001) 02. df = then 15 tts 24 32 56 if = 1 (P	1 (P = 0. Dmg qd Total 304 298 602 = 0.50); I ²	31). ² = 100m Event 3: 5: 8: = 0%	g bid s Total 2 310 3 308 618 5 2 105	Weight M-H. Random 20.3% 0.74 [0.4 21.7% 0.58 [0.3 42.0% 0.64 [0.4	o . <u>95% CI</u> 3, 1.30] 6, 0.93] 5, 0.92] 4, 1.58]	Favours [Place	Odds	avours [Fosta	amatinib]
Test for overall effect: Z = 7 Test for subgroup difference Study or Subgroup 5.2.1 DAS28-CRP <2.6 at 12 Wichael E. Weinblatt 2013 NCT01197534 Vertice Structure (55% CI) Total events Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 2.4 5.2.2 DAS28-CRP <2.6 at 24 Wark C. Genovese 2014 Wichael E. Weinblatt 2013 VCT01197534	.22 (P < 0.0 as: Chi ² = 1.	00001) 02. df = then 150 ts 24 32 56 f = 1 (P 8	1 (P = 0. Dmg qd Total 304 298 602 = 0.50); I ² 108 304 298	100m <u>Event</u> 33 55 = 0%	g bid s Total 2 310 3 308 618 5 2 105 1 310 7 308	Weight M-H. Random 20.3% 0.74 [0.4 21.7% 0.58 [0.3 42.0% 0.64 [0.4 14.5% 0.62 [0.2 20.9% 0.61 [0.3 22.6% 0.21 [0.1	o . <u>95% CI</u> 3, 1.30] 6, 0.93] 5, 0.92] 4, 1.58] 7, 1.03] 4, 0.31]	Favours [Place	Odds	avours [Fosta	amatinib]
Test for overall effect: Z = 7 Test for subgroup Study or Subgroup 5.2.1 DAS28-CRP <2.6 at 12 Michael E. Weinblatt 2013 VCT01197534 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 2.4 5.2.2 DAS28-CRP <2.6 at 24 Mark C. Genovese 2014 Michael E. Weinblatt 2013 VCT01197534 Subtotal (95% CI)	.22 (P < 0.0.3 as: Chi ² = 1. 100mg bid Even 2W Chi ² = 0.46, d 1 (P = 0.02) 4W	8 8 8 8 8 100001) 002. df = 10001 10000 10000000 100000 100000 100000000))))))))))))))	31). ² = 100m Event 3: 5: 5: = 0% 8: 12: 4: 12:	g bid s Total 2 310 3 308 618 5 2 105 1 310 7 308 723	Weight M-H, Random 20.3% 0.74 [0.4 21.7% 0.58 [0.3 42.0% 0.64 [0.4 14.5% 0.62 [0.2 20.9% 0.61 [0.3	o . <u>95% CI</u> 3, 1.30] 6, 0.93] 5, 0.92] 4, 1.58] 7, 1.03] 4, 0.31]	Favours [Place	Odds	avours [Fosta	amatinib]
Test for overall effect: Z = 7 Test for subgroup Study or Subgroup 5.2.1 DAS28-CRP <2.6 at 12 Wichael E. Weinblatt 2013 NCT01197534 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 2.4 5.2.2 DAS28-CRP <2.6 at 24 Wark C. Genovese 2014 Wichael E. Weinblatt 2013 NCT01197534 Subtotal (95% CI) Total events	.22 (P < 0.0 as: Chi ² = 1. 100mg bid Even 2W 2; chi ² = 0.46, d 1 (P = 0.02) 4W	00001) 02. df = then 154 224 32 566 if = 1 (P 8 8 26 38 72	1 (P = 0. Dmg qd Total 304 298 602 = 0.50); l ² 108 304 298 710	100m 100m Event 3: 5: = 0% 1: 4 12' 18'	g bid s Total 2 310 3 308 618 5 2 105 1 310 7 308 723 0	Weight M-H. Random 20.3% 0.74 [0.4 21.7% 0.58 [0.3 42.0% 0.64 [0.4 14.5% 0.62 [0.2 20.9% 0.61 [0.3 22.6% 0.21 [0.1	o . <u>95% CI</u> 3, 1.30] 6, 0.93] 5, 0.92] 4, 1.58] 7, 1.03] 4, 0.31]	Favours [Place	Odds	avours [Fosta	amatinib]
Test for overall effect: Z = 7 Test for subgroup difference Study or Subgroup difference S.2.1 DAS28-CRP <2.6 at 12 Michael E. Weinblatt 2013 NCT01197534 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 2.4 S.2.2 DAS28-CRP <2.6 at 2/ Mark C. Genovese 2014 Michael E. Weinblatt 2013 NCT01197534 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.43; C	.22 (P < 0.0 as: Chi ² = 1. 100mg bid Even 2W 2W 2 Chi ² = 0.46, d 1 (P = 0.02) 4 W	00001) 02. df = then 154 224 32 566 if = 1 (P 8 8 26 38 72	1 (P = 0. Dmg qd Total 304 298 602 = 0.50); l ² 108 304 298 710	100m 100m Event 3: 5: = 0% 1: 4 12' 18'	g bid s Total 2 310 3 308 618 5 2 105 1 310 7 308 723 0	Weight M-H. Random 20.3% 0.74 [0.4 21.7% 0.58 [0.3 42.0% 0.64 [0.4 14.5% 0.62 [0.2 20.9% 0.61 [0.3 22.6% 0.21 [0.1	o . <u>95% CI</u> 3, 1.30] 6, 0.93] 5, 0.92] 4, 1.58] 7, 1.03] 4, 0.31]	Favours [Place	Odds	avours [Fosta	amatinib]
Test for overall effect: Z = 7 Test for suboroup difference Study or Subgroup 5.2.1 DAS28-CRP <2.6 at 12 Michael E. Weinblatt 2013 NCT01197534 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 2.4 S.2.2 DAS28-CRP <2.6 at 2-4 Mark C. Genovese 2014 Michael E. Weinblatt 2013 NCT01197534 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.43; C	.22 (P < 0.0 as: Chi ² = 1. 100mg bid Even 2W 2W 2 Chi ² = 0.46, d 1 (P = 0.02) 4 W	00001) 02. df = then 154 224 32 566 if = 1 (P 8 8 26 38 72	1 (P = 0. Dmg qd Total 304 298 602 = 0.50); l ² 108 304 298 710	100m 100m Event 3: 5: = 0% 1: 4 12' 18'	g bid s Total 2 310 3 308 618 5 2 105 1 310 7 308 723 0	Weight M-H. Random 20.3% 0.74 [0.4 21.7% 0.58 [0.3 42.0% 0.64 [0.4 14.5% 0.62 [0.2 20.9% 0.61 [0.3 22.6% 0.21 [0.1	o . <u>95% CI</u> 3, 1.30] 6, 0.93] 5, 0.92] 4, 1.58] 7, 1.03] 4, 0.31]	Favours [Place	Odds	avours [Fosta	amatinib]
Test for overall effect: Z = 7 Test for subgroup Study or Subgroup 5.2.1 DAS28-CRP <2.6 at 12 Michael E. Weinblatt 2013 NCT01197534 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; C Test for overall effect: Z = 2.4 5.2.2 DAS28-CRP <2.6 at 24 Michael E. Weinblatt 2013 NCT01197534 Subtotal (95% CI) Total events	.22 (P < 0.0 as: Chi ² = 1. 100mg bid Even 2W 2W 2 Chi ² = 0.46, d 1 (P = 0.02) 4 W	00001) 02. df = then 154 224 32 566 if = 1 (P 8 8 26 38 72	1 (P = 0. Dmg qd Total 304 298 602 = 0.50); l ² 108 304 298 710	100m 100m Event 3: 5: = 0% 1: 4 12' 18'	g bid s Total 2 310 3 308 618 5 2 105 1 310 7 308 723 0 %	Weight M-H. Random 20.3% 0.74 [0.4 21.7% 0.58 [0.3 42.0% 0.64 [0.4 14.5% 0.62 [0.2 20.9% 0.61 [0.3 22.6% 0.21 [0.1	o . 95% Cl 3, 1.30] 6, 0.93] 5, 0.92] 4, 1.58] 7, 1.03] 4, 0.31] 8, 0.93]	Favours [Place	Odds	avours [Fosta	amatinib]

Test for subaroup differences: $Chi^2 = 0.96$. df = 1 (P = 0.33). $I^2 = 0^6$ FIGURE 7 | Forest plots for the effect of multiple doses on DAS28-CRP < 2.6 at different time points. (A) Subgroups administered multiple doses (50 and 100 mg bid) of fostamatinib compared to placebo at 24 weeks from baseline; (B) 100 mg bid for 4 weeks followed by 150 mg bid vs. 100 mg bid at 12 and 24 weeks.

265

observed at 24 weeks (WMD 0.67, 95% CI [0.40, 1.12], P = 0.13; I² = 68%; Figure 9B).

Test for overall effect: Z = 2.57 (P = 0.01)

128 Heterogeneity: Tau² = 0.29; Chi² = 19.71, df = 4 (P = 0.0006); l² = 80%

SF-36 SF-36 PCS

Total events

The effects of 50, 100, and 75 mg fostamatinib administered bid vs. placebo on the SF-36 PCS change from baseline are shown in Figure 10A (WMD 2.92, 95% CI [2.29, 3.56], P < 0.00001, I² = 0%). Administering 100 mg bid (WMD 3.09, 95% CI [2.43, 3.76], P < 0.00001) significantly ameliorated SF-36 PCS but 50 or 75 mg bid could not demonstrate effectiveness (WMD 2.0, 95% CI [-0.86, 4.86], P = 0.17; WMD 0.00, 95% CI [-3.25, 3.25], P = 1). Because of the inconsistency in the effectiveness of different doses, heterogeneity was significantly reduced after removing the subgroup, 75 mg bid; the result of this group also did not differ from the placebo group (WMD 3.04, 95% CI [2.39, 3.68]; I² = 0%; detailed data not shown).

0.5

100mg bid 100mg bid then 150mg qd

0.1 0.2

We also compared the effectiveness of a 100 mg bid administration of fostamatinib for 4 weeks followed by 150 mg qd and 100 mg bid at 12 and 24 weeks, as shown in Figure 10B (WMD -0.94, 95%CI [-1.65, -0.22], P < 0.00001, $I^2 = 0$ %). At 24 weeks, the effectiveness of the later regimen improved. A consistency was found with the 100 mg bid regimen (WMD -0.87, 95% CI [-1.59, -0.14], P = 0.02).

SF-36 MCS

The effects of 50, 75, and 100 mg bid fostamatinib vs. placebo on SF-36 MCS change from baseline are shown in Figure 11A. The pooled effect estimate of the SF-36 MCS total score was

10

	Fostama	tinib	Placel	00		Odd	ls Ratio			Ode	ls Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Ra	andom, 95% C	:		M-H, Ra	ndom, 95%	% CI	
6.1.1 50 bid													
NCT01569074	5	28	3	28	9.4%	1.	81 [0.39, 8.44]						
Subtotal (95% CI)		28		28	9.4%	1.3	81 [0.39, 8.44]						
Total events	5		3										
Heterogeneity: Not applicab	е												
Test for overall effect: Z = 0.	76 (P = 0.4	5)											
6.1.2 75 bid													
NCT01569074	6	27	3	28	9.9%	23	8 [0.53, 10.70]			-			
Subtotal (95% CI)	0	27	Ū	28	9.9%		B [0.53, 10.70]			-			
Total events	6		3		0.070		. [0.000, 10110]						
Heterogeneity: Not applicab			0										
Test for overall effect: $Z = 1$.		(6)											
5.1.3 100 bid						_							
Aark C. Genovese 2011	21	88	4	41	17.1%		90 [0.93, 9.08]						
Aark C. Genovese 2014	19	105	6	109	24.1%		79 [1.45, 9.92]						
Aichael E. Weinblatt 2010	21	84	8	83	28.8%		13 [1.30, 7.54]						
NCT01569074	9	26	3	28	10.7%		1 [1.04, 18.71]						
Subtotal (95% CI)		303		261	80.7%	3.4	41 [2.02, 5.77]						
Fotal events	70		21										
Heterogeneity: Tau ² = 0.00; Fest for overall effect: Z = 4.			(P = 0.96); I ² = 0	%								
Total (95% CI)		358		317	100.0%	3.	10 [1.93, 4.97]				•		
Total events	81		27										
Heterogeneity: Tau ² = 0.00;	Chi ² = 1.00	, df = 5	(P = 0.96); l² = 0	%			+			-		
Test for overall effect: Z = 4.								0.005).1	1	10	200
Test for subaroup difference			2(P = 0.7)	70). l² =	= 0%				Favou	rs [Placebo	j ⊦avour	s [Fostamat	inibj
	00mg bid 1	then 15()ma ad	100n	ng bid		Odds Ratio	, ,			dds Ratio	<u> </u>	
Study or Subgroup	Even		• •		•	Weight	M-H, Fixed, 9				Fixed, 95		
Mark C. Genovese 2014		2	108		9 105	71.2%	1.16 [0.59,					_	
NCT01569074		0	29		9 26	28.8%	0.99 [0.33,						
		-	20		0								
Fotal (95% CI)			137		131	100.0%	1.11 [0.62,	1.99]			\blacklozenge		
Total events	3	2		2	8			-					
leterogeneity: Chi ² = 0.05, d	f = 1 (P = 0.	.82); l² =	0%					+	05	-		<u> </u>	+
Test for overall effect: Z = 0.3								0.	.05	0.2	1	5	20

FIGURE 8 Forest plots for the effect of multiple doses on DAS28-CRP \leq 3.2 at different time points. (A) Subgroups administered multiple doses (50, 75, and 100 mg bid) of fostamatinib compared to placebo at 24 weeks; (B) 100 mg bid for 4 weeks followed by 150 mg bid vs. 100 mg bid at 12 and 24 weeks.

1.35 (95% CI [0.45, 2.25], P = 0.03, I² = 19%). Intake of 100 mg bid (WMD 1.61, 95% CI [0.81, 2.41], P < 0.0001) resulted in a notably moderate SF-36 MCS. However, 50 mg bid could not demonstrate the effectiveness of fostamatinib (WMD 1.00, 95% CI [-3.49, 5.49], P = 0.66). An opposite outcome was identified with 75 mg bid (WMD -2.00, 95% CI [-6.01, 2.01], P = 0.33). Because of the inconsistency in the effectiveness of different doses, heterogeneity was significantly reduced after removing the 75 mg bid subgroup, which also did not differ from the control group (WMD 1.62, 95% CI [0.88, 0.37]; I² = 0%; detailed data not shown).

Figure 11B shows the comparison of the effectiveness of SF-36-MCS between the administration of 100 mg bid for 4 weeks followed by 150 mg qd and 100 mg bid at 12 and 24 weeks. The SF-36-MCS index did not show any difference between the two groups at the time points indicated (WMD -1.00, 95% CI [-5.41, 3.41], P = 0.66; WMD 0.00, 95% CI [-0.85, 0.85], P = 1.00). Likewise, the same results were found for the total score (WMD -0.04, 95%CI [-0.87, 0.80], P = 0.932; $I^{2} = 0\%$).

HAQ-DI Response

When the dosages of 50 and 75 mg bid were administered, a significant difference was not found between the two groups (OR 0.87, 95% CI [0.30, 2.47], P = 0.79; OR 0.80, 95% CI [0.28, 2.31], P = 0.68). For HAQ-DI response, a significant decrease from baseline was observed in the 100 mg bid group compared to placebo (OR 2.30, 95% CI [1.86, 2.85], P < 0.00001). Overall OR was 2.12 (95% CI [1.73, 2.61], P < 0.00001, I² = 25%; **Figure 12A**).

When 100 mg bid of fostamatinib was administered for 4 weeks followed by 150 mg qd or 100 mg bid, a significant difference at < 24 or 24 weeks (OR 0.41, 95% CI [0.14, 1.25], P v= 0.12; OR 0.81, 95% CI [0.66, 1.00], P = 0.05; **Figure 12B**) was not observed.

Safety and Tolerability SAEs

Overall, the incidence of SAEs of fostamatinib was greater than that with placebo (RR 2.10, 95% CI [1.57, 2.80], P < 0.00001; Figure 13). In addition, SAEs could be observed with the 50 mg bid regimen (RR

	Fostama	tinib	Place	00		Odds Ra	tio	Odds	Ratio
Study or Subaroup					Weight		m, 95% Cl		om, 95% Cl
7.1.1 50 bid									
NCT01569074	6	28	3	28	3.8%	2.27 [0.5	51, 10.18]		
Subtotal (95% CI)	-	28	-	28	3.8%		1, 10.18]		
Total events	6		3						
Heterogeneity: Not applicab			•						
Test for overall effect: Z = 1		8)							
		-,							
7.1.2 75 bid									
NCT01569074	6	27	3	28	3.8%	2.38 [0.5	53, 10.70]		
Subtotal (95% CI)		27		28	3.8%	2.38 [0.5	3, 10.70]		
Total events	6		3						
Heterogeneity: Not applicab	ole								
Test for overall effect: Z = 1	.13 (P = 0.2	6)							
7.1.3 100 bid									
Mark C. Genovese 2014	25	105	6	109	9.7%	5.36 [2.1	10, 13.70]		
Vichael E. Weinblatt 2013	81	310	33	304	44.0%	2.90 [1	.87, 4.52]		−∎−
NCT01197534	72	308	19	302	30.0%	4.54 [2	.66, 7.75]		
NCT01569074	9	26	3	28	4.1%	4.41 [1.0	04, 18.71]		
Peter C Taylor 2014	5	54	4	52	4.5%	1.22 [0	.31, 4.84]		
Subtotal (95% CI)		803		795	92.4%	3.53 [2.	.47, 5.04]		● ◆
Total events	192		65						
Heterogeneity: Tau ² = 0.03;	Chi ² = 4.75	, df = 4	(P = 0.31); l² = 1	6%				
Test for overall effect: Z = 6	.92 (P < 0.0	0001)							
	·····	,							
Fotal (95% CI)		858		851	100.0%	3.39 [2.	.53, 4.55]		•
Fotal (95% CI) Fotal events	204	858	71	851	100.0%	3.39 [2.	.53, 4.55]		•
Total events						3.39 [2.			•
	Chi² = 5.28	, df = 6				3.39 [2.	. 53, 4.55] 	0.1	• 1 10 100 Foursurg (Fontamotinik)
Total events Heterogeneity: Tau² = 0.00;	Chi² = 5.28 .18 (P < 0.0	, df = 6 0001)	(P = 0.51); l² = 0	%	3.39 [2.			◆ 1 10 100 Favours [Fostamatinib]
Total events Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 8 Test for subgroup difference	Chi² = 5.28 .18 (P < 0.0	, df = 6 0001)	(P = 0.51); l² = 0	%	3.39 [2.			
Fotal events Heterogeneity: Tau² = 0.00; Fest for overall effect: Z = 8	Chi ² = 5.28 .18 (P < 0.0 es: Chi ² = 0.	, df = 6 0001) 53. df =	(P = 0.51 2 (P = 0.); ² = 0 77). ² =	% = 0%	_	0.01	Favours [Placebo]	Favours [Fostamatinib]
Fotal events Heterogeneity: Tau ² = 0.00; Fest for overall effect: Z = 8 Fest for subgroup difference	Chi ² = 5.28 .18 (P < 0.0 es: Chi ² = 0.1	, df = 6 0001) 53. df = then 15	(P = 0.51 <u>2 (P = 0.</u> Omg qd); ² = 0 77). ² = 100m	% = 0% ng bid	0	0.01	Favours [Placebo]	Favours [Fostamatinib]
Fotal events Heterogeneity: Tau ² = 0.00; Fest for overall effect: Z = 8 Test for subgroup difference Study or Subgroup	Chi ² = 5.28 .18 (P < 0.0 es: Chi ² = 0.1 100mg bid f	, df = 6 0001) 53. df = then 15	(P = 0.51 <u>2 (P = 0.</u> Omg qd); ² = 0 77). ² = 100m	% = 0% ng bid	0	0.01	Favours [Placebo]	Favours [Fostamatinib]
Total events Heterogeneity: Tau ² = 0.00; Fest for overall effect: Z = 8 Test for subgroup difference Study or Subgroup 7.2.1 DAS28-CRP EULAR at	Chi ² = 5.28 .18 (P < 0.0 es: Chi ² = 0. 100mg bid f <u>Even</u> : 12W	, df = 6 0001) 53. df = then 150	(P = 0.51 2 (P = 0. Dmg qd Total); ² = 0 77). ² = 100m Event	% = 0% g bid _stotal	O Weight M-H.	0.01 Odds Ratio Random, 95% Cl	Favours [Placebo]	Favours [Fostamatinib]
Total events Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 8 Test for suboroup difference Study or Subgroup 7.2.1 DAS28-CRP EULAR at VCT01569074	Chi ² = 5.28 .18 (P < 0.0 es: Chi ² = 0. 100mg bid f <u>Even</u> : 12W	, df = 6 0001) 53. df = then 15	(P = 0.51 <u>2 (P = 0.</u> Dmg qd <u>Total</u> 29); ² = 0 77). ² = 100m Event	% = 0% 	O Weight M-H. 11.7%	0.01 Odds Ratio Random, 95% CI 0.99 [0.33, 3.03]	Favours [Placebo]	Favours [Fostamatinib]
Fotal events Heterogeneity: Tau ² = 0.00; Fest for overall effect: Z = 8 Eest for subgroup difference Study or Subgroup 7.2.1 DAS28-CRP EULAR at VCT01569074 Subtotal (95% CI)	Chi ² = 5.28 .18 (P < 0.0 as: Chi ² = 0.1 100mg bid t Even 12W	, df = 6 0001) 53. df = then 156 ts 0	(P = 0.51 2 (P = 0. Dmg qd Total); ² = 0 77). ² = 100m Event	% = 0% s Total 9 26 26	O Weight M-H. 11.7%	0.01 Odds Ratio Random, 95% Cl	Favours [Placebo]	Favours [Fostamatinib]
Fotal events Heterogeneity: Tau ² = 0.00; Fest for overall effect: Z = 8 Cest for subgroup difference Study or Subgroup .2.1 DAS28-CRP EULAR at VCT01569074 Subtotal (95% CI) Fotal events	Chi ² = 5.28 .18 (P < 0.0 es: Chi ² = 0. 100mg bid f <u>Even</u> : 12W 1	, df = 6 0001) 53. df = then 150	(P = 0.51 <u>2 (P = 0.</u> Dmg qd <u>Total</u> 29); ² = 0 77). ² = 100m Event	% = 0% 	O Weight M-H. 11.7%	0.01 Odds Ratio Random, 95% CI 0.99 [0.33, 3.03]	Favours [Placebo]	Favours [Fostamatinib]
Total events Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 8 Test for subgroup difference Study or Subgroup 2.2.1 DAS28-CRP EULAR at NCT01569074 Subtotal (95% CI) Total events Heterogeneity: Not applicable	Chi ² = 5.28 .18 (P < 0.0 as: Chi ² = 0. 100mg bid f <u>Even</u> 12W 1 1	, df = 6 0001) 53. df = then 156 ts 0	(P = 0.51 <u>2 (P = 0.</u> Dmg qd <u>Total</u> 29); ² = 0 77). ² = 100m Event	% = 0% s Total 9 26 26	O Weight M-H. 11.7%	0.01 Odds Ratio Random, 95% CI 0.99 [0.33, 3.03]	Favours [Placebo]	Favours [Fostamatinib]
Fotal events Heterogeneity: Tau ² = 0.00; Fest for overall effect: Z = 8 Cest for subgroup difference Study or Subgroup .2.1 DAS28-CRP EULAR at VCT01569074 Subtotal (95% CI) Fotal events	Chi ² = 5.28 .18 (P < 0.0 as: Chi ² = 0. 100mg bid f <u>Even</u> 12W 1 1	, df = 6 0001) 53. df = then 156 ts 0	(P = 0.51 <u>2 (P = 0.</u> Dmg qd <u>Total</u> 29); ² = 0 77). ² = 100m Event	% = 0% s Total 9 26 26	O Weight M-H. 11.7%	0.01 Odds Ratio Random, 95% CI 0.99 [0.33, 3.03]	Favours [Placebo]	Favours [Fostamatinib]
Fotal events Heterogeneity: Tau ² = 0.00; Fest for overall effect: Z = 8 East for subgroup Call DAS28-CRP EULAR at VCT01569074 Subtotal (95% CI) Fotal events Heterogeneity: Not applicable Fest for overall effect: Z = 0.0	Chi ² = 5.28 .18 (P < 0.0 as: Chi ² = 0. 100mg bid f Even 12W 1 1 (P = 0.99)	, df = 6 0001) 53. df = then 156 ts 0	(P = 0.51 <u>2 (P = 0.</u> Dmg qd <u>Total</u> 29); ² = 0 77). ² = 100m Event	% = 0% s Total 9 26 26	O Weight M-H. 11.7%	0.01 Odds Ratio Random, 95% CI 0.99 [0.33, 3.03]	Favours [Placebo]	Favours [Fostamatinib]
Fotal events Heterogeneity: Tau ² = 0.00; Fest for overall effect: Z = 8 Cest for subgroup 2.2.1 DAS28-CRP EULAR at VCT01569074 Subtotal (95% CI) Fotal events Heterogeneity: Not applicable Fest for overall effect: Z = 0.0 2.2.2 DAS28-CRP EULAR at	Chi ² = 5.28 .18 (P < 0.0 <u>as: Chi² = 0.</u> 100mg bid t <u>Even</u> 12W 1 1 (P = 0.99) : 24W	, df = 6 0001) 53. df = then 156 ts 0 0	(P = 0.51 <u>2 (P = 0.</u> 0mg qd <u>Total</u> 29 29); ² = 0 77). ² = 100m Event	% = <u>0%</u> s Total 9 26 26 9	O <u>Weight M-H.</u> 11.7% 11.7%	0.01 0.01 0.01 0.09 [0.33, 3.03] 0.99 [0.33, 3.03]	Favours [Placebo]	Favours [Fostamatinib]
Total events Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 8 Test for suboroup difference Study or Subgroup .2.1 DAS28-CRP EULAR at NCT01569074 Subtotal (95% CI) Total events Heterogeneity: Not applicable Fest for overall effect: Z = 0.0 .2.2 DAS28-CRP EULAR at Wark C. Genovese 2014	Chi ² = 5.28 .18 (P < 0.0 as: Chi ² = 0.1 100mg bid 1 Even 1 2W 1 1 (P = 0.99) 24W	, df = 6 0001) 53. df = then 15(ts 0 0 0	(P = 0.51 2 (P = 0. Dmg qd Total 29 29 108); ² = 0 77). ² = 100m Event	% = <u>0%</u> s <u>Total</u> 9 <u>26</u> 26 9 5 105	O Weight M-H. 11.7% 11.7%	0.01 0.01 0.01 0.01 0.09 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 3.03]	Favours [Placebo]	Favours [Fostamatinib]
Total events Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 8 East for subgroup Call DAS28-CRP EULAR at VCT01569074 Subtotal (95% CI) Total events Heterogeneity: Not applicable fest for overall effect: Z = 0.0 Call 2.2 DAS28-CRP EULAR at Mark C. Genovese 2014 Michael E. Weinblatt 2013	Chi ² = 5.28 .18 (P < 0.0 as: Chi ² = 0. 100mg bid f Even 12W 1 (P = 0.99) 1 (P = 0.99) 2 24W	, df = 6 0001) 53. df = then 150 ts 0 0 0	(P = 0.51 <u>2 (P = 0.</u> <u>0mg qd</u> <u>Total</u> 29 29 108 304); ² = 0 77). ² = 100m Event	% = 0% g bid s Total 9 26 26 9 5 105 1 310	O Weight M-H. 11.7% 11.7% 18.8% 29.0%	0.01 0.01 0.01 0.01 0.01 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 3.03]	Favours [Placebo]	Favours [Fostamatinib]
Fotal events Heterogeneity: Tau ² = 0.00; Fest for overall effect: Z = 8 East for subgroup 2.1 DAS28-CRP EULAR at VCT01569074 Subtotal (95% CI) Fotal events Heterogeneity: Not applicable Fest for overall effect: Z = 0.0 7.2.2 DAS28-CRP EULAR at Mark C. Genovese 2014 Michael E. Weinblatt 2013 VCT01197534	Chi ² = 5.28 .18 (P < 0.0 as: Chi ² = 0. 100mg bid f Even 12W 1 1 (P = 0.99) 24W 1 4 5	, df = 6 0001) 53. df = then 150 ts 0 0 0 2 4 4 99	(P = 0.51 2 (P = 0.)))))))))))))))))))); ² = 0 77). ² = 100m Event	% = 0% g bid s Total 9 26 28 9 5 105 1 310 2 308	O Weight M-H. 11.7% 11.7% 18.8% 29.0% 29.7%	0.01 0dds Ratio Random, 95% CI 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.40 [0.19, 0.85] 0.48 [0.32, 0.72] 0.81 [0.55, 1.19]	Favours [Placebo]	Favours [Fostamatinib]
Total events Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 8 Test for suboroup difference Study or Subgroup 2.2.1 DAS28-CRP EULAR at NCT01569074 Subtotal (95% CI) Total events Heterogeneity: Not applicable Fest for overall effect: Z = 0.0 7.2.2 DAS28-CRP EULAR at Mark C. Genovese 2014 Michael E. Weinblatt 2013 NCT01197534 Peter C Taylor 2014	Chi ² = 5.28 .18 (P < 0.0 as: Chi ² = 0. 100mg bid f Even 12W 1 1 (P = 0.99) 24W 1 4 5	, df = 6 0001) 53. df = then 150 ts 0 0 0	(P = 0.51 <u>2 (P = 0.</u> <u>0mg qd</u> <u>Total</u> 29 29 108 304); ² = 0 77). ² = 100m Event	% = 0% g bid s Total 9 26 26 9 5 105 1 310	O Weight M-H. 11.7% 11.7% 18.8% 29.0% 29.7% 10.9%	0.01 0.01 0.01 0.01 0.09 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 1.03] 0.99 [0.32, 0.72] 0.48 [0.32, 0.72] 0.41 [0.55, 1.19] 2.26 [0.70, 7.30]	Favours [Placebo]	Favours [Fostamatinib]
Total events Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 8 Test for suboroup difference Study or Subgroup .2.1 DAS28-CRP EULAR at VCT01569074 Subtotal (95% CI) Fotal events Heterogeneity: Not applicable Test for overall effect: Z = 0.0 .2.2 DAS28-CRP EULAR at Mark C. Genovese 2014 Michael E. Weinblatt 2013 VCT01197534 Peter C Taylor 2014 Subtotal (95% CI)	Chi ² = 5.28 .18 (P < 0.0 as: Chi ² = 0. 100mg bid f Even 12W 1 1 (P = 0.99) 24W 1 4 5	, df = 6 0001) 53. df = then 150 ts 0 0 0 2 4 4 59 9	(P = 0.51 2 (P = 0.)))))))))))))); ² = 0 77). ² = 100m Event	% = 0% g bid s Total 9 26 26 9 5 105 1 310 2 308 5 54 777	O Weight M-H. 11.7% 11.7% 18.8% 29.0% 29.7% 10.9%	0.01 0dds Ratio Random, 95% CI 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.40 [0.19, 0.85] 0.48 [0.32, 0.72] 0.81 [0.55, 1.19]	Favours [Placebo]	Favours [Fostamatinib]
Total events Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 8 Test for subgroup V.2.1 DAS28-CRP EULAR at VCT01569074 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.0 V.2.2 DAS28-CRP EULAR at Mark C. Genovese 2014 Michael E. Weinblatt 2013 VCT01197534 Peter C Taylor 2014 Subtotal (95% CI) Total events	Chi ² = 5.28 .18 (P < 0.0 as: Chi ² = 0. 100mg bid f Even 12W 1 (P = 0.99) 2 24W 1 2 1 (P = 0.99) 2 24W	, df = 6 0001) 53. df = then 150 ts 0 0 0 2 4 4 9 9	(P = 0.51 2 (P = 0. Dmg qd Total 29 29 108 304 298 48 758); ² = 0 77), ² = 100m Event 2 8 8 7;	% = 0% g bid s Total 9 26 26 9 5 105 1 310 2 308 5 54 777	O Weight M-H. 11.7% 11.7% 18.8% 29.0% 29.7% 10.9%	0.01 0.01 0.01 0.01 0.09 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 1.03] 0.99 [0.32, 0.72] 0.48 [0.32, 0.72] 0.41 [0.55, 1.19] 2.26 [0.70, 7.30]	Favours [Placebo]	Favours [Fostamatinib]
Fotal events Heterogeneity: Tau ² = 0.00; Fest for overall effect: Z = 8 East for subgroup X.21 DAS28-CRP EULAR at VCT01569074 Subtotal (95% CI) Fotal events Heterogeneity: Not applicable Fest for overall effect: Z = 0.0 X.22 DAS28-CRP EULAR at Wark C. Genovese 2014 Michael E. Weinblatt 2013 VCT01197534 Peter C Taylor 2014 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = 0.17; C	Chi ² = 5.28 .18 (P < 0.0 as: Chi ² = 0. 100mg bid f Even 12W 1 (P = 0.99) 24W 1 2 chi ² = 9.33, d	, df = 6 0001) 53. df = then 150 ts 0 0 0 2 4 4 9 9	(P = 0.51 2 (P = 0. Dmg qd Total 29 29 108 304 298 48 758); ² = 0 77), ² = 100m Event 2 8 8 7;	% = 0% g bid s Total 9 26 26 9 5 105 1 310 2 308 5 54 777	O Weight M-H. 11.7% 11.7% 18.8% 29.0% 29.7% 10.9%	0.01 0.01 0.01 0.01 0.09 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 1.03] 0.99 [0.32, 0.72] 0.48 [0.32, 0.72] 0.41 [0.55, 1.19] 2.26 [0.70, 7.30]	Favours [Placebo]	Favours [Fostamatinib]
Total events Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 8 Test for subgroup V.2.1 DAS28-CRP EULAR at VCT01569074 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.0 V.2.2 DAS28-CRP EULAR at Mark C. Genovese 2014 Michael E. Weinblatt 2013 VCT01197534 Peter C Taylor 2014 Subtotal (95% CI) Total events	Chi ² = 5.28 .18 (P < 0.0 as: Chi ² = 0. 100mg bid f Even 12W 1 (P = 0.99) 24W 1 2 chi ² = 9.33, d	, df = 6 0001) 53. df = then 150 ts 0 0 0 2 4 4 9 9	(P = 0.51 2 (P = 0. Dmg qd Total 29 29 108 304 298 48 758); ² = 0 77), ² = 100m Event 2 8 8 7;	% = 0% g bid s Total 9 26 26 9 5 105 1 310 2 308 5 54 777	O Weight M-H. 11.7% 11.7% 18.8% 29.0% 29.7% 10.9%	0.01 0.01 0.01 0.01 0.09 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 1.03] 0.99 [0.32, 0.72] 0.48 [0.32, 0.72] 0.41 [0.55, 1.19] 2.26 [0.70, 7.30]	Favours [Placebo]	Favours [Fostamatinib]
Fotal events Heterogeneity: Tau ² = 0.00; Fest for overall effect: Z = 8 East for subgroup X.21 DAS28-CRP EULAR at VCT01569074 Subtotal (95% CI) Fotal events Heterogeneity: Not applicable Fest for overall effect: Z = 0.0 X.22 DAS28-CRP EULAR at Wark C. Genovese 2014 Michael E. Weinblatt 2013 VCT01197534 Peter C Taylor 2014 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = 0.17; C	Chi ² = 5.28 .18 (P < 0.0 as: Chi ² = 0. 100mg bid f Even 12W 1 (P = 0.99) 24W 1 2 chi ² = 9.33, d	, df = 6 0001) 53. df = then 150 ts 0 0 0 2 4 4 9 9	(P = 0.51 2 (P = 0. Dmg qd Total 29 29 108 304 298 48 758); ² = 0 77), ² = 100m Event 2 8 8 7;	% = 0% = 0	O Weight M-H. 11.7% 11.7% 18.8% 29.0% 29.7% 10.9% 88.3%	0.01 0.01 0.01 0.01 0.09 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 3.03] 0.99 [0.33, 1.03] 0.99 [0.32, 0.72] 0.48 [0.32, 0.72] 0.41 [0.55, 1.19] 2.26 [0.70, 7.30]	Favours [Placebo]	Favours [Fostamatinib]
Total events Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 8 East for suboroup difference Study or Subgroup 2.2.1 DAS28-CRP EULAR at VCT01569074 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.0 7.2.2 DAS28-CRP EULAR at Mark C. Genovese 2014 Michael E. Weinblatt 2013 VCT01197534 Peter C Taylor 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.17; C Fest for overall effect: Z = 1.5	Chi ² = 5.28 .18 (P < 0.0 as: Chi ² = 0. 100mg bid f Even 12W 1 (P = 0.99) 24W 1 2 chi ² = 9.33, d	, df = 6 0001) 53. df = then 15/ ts 0 0 0 2 4 4 9 9 9 9 4 4 f = 3 (P	(P = 0.51 2 (P = 0. Dmg qd Total 29 29 108 304 298 48 758 = 0.03); l ²); ² = 0 77), ² = 100m Event 2 8 8 7;	% = 0% = 0	O Weight M-H. 11.7% 11.7% 18.8% 29.0% 29.7% 10.9% 88.3%	0.01 0.01 0.01 0.01 0.99 [0.33, 3.03] 0.99 [0.34, 0.19, 0.85] 0.40 [0.55, 1.19] 2.26 [0.70, 7.30] 0.67 [0.40, 1.12]	Favours [Placebo]	Favours [Fostamatinib]
Fotal events Heterogeneity: Tau ² = 0.00; Fest for overall effect: Z = 8 Fest for subgroup Z.1 DAS28-CRP EULAR at VCT01569074 Subtotal (95% CI) Fotal events Heterogeneity: Not applicable Fest for overall effect: Z = 0.0 Z.2 DAS28-CRP EULAR at Mark C. Genovese 2014 Michael E. Weinblatt 2013 NCT01197534 Peter C Taylor 2014 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = 0.17; C Fest for overall effect: Z = 1.5 Fotal (95% CI)	Chi ² = 5.28 .18 (P < 0.0 as: Chi ² = 0. 100mg bid f Even :12W 1 (P = 0.99) : 24W 1 2 Chi ² = 9.33, di 2 (P = 0.13)	, df = 6 0001) 53. df = then 15/ ts 0 0 0 2 4 5 9 9 4 f = 3 (P =	(P = 0.51 2 (P = 0. Dmg qd Total 29 29 29 108 304 298 48 758 = 0.03); l ² 787); ² = 0 777). ² = ² 100mm Event 2 2 2 3 77 18: 18: 19: 19:	% = 0% = 0	O Weight M-H. 11.7% 11.7% 18.8% 29.0% 29.7% 10.9% 88.3%	0.01 0.01 0.01 0.01 0.99 [0.33, 3.03] 0.99 [0.34, 0.19, 0.85] 0.40 [0.55, 1.19] 2.26 [0.70, 7.30] 0.67 [0.40, 1.12]	Favours [Placebo]	Favours [Fostamatinib]

FIGURE 9 | Forest plots for the effect of multiple doses on DAS28-CRP EULAR (only considering good response) at different time points. (A) Subgroups administered multiple doses (50, 75, and 100 mg bid) of fostamatinib compared to placebo at 24 weeks from baseline; (B) 100 mg bid for 4 weeks followed by 150 mg bid vs. 100 mg bid at 12 and 24 weeks.

3.70, 95% CI [0.63, 21.79], P = 0.15). Because of the small sample size of the group administered the 75 mg bid dosage regimen, SAEs could not be fully determined in this group (RR 0.33, 95% CI [0.01, 7.90] P = 0.5). For overall AEs, a significant difference was found between fostamatinib 100 mg bid and placebo (RR 2.10, 95% CI [1.56, 2.83], P < 0.00001; **Figure 13A**). Heterogeneity was significantly reduced after the removal of a study (Weinblatt et al., 2010) (detailed data not shown). The risk of SAEs was similar between the administration of 100 mg bid for 4 weeks followed by 150 and 100 mg bid (RR 0.90, 95% CI [0.64, 1.27], P = 0.55; **Figure 13B**).

Other AEs

When 50 or 75 mg bid was administered, there was no significant difference between fostamatinib and placebo in overall other AEs (RR 1.10, 95% CI [0.67, 1.79], P = 0.71; RR 1.07; 95% CI [0.64, 1.78], P = 0.81; **Figure 14A**). However, when 100 mg bid was administered, the probability of the occurrence of other AEs was higher than that of placebo (RR 1.79, 95% CI [1.44, 2.22], P < 0.00001). Though it is imperative to remove possible effect sizes to avoid heterogeneity, the heterogeneity is still greater than 50%. When 100 mg bid was administered for 4 weeks followed

FIGURE 10 | Forest plots for the effect of multiple doses on SF-36 to derive the change in PCS at different time points. (A) Subgroups administered multiple doses (50, 75, and 100 mg bid) of fostamatinib vs. placebo at 24 weeks; (B) 100 mg bid for 4 weeks followed by 150 mg bid vs. 100 mg bid at 12 and 24 weeks.

by 150 mg qd and compared to the administration of 100 mg bid, a significant difference was not found between the two dosing regimens (RR 0.95, 95% CI [0.81, 1.11], P = 0.52; Figure 14B).

DISCUSSION

Summary of Main Findings

RA is a chronic inflammatory joint disease that can result in damages to the cartilage and bone as well as disability (Smolen et al., 2016). The Syk inhibitor, fostamatinib, has been reported to be effective for the treatment of RA. Therefore, in this systematic review and meta-analysis, we discussed the safety and efficacy of multiple dosages of fostamatinib. This meta-analysis was performed according to the methods in the Cochrane handbook and the PRISMA Statement protocol. The applied search strategy revealed all relevant published and unpublished articles but we

excluded an open label study with five healthy subjects and two pharmacokinetics studies from our analysis.

Among the results acquired from the 11 RCTs in the present meta-analysis, we believe that ACR20 and DAS28-CRP < 2.6 are a primary goal in active RA control. They both had a positive change at 12 weeks. The therapeutic effect of 100 mg bid 4 weeks then 150 mg qd is not as good as that of 100 mg bid at 24 weeks. In addition, we observed high heterogeneity when the 100 mg bid dose was compared in the ACR20 group, especially in the 100 mg bid subgroup. After removing the study by Genovese et al. (2011), the heterogeneity was observed to decrease significantly. After the removal of "NCT01197534", such trend was also reflected in DAS28-CRP < 2.6 as high total heterogeneity was found in DAS28-CRP < 2.6 at 12 weeks. We speculate that the high level of heterogeneity is caused by the better efficacy of the study compared to the other studies; thus, when removed, heterogeneity can be reduced. This creates doubt in the credibility of the data.

	Fosta	amatinik)	F	Placebo			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
10.1.1 50 bid									
NCT01569074	5	8.9	27	4	7.9	27	3.8%	1.00 [-3.49, 5.49]	
Subtotal (95% Cl)			27			27	3.8%	1.00 [-3.49, 5.49]	
Heterogeneity: Not applicab	le								
Test for overall effect: Z = 0.	.44 (P = 0.6	66)							
10.1.2 75bid									
NCT01569074	2	7	26	4	7.9	27	4.7%	-2.00 [-6.01, 2.01]	
Subtotal (95% CI)			26			27	4.7%	-2.00 [-6.01, 2.01]	
Heterogeneity: Not applicab	le								
Test for overall effect: $Z = 0$.		33)							
10.1.3 100mg bid									
Mark C. Genovese 2014	2	8.6	104	2	7.3	109	14.4%	0.00 [-2.15, 2.15]	
Michael E. Weinblatt 2010	3.99 1				10.7098	118		0.28 [-2.37, 2.93]	
Michael E. Weinblatt 2013	4	9.5	310	2	8.1	303		2.00 [0.60, 3.40]	— —
NCT01197534	3	7.5	308	1	6.3	302		2.00 [0.90, 3.10]	
NCT01569074	7	8.7	25	4	7.9	27	3.8%	3.00 [-1.53, 7.53]	
Subtotal (95% CI)	'	0.7	876	-+	1.9	859	91.4%	1.61 [0.81, 2.41]	
Test for overall effect: Z = 3. Total (95% CI)	,	0001)	929	29): l² =	19%	913	100.0%	1.35 [0.45, 2.25]	◆
Test for overall effect: Z = 3. Total (95% CI) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2.	.93 (P < 0.0 Chi ² = 7.37 .93 (P = 0.0	0001) 7, df = 6 003)	929 (P = 0.	,,			100.0%	1.35 [0.45, 2.25]	-4 -2 0 2 4 Favours [Placebo] Favours [Fostamatinib]
Test for overall effect: Z = 3. Total (95% CI) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2. Test for suboroup difference	.93 (P < 0.0 Chi ² = 7.37 .93 (P = 0.0	0001) 7, df = 6 003)	929 (P = 0.	,,			100.0%	1.35 [0.45, 2.25]	
Test for overall effect: Z = 3. Total (95% Cl) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2. Test for subgroup difference	.93 (P < 0.0 Chi ² = 7.37 .93 (P = 0.0 es: Chi ² = 3 100mg	0001) 7, df = 6 003) .03. df = bid ther	929 (P = 0. <u>2 (P =</u> 150m	0.22). I ² g bid	² = 34.0% 100	ng bid		Mean Difference	Favours [Placebo] Favours [Fostamatinib] Mean Difference
Test for overall effect: Z = 3. Total (95% CI) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2. Test for subgroup difference Study or Subgroup	.93 (P < 0.0 Chi ² = 7.37 .93 (P = 0.0 es: Chi ² = 3 100mg Mear	0001) 7, df = 6 003) .03. df = bid ther	929 (P = 0. 2 (P = 150m SD	0.22). ² g bid Tota	² = 34.0% 100 I Mean	ng bid SD 1			Favours [Placebo] Favours [Fostamatinib]
Test for overall effect: Z = 3. Total (95% Cl) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2. Test for suboroup difference Study or Subgroup 10.2.1 SF-36 - Comparison	.93 (P < 0.0 Chi ² = 7.37 .93 (P = 0.0 as: Chi ² = 3 100mg <u>Mear</u> n of the Ch	0001) 7, df = 6 003) .03. df = bid ther ange in	929 (P = 0. <u>2 (P =</u> <u>150m</u> <u>SD</u> MCS F	0.22). I ² g bid <u>Tota</u> From bs	² = <u>34.0%</u> 100 I Mean aline at	ng bid SD 1 I2W	otal We	Mean Difference Ight IV. Random, 95% Cl	Favours [Placebo] Favours [Fostamatinib] Mean Difference
Test for overall effect: Z = 3. Total (95% CI) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2. Test for subgroup difference Study or Subgroup 10.2.1 SF-36 - Comparison NCT01569074	.93 (P < 0.0 Chi ² = 7.37 .93 (P = 0.0 as: Chi ² = 3 100mg <u>Mear</u> n of the Ch	0001) 7, df = 6 003) .03. df = bid ther ange in	929 (P = 0. 2 (P = 150m SD	0.22). I ² g bid Tota From bs 29	² = <u>34.0%</u> 100 I <u>Mean</u> aline at	ng bid SD 1	<u>'otal We</u> 25 3	Mean Difference Ight IV. Random, 95% Cl .6% -1.00 [-5.41, 3.41]	Favours [Placebo] Favours [Fostamatinib] Mean Difference
Test for overall effect: Z = 3. Total (95% Cl) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2. Test for suboroup difference Study or Subgroup 10.2.1 SF-36 - Comparison NCT01569074 Subtotal (95% Cl)	.93 (P < 0.0 Chi ² = 7.37 .93 (P = 0.0 es: Chi ² = 3 100mg <u>Mear</u> n of the Ch	0001) 7, df = 6 003) .03. df = bid ther ange in	929 (P = 0. <u>2 (P =</u> <u>150m</u> <u>SD</u> MCS F	0.22). I ² g bid <u>Tota</u> From bs	² = <u>34.0%</u> 100 I <u>Mean</u> aline at	ng bid SD 1 I2W	<u>'otal We</u> 25 3	Mean Difference Ight IV. Random, 95% Cl	Favours [Placebo] Favours [Fostamatinib] Mean Difference
Test for overall effect: Z = 3. Total (95% CI) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2. Test for subgroup difference Study or Subgroup 10.2.1 SF-36 - Comparison NCT01569074	.93 (P < 0.0 Chi ² = 7.37 .93 (P = 0.0 .95; Chi ² = 3 100mg <u>Mear</u> n of the Ch (0001) 7, df = 6 003) .03. df = bid ther ange in	929 (P = 0. <u>2 (P =</u> <u>150m</u> <u>SD</u> MCS F	0.22). I ² g bid Tota From bs 29	² = <u>34.0%</u> 100 I <u>Mean</u> aline at	ng bid SD 1 I2W	<u>'otal We</u> 25 3	Mean Difference Ight IV. Random, 95% Cl .6% -1.00 [-5.41, 3.41]	Favours [Placebo] Favours [Fostamatinib] Mean Difference
Test for overall effect: Z = 3. Total (95% Cl) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2. Test for suborouo difference Study or Subgroup 10.2.1 SF-36 - Comparison NCT01569074 Subtotal (95% Cl) Heterogeneity: Not applicab Test for overall effect: Z = 0.	.93 (P < 0.6 Chi ² = 7.3 .93 (P = 0.6 as: Chi ² = 3 100mg Mear n of the Ch (f) (f) (f) (f) (f) (f) (f) (f) (f) (f)	2001) 7, df = 6 203) .03. df = bid ther ange in 3 36)	929 (P = 0. <u>2 (P =</u> 150m <u>SD</u> MCS F 7.7	0.22). I g bid <u>Tota</u> From bs 29 29	² = 34.0% 1000 <u>I Mean</u> aline at) 7	ng bid <u>SD 1</u> 12W 8.7	<u>'otal We</u> 25 3	Mean Difference Ight IV. Random, 95% Cl .6% -1.00 [-5.41, 3.41]	Favours [Placebo] Favours [Fostamatinib] Mean Difference
Test for overall effect: Z = 3. Total (95% Cl) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2. Test for subgroup difference Study or Subgroup 10.2.1 SF-36 - Comparison NCT01569074 Subtotal (95% Cl) Heterogeneity: Not applicab Test for overall effect: Z = 0. 10.2.2 SF-36 - Comparison	.93 (P < 0.6 Chi ² = 7.37 .93 (P = 0.6 as: Chi ² = 3 100mg <u>Mear</u> n of the Ch .44 (P = 0.6 n of the Ch	2001) 7, df = 6 203) .03. df = bid ther ange in 36) ange in	929 (P = 0. 2 (P = 150m SD MCS F 7.7	g bid Tota From bs 29 29	² = 34.0% 100/ <u>I Mean</u> aline at) 7)	ng bid SD 1 12W 8.7		Mean Difference Ight IV. Random, 95% Cl .6% -1.00 [-5.41, 3.41] .6% -1.00 [-5.41, 3.41]	Favours [Placebo] Favours [Fostamatinib] Mean Difference
Test for overall effect: Z = 3. Total (95% CI) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2. Test for subgroup difference Study or Subgroup 10.2.1 SF-36 - Comparison NCT01569074 Subtotal (95% CI) Heterogeneity: Not applicab Test for overall effect: Z = 0. 10.2.2 SF-36 - Comparison Mark C. Genovese 2014	.93 (P < 0.0 Chi ² = 7.37 .93 (P = 0.0 .95; Chi ² = 3 100mg Mear n of the Ch .44 (P = 0.0 n of the Ch	2001) 7, df = 6 203) .03. df = bid ther ange in 3 36) ange in 2	929 (P = 0. 2 (P = 150m SD MCS F 7.7 MCS F 7.7	g bid <u>Tota</u> rom bs 29 29 From bs	² = 34.0% 100/ 1 Mean aline at) 7) aline at 3	ng bid <u>SD 1</u> 12W 8.7 24W 8.6	<u>otal We</u> 25 3 25 3	Mean Difference [ght IV. Random. 95% Cl .6% -1.00 [-5.41, 3.41] .6% -1.00 [-5.41, 3.41] .5% 0.00 [-2.12, 2.12]	Favours [Placebo] Favours [Fostamatinib] Mean Difference
Test for overall effect: Z = 3. Total (95% Cl) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2. Test for subgroup 10.2.1 SF-36 - Comparison NCT01569074 Subtotal (95% Cl) Heterogeneity: Not applicab Test for overall effect: Z = 0. 10.2.2 SF-36 - Comparison Mark C. Genovese 2014 Michael E. Weinblatt 2013	.93 (P < 0.0 Chi ² = 7.37 .93 (P = 0.0 .93 (P = 0.0 .94 (P = 0.0))))))))))))))))))))))))))))))))))	2001) 7, df = 6 203) .03. df = bid ther ange in 3 36) ange in 2	929 (P = 0. 2 (P = 150m SD MCS F 7.7 MCS F 7.8.6	g bid <u>Tota</u> From bs 29 29 From bs 108 304	² = 34.0% 100/ <u>I Mean</u> aline at 1) 7) saline at 1) 3 2 4 4	ng bid <u>SD 1</u> 12W 8.7 24W 8.6 9.5	<u>otal We</u> 25 3 25 3 104 15 310 33	Mean Difference ight IV. Random. 95% Cl .6% -1.00 [-5.41, 3.41] .6% -1.00 [-5.41, 3.41] .5% 0.00 [-2.12, 2.12] .8% 0.00 [-1.43, 1.43]	Favours [Placebo] Favours [Fostamatinib] Mean Difference
Test for overall effect: Z = 3. Total (95% Cl) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2. Test for subgroup 10.2.1 SF-36 - Comparison NCT01569074 Subtotal (95% Cl) Heterogeneity: Not applicab Test for overall effect: Z = 0. 10.2.2 SF-36 - Comparison Mark C. Genovese 2014 Michael E. Weinblatt 2013 NCT01197534	.93 (P < 0.6 Chi ² = 7.37 .93 (P = 0.6 ss: Chi ² = 3 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 1000	2001) 7, df = 6 203) 0.03. df = bid ther ange in 5 56) ange in 2 4	929 (P = 0. 2 (P = 150m SD MCS F 7.7 8.6 8.4	g bid <u>Tota</u> From bs 29 29 From bs 108 304 298	² = 34.0% 100 <u>I Mean</u> aaline at 3 3 4 3 3 2 4 3 3 3	ng bid <u>SD 1</u> 12W 8.7 24W 8.6 9.5 7.5	Total We 25 3 25 3 104 15 310 33 308 43	Mean Difference [ght IV. Random. 95% Cl .6% -1.00 [-5.41, 3.41] .6% -1.00 [-5.41, 3.41] .5% 0.00 [-2.12, 2.12] .8% 0.00 [-1.43, 1.43] .0% 0.00 [-1.27, 1.27]	Favours [Placebo] Favours [Fostamatinib] Mean Difference
Test for overall effect: Z = 3. Total (95% CI) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2. Test for subgroup difference Study or Subgroup 10.2.1 SF-36 - Comparison NCT01569074 Subtotal (95% CI) Heterogeneity: Not applicab Test for overall effect: Z = 0. 10.2.2 SF-36 - Comparison Mark C. Genovese 2014 Michael E. Weinblatt 2013 NCT01197534 Peter C Taylor 2014	.93 (P < 0.6 Chi ² = 7.37 .93 (P = 0.6 ss: Chi ² = 3 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg Mear 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 100mg 1000	2001) 7, df = 6 203) 0.03. df = bid ther ange in 5 56) ange in 2 4	929 (P = 0. 2 (P = 150m SD MCS F 7.7 MCS F 7.8.6	g bid <u>Tota</u> From bs 29 29 From bs 108 304	² = 34.0% 100 1 Mean saline at 3 3 2 4 4 3 3 3 3	ng bid SD 1 12W 8.7 24W 8.6 9.5 7.5 9.3	Total We 25 3 25 3 104 15 310 33 308 43 54 4	Mean Difference ight IV. Random. 95% Cl .6% -1.00 [-5.41, 3.41] .6% -1.00 [-5.41, 3.41] .6% -1.00 [-5.41, 3.41] .5% 0.00 [-2.12, 2.12] .8% 0.00 [-1.43, 1.43] .0% 0.00 [-1.27, 1.27] .1% 0.00 [-4.09, 4.09]	Favours [Placebo] Favours [Fostamatinib] Mean Difference
Test for overall effect: Z = 3. Total (95% Cl) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2. Test for subgroup 10.2.1 SF-36 - Comparison NCT01569074 Subtotal (95% Cl) Heterogeneity: Not applicab Test for overall effect: Z = 0. 10.2.2 SF-36 - Comparison Mark C. Genovese 2014 Michael E. Weinblatt 2013 NCT01197534 Peter C Taylor 2014 Subtotal (95% Cl)	.93 (P < 0.(Chi ² = 7.37 .93 (P = 0.0 .93 (P = 0.0))))))))))))))))))))))))))))))))))	20001) 7, df = 6 203) .03. df = bid ther ange in 36) ange in 2 4 33 1	929 (P = 0. 2 (P = 150m MCS F 7.7 8.6 8.4 1.5	g bid <u>Tota</u> rom bs 29 29 rom bs 108 304 298 48 758	² = 34.0% 100 <u>1 Mean</u> alline at 3 7 4 3 3 3 3 3 3	ng bid SD 1 12W 8.7 24W 8.6 9.5 7.5 9.3	Total We 25 3 25 3 104 15 310 33 308 43 54 4	Mean Difference [ght IV. Random. 95% Cl .6% -1.00 [-5.41, 3.41] .6% -1.00 [-5.41, 3.41] .5% 0.00 [-2.12, 2.12] .8% 0.00 [-1.43, 1.43] .0% 0.00 [-1.27, 1.27]	Favours [Placebo] Favours [Fostamatinib] Mean Difference
Test for overall effect: Z = 3. Total (95% Cl) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2. Test for suborouo difference Study or Subgroup 10.2.1 SF-36 - Comparison NCT01569074 Subtotal (95% Cl) Heterogeneity: Not applicab Test for overall effect: Z = 0. 10.2.2 SF-36 - Comparison Mark C. Genovese 2014 Michael E. Weinblatt 2013 NCT01197534 Peter C Taylor 2014 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00;	.93 (P < 0.0 Chi ² = 7.37 .93 (P = 0.0 .93 (P = 0.0 .94 (P = 0.0	0001) 7, df = 6 003) .03. df = bid ther ange in 366) ange in 24 33 10, df = 3	929 (P = 0. 2 (P = 150m MCS F 7.7 8.6 8.4 1.5	g bid <u>Tota</u> rom bs 29 29 rom bs 108 304 298 48 758	² = 34.0% 100 <u>1 Mean</u> alline at 3 7 4 3 3 3 3 3 3	ng bid SD 1 12W 8.7 24W 8.6 9.5 7.5 9.3	Total We 25 3 25 3 104 15 310 33 308 43 54 4	Mean Difference ight IV. Random. 95% Cl .6% -1.00 [-5.41, 3.41] .6% -1.00 [-5.41, 3.41] .6% -1.00 [-5.41, 3.41] .5% 0.00 [-2.12, 2.12] .8% 0.00 [-1.43, 1.43] .0% 0.00 [-1.27, 1.27] .1% 0.00 [-4.09, 4.09]	Favours [Placebo] Favours [Fostamatinib] Mean Difference
Test for overall effect: Z = 3. Total (95% CI) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2. Test for subgroup difference Study or Subgroup 10.2.1 SF-36 - Comparison NCT01569074 Subtotal (95% CI) Heterogeneity: Not applicab	.93 (P < 0.0 Chi ² = 7.37 .93 (P = 0.0 .93 (P = 0.0 .94 (P = 0.0	0001) 7, df = 6 003) .03. df = bid ther ange in 366) ange in 24 33 10, df = 3	929 (P = 0. 2 (P = 150m MCS F 7.7 8.6 8.4 1.5	g bid <u>Tota</u> rom bs 29 29 rom bs 108 304 298 48 758	² = 34.0% 100 1 Mean aaline at 2 7 3 2 4 4 3 3 3 3 3 3 0%	ng bid SD 1 12W 8.7 24W 8.6 9.5 7.5 9.3	Total We 25 3 25 3 104 15 310 33 308 43 54 4	Mean Difference ight IV. Random. 95% CI .6% -1.00 [-5.41, 3.41] .6% -1.00 [-5.41, 3.41] .6% -0.00 [-5.41, 3.41] .5% 0.00 [-2.12, 2.12] .8% 0.00 [-1.43, 1.43] .0% 0.00 [-1.43, 1.43] .0% 0.00 [-4.09, 4.09] .4% 0.00 [-0.85, 0.85]	Favours [Placebo] Favours [Fostamatinib] Mean Difference
Test for overall effect: Z = 3. Total (95% CI) Heterogeneity: Tau ² = 0.27; Test for overall effect: Z = 2. Test for subgroup 10.2.1 SF-36 - Comparison NCT01569074 Subtotal (95% CI) Heterogeneity: Not applicab Test for overall effect: Z = 0. 10.2.2 SF-36 - Comparison Mark C. Genovese 2014 Wichael E. Weinblatt 2013 NCT01197534 Peter C Taylor 2014 Subtotal (95% CI) Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 0.	.93 (P < 0.0 Chi ² = 7.37 .93 (P = 0.0 .93 (P = 0.0	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	929 (P = 0. 2 (P = 50 SD 7.7 MCS F 7.7 8.6 8.4 11.5 (P = 1.	0.22). Ji g bid <u>Tota</u> from bs 29 29 29 29 29 29 29 29 29 29 29 29 29	2 = 34.0% 100; I Mean aline at : 3 7 aline at : 4 3 3 0%	ng bid SD 1 12W 8.7 24W 8.6 9.5 7.5 9.3	Total We 25 3 25 3 104 15 310 33 308 43 54 4 776 96	Mean Difference ight IV. Random. 95% CI .6% -1.00 [-5.41, 3.41] .6% -1.00 [-5.41, 3.41] .6% -0.00 [-5.41, 3.41] .5% 0.00 [-2.12, 2.12] .8% 0.00 [-1.43, 1.43] .0% 0.00 [-1.43, 1.43] .0% 0.00 [-4.09, 4.09] .4% 0.00 [-0.85, 0.85]	Favours [Placebo] Favours [Fostamatinib] Mean Difference

FIGURE 11 | Forest plots for the effect of multiple doses on SF-36 to derive the change in MCS at different time points. (A) Subgroups administered multiple doses (50, 75, and 100 mg bid) of fostamatinib vs. placebo at 24 weeks; (B) 100 mg bid for 4 weeks followed by 150 mg bid vs. 100 mg bid at 12 and 24 weeks.

The results acquired from the 11 RCTs in the present metaanalysis indicate that fostamatinib yielded a better ACRn score than placebo. Nonetheless, the same phenomenon can be seen for the indexes ACR50, ACR70, DAS28-CRP \leq 3.2, and DAS28-CRP EULAR response. We can also confirm that 100 mg bid is the optimal choice for RA patients. Furthermore, SF-36-PCS, MCS and HAQ-DI response had positive change. At 24 weeks, 100 mg bid was more effective than 100 mg bid followed by 150 qd in SF-36-PCS. However, remission was not observed in SF-36-MCS. This is a reminder that physical and mental components are also contributors. Taken together, fostamatinib is a reliable, effective, and potential drug for the clinical treatment of RA. The results of this meta-analysis also indicate that fostamatinib 100 mg bid is the optimal dose recommended for clinical use, aligning with the results of a previous study (Kunwar et al., 2016).

Our current systematic review and meta-analysis included phase II and III studies where treatment outcome with fostamatinib was compared to that of placebo. Adverse reactions caused by 50 and 75 mg bid resulted in no significant difference at 12 weeks; this is for SAEs or other AEs. However, there were significant differences in adverse reactions between 100 mg bid group and the placebo group. This might be because the former has a relatively small sample size and low degree of credibility, or because of its inability to verify the cumulative adverse reactions in the later period of medication without additional studies assessing the long-term adverse reactions of the medication for 24 weeks or more.

Based on the RCTs, incidence of SAEs was mainly due to gastrointestinal disorders, hepatobiliary disorders, infections and infestations, and musculoskeletal and connective tissue disorders. However, a marked increase in the frequency of serious infections and infestations were not found in the fostamatinib group compared to the placebo group. Other AEs mainly included hypertension, diarrhea, nausea, ALT increase, nasopharyngitis, vomiting, dyspepsia, headache, dizziness, arthralgia, and flatulence, etc. Kitas et al. (2014) revealed that

	Fostama	atinib	Place	0		Odds Ratio			Odds R	atio		
Study or Subgroup					Weiaht	M-H, Fixed, 95% C	1		M-H, Fixed,			
11.1.1 50 bid												
NCT01569074	13	28	14	28	5.9%	0.87 [0.30, 2.47]		_				
Subtotal (95% CI)		28		28	5.9%	0.87 [0.30, 2.47]						
Total events	13		14									
Heterogeneity: Not applicab												
Test for overall effect: Z = 0		'9)										
11.1.2 75bid												
NCT01569074	12	27	14	28	6.0%	0.80 [0.28, 2.31]						
Subtotal (95% CI)		27		28	6.0%	0.80 [0.28, 2.31]						
Total events	12		14									
Heterogeneity: Not applicab	le											
Test for overall effect: Z = 0		68)										
11.1.3 100 bid												
Mark C. Genovese 2014	44	105	26	109	11.7%	2.30 [1.28, 4.14]				_	-	
Michael E. Weinblatt 2013	170	310	107	304	38.6%	2.24 [1.62, 3.09]				-		
NCT01197534	142	308	80	302	34.4%	2.37 [1.69, 3.33]				_		
NCT01569074	18	26	14	28	3.3%	2.25 [0.74, 6.86]				-		
Subtotal (95% CI)		749		743	88.0%	2.30 [1.86, 2.85]				-		
Total events	374		227									
Heterogeneity: Chi ² = 0.06,			= 0%									
Test for overall effect: Z = 7	.63 (P < 0.0	00001)										
Total (95% CI)												
		804		799	100 0%	2 12 [1 73 2 61]				•		
. ,	200	804	255	799	100.0%	2.12 [1.73, 2.61]				•		
Total events	399 df = 5 (P =		255	799	100.0%	2.12 [1.73, 2.61]				◆ 		
Total events Heterogeneity: Chi ² = 6.65,	df = 5 (P =	0.25); l²		799	100.0%	2.12 [1.73, 2.61]	0.1		0.5 1	• 2	5	10
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7	df = 5 (P = .21 (P < 0.0	0.25); l² 00001)	= 25%			2.12 [1.73, 2.61]	0.1		0.5 1 Placebo] F		- I 5 stamatin	
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7 Test for subgroup difference	df = 5 (P = .21 (P < 0.0	0.25); l² 00001)	= 25%			2.12 [1.73, 2.61]	0.1				l 5 stamatin	
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7 Test for subgroup difference	df = 5 (P = .21 (P < 0.0	0.25); l² 00001)	= 25%			2.12 [1.73, 2.61]	0.1				l 5 stamatin	
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7 Test for suboroup difference	df = 5 (P = .21 (P < 0.0 es: Chi ² = 6	0.25); I ² 00001) .59. df = then 15	= 25% 2 (P = 0.) Omg qd	<u>04). ² =</u> 100m	69.6% g bid	Odds Rat	io		Placebo] F	avours [Fos		
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7 Test for subaroup difference Study or Subgroup	df = 5 (P = .21 (P < 0.0 es: Chi ² = 6 100mg bid Even	0.25); I ² 00001) .59. df = then 15	= 25% 2 (P = 0.) Omg qd	<u>04). ² =</u> 100m	69.6% g bid		io		Placebo] F	avours [Fo:		
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7 Test for subaroup difference Study or Subgroup 11.2.1 HAQ-DI Response <	df = 5 (P = .21 (P < 0.0 es: Chi ² = 6 100mg bid <u>Ever</u> 24W	0.25); I ² 00001) 59. df = then 15	= 25% <u>2 (P = 0.)</u> Omg qd <u>Total</u>	04), ² = 100m Events	69.6% g bid s Total	Odds Rat Weight M-H. Fixed.	io 95% Cl		Placebo] F	avours [Fos		
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7 Test for suboroup difference Study or Subgroup 11.2.1 HAQ-DI Response < NCT01569074	df = 5 (P = .21 (P < 0.0 es: Chi ² = 6 100mg bid <u>Ever</u> 24W	0.25); I ² 00001) .59. df = then 15	= 25% <u>2 (P = 0.)</u> Omg qd <u>Total</u> 29	<u>04). ² =</u> 100m	69.6% g bid 5 Total 3 26	Odds Rat <u>Weight M-H. Fixed.</u> 4.8% 0.41 [0.14	io 95% Cl 4, 1.25]		Placebo] F	avours [Fos		
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7 Test for suboroup difference Study or Subgroup 11.2.1 HAQ-DI Response < NCT01569074 Subtotal (95% CI)	df = 5 (P = .21 (P < 0.0 28: Chi ² = 6 100mg bid Even 24W	0.25); l ² 00001) 59. df = then 15 tts	= 25% <u>2 (P = 0.)</u> Omg qd <u>Total</u>	04), l² = 100m, Event: 18	69.6% g bid s Total 3 26 26 26	Odds Rat Weight M-H. Fixed.	io 95% Cl 4, 1.25]		Placebo] F	avours [Fos		
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7 Test for subgroup difference Study or Subgroup 11.2.1 HAQ-DI Response < NCT01569074 Subtotal (95% CI) Total events	df = 5 (P = .21 (P < 0.0 ss: Chi ² = 6 100mg bid <u>Ever</u> 24W	0.25); I ² 00001) 59. df = then 15	= 25% <u>2 (P = 0.)</u> Omg qd <u>Total</u> 29	04), ² = 100m Events	69.6% g bid s Total 3 26 26 26	Odds Rat <u>Weight M-H. Fixed.</u> 4.8% 0.41 [0.14	io 95% Cl 4, 1.25]		Placebo] F	avours [Fos		
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7 Test for suboroup difference Study or Subgroup 11.2.1 HAQ-DI Response < NCT01569074 Subtotal (95% CI) Total events Heterogeneity: Not applicable	df = 5 (P = .21 (P < 0.0 as: Chi ² = 6 100mg bid <u>Even</u> 24W	0.25); ² 00001) <u>59. df =</u> then 150 tts 14	= 25% <u>2 (P = 0.)</u> Omg qd <u>Total</u> 29	04), l² = 100m, Event: 18	69.6% g bid s Total 3 26 26 26	Odds Rat <u>Weight M-H. Fixed.</u> 4.8% 0.41 [0.14	io 95% Cl 4, 1.25]		Placebo] F	avours [Fos		
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7 Test for subgroup difference Study or Subgroup 11.2.1 HAQ-DI Response < NCT01569074 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 1.5 11.2.2 HAQ-DI Response at	df = 5 (P = .21 (P < 0.1 .25 Chi ² = 6 100mg bid Ever 24W 6 (P = 0.12) 24W	0.25); ² 00001) <u>59. df =</u> then 150 tts 14	= 25% <u>2 (P = 0.</u> Dmg qd <u>Total</u> 29 29	100m Events 18	69.6% g bid s Total 3 26 26 3	Odds Rat Weight M-H, Fixed. 4.8% 0.41 [0.14 4.8% 0.41 [0.14	io 95% Cl 4, 1.25] 4, 1.25]		Placebo] F	avours [Fos		
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7 Test for suboroup difference Study or Subgroup 11.2.1 HAQ-DI Response < NCT01569074 Subtotal (95% Cl) Total events Heterogeneity: Not applicable Test for overall effect: Z = 1.5 11.2.2 HAQ-DI Response at Mark C. Genovese 2014	df = 5 (P = .21 (P < 0.0 s: Chi ² = 6 100mg bid Ever 24W 6 (P = 0.12) 24W	0.25); ² 00001) <u>59. df =</u> then 150 tts 14 14	= 25% 2 (P = 0. 0mg qd Total 29 29 29	100m Events 18 18	69.6% g bid 5 Total 3 26 26 3	Odds Rat Weight M-H. Fixed. 4.8% 0.41 [0.14 4.8% 0.41 [0.14 14.9% 0.64 [0.36	io 95% Cl 4, 1.25] 4, 1.25] 5, 1.12]		Placebo] F	avours [Fos		
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7 Test for subgroup difference Study or Subgroup diterence S	df = 5 (P = .21 (P < 0.0 .21 (P	0.25); ² 00001) 59. df = then 150 tts 14 14 14	= 25% <u>2 (P = 0.</u> Dmg qd <u>Total</u> 29 29 29 108 304	24). I ² = 100m Events 18 18 44 170	69.6% g bid 5 Total 3 26 26 3 3 4 105 3 310	Odds Rat Weight M-H. Fixed. 4.8% 0.41 [0.14 4.8% 0.41 [0.14 4.8% 0.41 [0.14	io 95% Cl 4, 1.25] 5, 1.25] 8, 1.12] 1, 1.15]		Placebo] F	avours [Fos		
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7 Test for suboroup difference Study or Suboroup difference 11.2.1 HAQ-DI Response < NCT01569074 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 1.5 11.2.2 HAQ-DI Response at Mark C. Genovese 2014 Michael E. Weinblatt 2013 NCT01197534	df = 5 (P = .21 (P < 0.0 .21 (P	0.25); ² 00001) <u>59. df =</u> then 150 tts 14 14	= 25% <u>2 (P = 0.</u> <u>Dmg qd</u> <u>Total</u> 29 29 29 108 304 298	100m Events 18 18	69.6% g bid 5 Total 3 26 26 3 3 4 105 9 310 2 308	Odds Rat Weight M-H. Fixed. 4.8% 0.41 [0.14 4.8% 0.41 [0.14 4.8% 0.41 [0.14 14.9% 0.64 [0.36 40.9% 0.83 [0.65 39.4% 0.86 [0.66	io 95% Cl 4, 1.25] , 1.25] 3, 1.12] 1, 1.15] 2, 1.18]		Placebo] F	avours [Fos		
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7 Test for subgroup difference Study or Subgroup 11.2.1 HAQ-DI Response < NCT01569074 Value (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 1.5 11.2.2 HAQ-DI Response at Mark C. Genovese 2014 Michael E. Weinblatt 2013 NCT01197534 Subtotal (95% CI)	df = 5 (P = .21 (P < 0.0 ss: Chi ² = 6 100mg bid Ever 24W 6 (P = 0.12) 24W	0.25); ² 00001) 59. df = then 15 tts 14 14 14 14 14 34 53 26	= 25% <u>2 (P = 0.</u> Dmg qd <u>Total</u> 29 29 29 108 304	24). ² = 100m Events 18 18 44 170 142	69.6% g bid s Total 3 26 26 3 4 105 3 308 723	Odds Rat Weight M-H. Fixed. 4.8% 0.41 [0.14 4.8% 0.41 [0.14 4.8% 0.41 [0.14	io 95% Cl 4, 1.25] , 1.25] 3, 1.12] 1, 1.15] 2, 1.18]		Placebo] F	avours [Fos		
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7 Test for subgroup difference Study or Subgroup 11.2.1 HAQ-DI Response < NCT01569074 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 1.5 11.2.2 HAQ-DI Response at Mark C. Genovese 2014 Michael E. Weinblatt 2013 NCT01197534 Subtotal (95% CI) Total events	df = 5 (P = .21 (P < 0.0 s: Chi ² = 6 100mg bid Ever 24W 6 (P = 0.12) 24W	0.25); ² 00001) <u>59. df =</u> then 150 its 14 14 14 34 53 26 13	= 25% 2 (P = 0.) 0mg qd Total 29 29 29 108 304 298 710	24). I ² = 100m Events 18 18 44 170	69.6% g bid s Total 3 26 26 3 4 105 3 308 723	Odds Rat Weight M-H. Fixed. 4.8% 0.41 [0.14 4.8% 0.41 [0.14 4.8% 0.41 [0.14 14.9% 0.64 [0.36 40.9% 0.83 [0.65 39.4% 0.86 [0.66	io 95% Cl 4, 1.25] , 1.25] 3, 1.12] 1, 1.15] 2, 1.18]		Placebo] F	avours [Fos		
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7 Test for subgroup It.2.1 HAQ-DI Response < NCT01569074 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 1.5 It.2.2 HAQ-DI Response at Mark C. Genovese 2014 Michael E. Weinblatt 2013 NCT01197534 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.85, df	df = 5 (P = .21 (P < 0.0 ss: Chi ² = 6 100mg bid Ever 24W 6 (P = 0.12) 24W	0.25); ² 00001) <u>59. df =</u> then 150 its 14 14 14 34 53 26 13	= 25% 2 (P = 0.) 0mg qd Total 29 29 29 108 304 298 710	24). ² = 100m Events 18 18 44 170 142	69.6% g bid s Total 3 26 26 3 4 105 3 308 723	Odds Rat Weight M-H. Fixed. 4.8% 0.41 [0.14 4.8% 0.41 [0.14 4.8% 0.41 [0.14 14.9% 0.64 [0.36 40.9% 0.83 [0.65 39.4% 0.86 [0.66	io 95% Cl 4, 1.25] , 1.25] 3, 1.12] 1, 1.15] 2, 1.18]		Placebo] F	avours [Fos		
Study or Subgroup 11.2.1 HAQ-DI Response NCT01569074 Subtotal (95% CI) Total events Heterogeneity: Not applicable Total events Heterogeneity: Not applicable Test for overall effect: Z = 1.5 11.2.2 HAQ-DI Response at Mark C. Genovese 2014 Michael E. Weinblatt 2013 NCT01197534 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.85, df Test for overall effect: Z = 1.9 Total events Hourous CI) Total events Hourous CI (95% CI) Total events Heterogeneity: Chi ² = 0.85, df Test for overall effect: Z = 1.9 Total (95% CI)	df = 5 (P = .21 (P < 0.0 ss: Chi ² = 6 100mg bid Ever 24W 6 (P = 0.12) 24W	0.25); ² 00001) <u>59. df =</u> then 150 its 14 14 14 34 53 26 13	= 25% 2 (P = 0.) 0mg qd Total 29 29 29 108 304 298 710	24). ² = 100m Events 18 18 44 170 142	69.6% g bid Total 3 26 26 26 3 4 105 3 310 2 308 723 3	Odds Rat Weight M-H. Fixed. 4.8% 0.41 [0.14 4.8% 0.41 [0.14 4.8% 0.41 [0.14 14.9% 0.64 [0.36 40.9% 0.83 [0.65 39.4% 0.86 [0.66	io 95% Cl 4, 1.25] 5, 1.125] 1, 1.15] 2, 1.18] 5, 1.00]		Placebo] F	avours [Fos		
Total events Heterogeneity: Chi ² = 6.65, Test for overall effect: Z = 7 Test for subgroup difference Study or Subgroup 11.2.1 HAQ-DI Response < NCT01569074 Subtotal (95% CI) Total events Heterogeneity: Not applicable Test for overall effect: Z = 1.5 11.2.2 HAQ-DI Response at Mark C. Genovese 2014 Michael E. Weinblatt 2013 NCT01197534 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.85, df Test for overall effect: Z = 1.9	df = 5 (P = .21 (P < 0.0 .21 (P < 0.0 .25 Chi ² = 6 100mg bid Even 24W 6 (P = 0.12) 24W 11 12 12 12 12 12 12 12 12 12 12 12 12	0.25); ² 00001) <u>59. df =</u> then 150 its 14 14 14 34 53 26 13	= 25% 2 (P = 0.) 2 (P = 0.) 0mg qd Total 29 29 29 29 108 304 29 108 304 29 710	24). ² = 100m Events 18 18 44 170 142	69.6% g bid 5 Total 3 26 26 26 3 3 105 310 2 308 723 5 749	Odds Rat Weight M-H. Fixed. 4.8% 0.41 [0.14 4.8% 0.41 [0.14 4.8% 0.41 [0.14 14.9% 0.64 [0.36 40.9% 0.83 [0.6 39.4% 0.86 [0.62 95.2% 0.81 [0.66	io 95% Cl 4, 1.25] 5, 1.125] 1, 1.15] 2, 1.18] 5, 1.00]		Placebo] F	avours [Fos		

FIGURE 12 | Forest plots for the effect of multiple doses on HAQ-DI response at different time points. (A) Subgroups administered multiple doses (50, 75, and 100 mg bid) of fostamatinib vs. placebo at 24 weeks; (B) 100 mg bid for 4 weeks followed by 150 mg bid vs. 100 mg bid < 24 and 24 weeks.

fostamatinib causes small but significant elevations in the 24 h mean ambulatory systolic blood pressure and diastolic blood pressure of patients with active RA. The overall safety profile of fostamatinib, when administered at either 100 mg bid for 4 weeks followed by 150 mg qd or 100 mg bid, was generally consistent with that observed in patients treated *via* both schedules. Taylor et al. (2015) suggested that fostamatinib monotherapy demonstrated inferior response to adalimumab at 24 weeks. This highlights the need for more research to confirm the efficacy of fostamatinib compared to other protease inhibitors and/or combination of other drugs. A long-term follow-up study is also necessary to determine the effectiveness of fostamatinib.

Limitations

This meta-analysis had some limitations. First, six of the 11 clinical trials did not clearly describe the allocation concealment, which demonstrated low or very low confidence in GRADE estimates for all outcomes (**Supplementary Table 2**). Therefore, we implore researchers and authors to perform an in-depth recording of their experimental methods in future clinical trials and publications to enable readers and reviewers to better understand the specific contents of the experiments. Second, we observed significant statistical heterogeneity in some of the outcomes. Thus, we explored the sources of heterogeneity by subgroup analysis and removed inconsistencies in GRADE

<u>Study or Subgroup</u> 12.1.1 50bid Michael E. Weinblatt 2008	Events						Ratio			Risk Ratio		
Michael E. Weinblatt 2008		Total	Events	Total	Weigh	t M-H, Fix	ed, 95% Cl		M-H, Fix	ed, 95% Cl		
	2	46	0	47	0.8%	6 5.11 [0.2	5, 103.55]			· · ·		
NCT01569074	3	33	1	33	1.7%	3.00 [O.	33, 27.38]					
Subtotal (95% CI)		79		80	2.5%	6 3.70 [0.	63, 21.79]		-			
Total events	5		1									
Heterogeneity: Chi ² = 0.08, Test for overall effect: Z = 1.			= 0%									
12.1.2 75bid												
NCT01569074	0	33	1	33	2.5%	6 0.33 [0	0.01, 7.90]		· · · ·			
Subtotal (95% CI)	Ũ	33		33	2.5%		0.01, 7.90]					
Total events	0		1									
Heterogeneity: Not applicab												
Test for overall effect: Z = 0.		0)										
12.1.3 100mg bid												
John C. Waterton 2014	3	33	1	29	1.8%	6 2.64 10	29, 23.97]			+		
Mark C. Genovese 2011	74	146	20	73	44.9%		1.23, 2.78]					
Mark C. Genovese 2014	7	105	6	109	9.9%	•	0.42, 3.49]					
Michael E. Weinblatt 2010	. 1	152	6	153	10.1%		0.02, 1.38]			+		
Michael E. Weinblatt 2013	24	310	5	304	8.5%		82, 12.18]					
NCT01197534	30	308	10	302	17.0%		1.46, 5.91]					
NCT01569074	1	31	1	33	1.6%	•	07, 16.29]					
Peter C Taylor 2014	5	54	0	27	1.1%		32, 97.69]			<u> </u>		
Subtotal (95% CI)	•	1139		1030	95.0%		.56, 2.83]			•		
Total events	145		49									
Heterogeneity: Chi ² = 11.35 Test for overall effect: Z = 4.			² = 38%									
Total (95% CI)		1251		1143	100.0%	6 2.10 [1	.57, 2.80]			•		
Total events	150		51									
Heterogeneity: Chi ² = 13.08	df = 10 (P	= 0.22);	l² = 24%					0.01	0.1	1 10	100	
Test for overall effect: Z = 5.	01 (P < 0.0	0001)								Favours [Placeb		
Test for subaroup difference	s: Chi² = 1.	69. df =	2 (P = 0.	43). I² =	= 0%			1 avours	[1 ประสาทสะเทมป		5]	
3												
	100mg bid then 150mg qd			100mg	bid		Risk Ratio		Risk Ratio			
Study or Subgroup	Event					Weight M-			М-Н,	Random, 95% CI		
Mark C. Genovese 2014		7	108	7	105	11.3%	0.97 [0.35		-	<u> t </u>		
Michael E. Weinblatt 2013	24		304	24	310	39.3%	1.02 [0.59					
NCT01197534	2		298	30	308	45.2%	0.86 [0.52				_	
NCT01569074		1	33	1	31	1.6%	0.94 [0.06,					
Peter C Taylor 2014		1	48	5	54	2.6%	0.23 [0.03	, 1.86]				
Total (95% CI)			791		808	100.0%	0.90 [0.64	, 1.27]		•		
Total events	58			67				L				
Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 0.59		= 4 (P =	0.75); l ² =	= 0%				0.01	0.1	1 10	100	

FIGURE 13 | Forest plots for the effect of multiple doses on SAEs. (A) Subgroups administered multiple doses (50, 75, and 100 mg bid) of fostamatinib vs. placebo; (B) 100 mg bid for 4 weeks followed by 150 mg bid vs. 100 mg bid.

assessments for unexplained heterogeneity. Third, some results were not entirely accurate because of the small study population. Consequently, additional trials that are well-designed and conducted are urgently required to confirm our findings.

Conclusion

In summary, the results of the present systematic review and meta-analysis demonstrate that 100 mg bid of fostamatinib displays a greater efficacy than placebo. This is evident by the clinically meaningful reduction in the scores of patients with active RA who exhibit either an inadequate response or a lack of response to MTX, DMARD, or TNF- α antagonist. An economic evaluation of the pharmacodynamics of fostamatinib is still required, as well as an effective method to illustrate the problem and results in a comprehensive and adequate manner.

These achievements would ultimately provide a more economical and reasonable scheme for the treatment of patients with RA.

DATA AVAILABILITY

All datasets generated for this study are included in the manuscipt and/or **Supplementary files**.

AUTHOR CONTRIBUTIONS

YK, XJ, YY, and JW conceived and designed the study. YK, XJ, DQ, LW, JY, AW, FH, YY, and JW reviewed the literature. YK, XJ, YY, and JW wrote the manuscript.

13.1.1 50mg bid Michael E. Weinblatt 2008 NCT01569074 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Chi ² Test for overall effect: Z = 0.37 (vents 1 17 18	Total 46	Events	Total	141					
Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Chi ² Test for overall effect: Z = 0.37 (17	46			weight	M-H, Random, 95% Cl		M-H, Random, 95% Cl		
NCT01569074 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Chi ² Test for overall effect: Z = 0.37 (17	46								
Test for overall effect: Z = 0.37 (2	47	0.7%	0.51 [0.05, 5	5.44]			
Total events Heterogeneity: Tau² = 0.00; Chi² Test for overall effect: Z = 0.37 (10	33	15	33	8.5%	1.13 [0.69, 1	.87]	_		
Heterogeneity: Tau² = 0.00; Chi² Test for overall effect: Z = 0.37 (10	79		80	9.3%	1.10 [0.67, 1	.79]	•		
Heterogeneity: Tau² = 0.00; Chi² Test for overall effect: Z = 0.37 (13 1 2 75mg bid	10		17							
13.1.2 75mg bid			(P = 0.51); I² = 0	%					
ioning bid										
NCT01569074	16	33	15	33	8.3%	1.07 [0.64, 1	.78]	_		
Subtotal (95% CI)		33		33	8.3%	1.07 [0.64, 1	.78]	•		
Total events	16		15							
Heterogeneity: Not applicable Test for overall effect: Z = 0.25 (P = 0.8	1)								
13.1.3 100mg bid										
George D. Kitas 2014	2	68	4	67	1.4%	0.49 [0.09, 2	2.60]			
John C. Waterton 2014	17	33	4	29	3.6%	3.73 [1.42, 9	9.83]			
Mark C. Genovese 2011	74	146	20	73	10.2%	1.85 [1.23, 2	2.78]			
Mark C. Genovese 2014	51	105	46	109	12.5%	1.15 [0.86, 1	.55]	-	-	
Michael E. Weinblatt 2008	3	49	2	47	1.3%	1.44 [0.25, 8	3.23]		-	
Vichael E. Weinblatt 2010	73	152	46	153	12.6%	1.60 [1.19, 2	2.14]		-	
Vichael E. Weinblatt 2013	169	310	80	304	14.2%	2.07 [1.67, 2	2.57]		-	
NCT01197534	170	308	77	302	14.1%	2.16 [1.74, 2	2.69]		-	
NCT01569074	21	31	15	33	9.5%	1.49 [0.95, 2	2.331			
Peter C Taylor 2014	30	54	3	27	3.0%	5.00 [1.68, 14				
Subtotal (95% CI)		1256		1144	82.5%	1.79 [1.44, 2			◆	
Total events	610		297							
Heterogeneity: Tau² = 0.06; Chi² Test for overall effect: Z = 5.27 (9 (P = 0.0	07); l² =	= 61%					
Total (95% CI)		1368		1257	100.0%	1.63 [1.33, 2	011		•	
Total events	644	1300	329	1257	100.078	1.05 [1.55, 2	.01]		•	
Heterogeneity: Tau ² = 0.07; Chi ²		2 df = 1		0021-12	- 61%				······	
Test for overall effect: Z = 4.63 (Test for subgroup differences: C	P < 0.0	0001)					0.01 Fa	0.1 avours [Fostamatinib]	l 10 100 Favours [Placebo]	
}										-
	mg bid then 150mg qd		100mg bid		Risk Ratio		Risk Ratio			
Study or Subgroup	Even					Weight M-H, Rand		M-H, Ra	andom, 95% Cl	_
Mark C. Genovese 2014		9	108	5			[0.70, 1.24]	-		
Michael E. Weinblatt 2013	19		304	16			[1.01, 1.32]			
NCT01197534	15		298	170			[0.80, 1.07]		<u> </u>	
NCT01569074 Peter C Taylor 2014		7 0	33 48	2 ⁻ 3([0.50, 1.15] [0.50, 1.13]		+	
Fotal (95% CI)			791		808	100.0% 0.95	[0.81, 1.11]		▲	
Fotal events	42	9	.51	44			[0.01, 1.11]			
Heterogeneity: Tau ² = 0.02; Chi ² =			= 0.06). 12					0.2 0.5		

FIGURE 14 | Forest plots for the effect of multiple doses on other AEs. (A) Subgroups administered multiple doses (50, 75, and 100 mg bid) of fostamatinib vs. placebo; (B) 100 mg bid 4 weeks followed by 150 mg bid vs. 100 mg bid.

FUNDING

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81774013 and 81804221), the Science and Technology Planning Project of Sichuan Province, China (Grant Nos. 2018JY0237 and 2019YJ0484), Educational Commission of Sichuan Province, China (Grant No. 18TD0051), Administration of traditional Chinese medicine in Sichuan Province, China (Grant Nos. 2018JC013 and 2018JC038), and the Science and Technology Program of Luzhou, China [Grant Nos. 2017-S-39(3/5) and 2016LZXNYD-T03].

ACKNOWLEDGMENTS

The authors are thankful to Sha Liu and Xin Sheng for their assistance with literature search. We wish to thank Rui Xiong for his assistance to modify the format. We also thank Xiaoxuan Li and Chunlu Li for their valuable advice.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2019.00897/full#supplementary-material

REFERENCES

- Atkins, D., Best, D., Briss, P. A., Eccles, M., Falck-Ytter, Y., Flottorp, S., et al. (2004). Grading quality of evidence and strength of recommendations. *BMJ (online)* 328, 1490. doi: 10.1136/bmj.328.7454.1490
- Baluom, M., Grossbard, E. B., Mant, T., and Lau, D. T. (2013). Pharmacokinetics of fostamatinib, a spleen tyrosine kinase (SYK) inhibitor, in healthy human subjects following single and multiple oral dosing in three phase I studies. *Br. J. Clin. Pharmacol.* 76, 78–88. doi: 10.1111/bcp.12048
- Cecchi, I., Arias De La Rosa, I., Menegatti, E., Roccatello, D., Collantes-Estevez, E., Lopez-Pedrera, C., et al. (2018). Neutrophils: novel key players in rheumatoid arthritis. current and future therapeutic targets. *Autoimmun. Rev.* 17, 1138– 1149. doi: 10.1016/j.autrev.2018.06.006
- Cross, M., Smith, E., and Hoy, D. (2014). The global burden of rheumatoid arthritis: estimates from the global burden of disease 2010 study. *Ann. Rheum. Dis.* 73, 1316–1322. doi: 10.1136/annrheumdis-2013-204627
- Genovese, M. C., Kavanaugh, A., Weinblatt, M. E., Peterfy, C., Dicarlo, J., White, M. L., et al. (2011). An oral Syk kinase inhibitor in the treatment of rheumatoid arthritis: a three-month randomized, placebo-controlled, phase II study in patients with active rheumatoid arthritis that did not respond to biologic agents. *Arthritis Rheum.* 63, 337–345. doi: 10.1002/art.30114
- Genovese, M.C., Van Der Heijde, D.M., Keystone, E.C., Spindler, A.J., Benhamou, C., Kavanaugh, A., et al. (2014). A phase III, multicenter, randomized, doubleblind, placebo-controlled, parallel-group study of 2 dosing regimens of fostamatinib in patients with rheumatoid arthritis with an inadequate response to a tumor necrosis factor-alpha antagonist. *J. Rheumatol.* 41, 2120–2128. doi: 10.3899/jrheum.140238
- Higgins, J. P. T., Altman, D. G., Gotzsche, P. C., Juni, P., Moher, D., Oxman, A. D., et al. (2011). The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ* 343, d5928–d5928. doi: 10.1136/bmj.d5928
- Karmakar, S., Kay, J., and Gravallese, E. M. (2010). Bone damage in rheumatoid arthritis: mechanistic insights and approaches to prevention. *Rheum. Dis. Clin. North Am.* 36, 385–404. doi: 10.1016/j.rdc.2010.03.003
- Kawalec, P., Mikrut, A., Wisniewska, N., and Pilc, A. (2013). The effectiveness of tofacitinib, a novel Janus kinase inhibitor, in the treatment of rheumatoid arthritis: a systematic review and meta-analysis. *Clin. Rheumatol.* 32, 1415– 1424. doi: 10.1007/s10067-013-2329-9
- Kitas, G. D., Abreu, G., Jedrychowicz-Rosiak, K., Miller, J. L., Nakov, R., Panfilov, S., et al. (2014). The effects of the spleen tyrosine kinase inhibitor fostamatinib on ambulatory blood pressure in patients with active rheumatoid arthritis: results of the OSKIRA-ABPM (ambulatory blood pressure monitoring) randomized trial. J. Am. Soc. Hypertens. 8, 780–790. doi: 10.1016/j.jash.2014.08.013
- Kunwar, S., Devkota, A. R., and Ghimire, D. K. C. (2016). Fostamatinib, an oral spleen tyrosine kinase inhibitor, in the treatment of rheumatoid arthritis: a meta-analysis of randomized controlled trials. *Rheumatol. Int.* 36, 1077–1087. doi: 10.1007/s00296-016-3482-7
- Lam, J., Takeshita, S., Barker, J. E., Kanagawa, O., Ross, F. P., and Teitelbaum, S. L. (2000). TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. *J. Clin. Invest.* 106, 1481–1488. doi: 10.1172/JCI11176
- Li, H., Hong, S., Qian, J., Zheng, Y., Yang, J., and Yi, Q. (2010). Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. *Blood* 116, 210–217. doi: 10.1182/ blood-2009-11-255026

- Liu, D., and Mamorska-Dyga, A. (2017). Syk inhibitors in clinical development for hematological malignancies. J. Hematol. Oncol. 10, 145. doi: 10.1186/ s13045-017-0512-1
- Pine, P. R., Chang, B., Schoettler, N., Banquerigo, M. L., Wang, S., Lau, A., et al. (2007). Inflammation and bone erosion are suppressed in models of rheumatoid arthritis following treatment with a novel Syk inhibitor. *Clin. Immunol* 124, 244–257. doi: 10.1016/j.clim.2007.03.543
- Scott, D. L. (2011). Role of spleen tyrosine kinase inhibitors in the management of rheumatoid arthritis. *Drugs* 71, 1121–1132. doi: 10.2165/11591480-00000000-00000
- Scott, D. L., Wolfe, F., and Huizinga, T. W. (2010). Rheumatoid arthritis. Lancet 376, 1094–1108. doi: 10.1016/S0140-6736(10)60826-4
- Silman, A. J., and Pearson, J. E. (2002). Epidemiology and genetics of rheumatoid arthritis. Arthritis Res. 4 Suppl 3, S265–S272. doi: 10.1186/ar578
- Smolen, J. S., Aletaha, D., and Mcinnes, I. B. (2016). Rheumatoid arthritis. Lancet 388, 2023–2038. doi: 10.1016/S0140-6736(16)30173-8
- Taylor, P. C., Genovese, M. C., Greenwood, M., Ho, M., Nasonov, E., Oemar, B., et al. (2015). OSKIRA-4: a phase IIb randomised, placebo-controlled study of the efficacy and safety of fostamatinib monotherapy. *Ann. Rheum. Dis.* 74, 2123–2129. doi: 10.1136/annrheumdis-2014-205361
- Waterton, J.C., Ho, M., Nordenmark, L.H., Jenkins, M., Dicarlo, J., Guillard, G., et al. (2017). Repeatability and response to therapy of dynamic contrastenhanced magnetic resonance imaging biomarkers in rheumatoid arthritis in a large multicentre trial setting. *Eur. Radiol.* 27, 3662–3668. doi: 10.1007/ s00330-017-4736-9
- Weinblatt, M. E., Genovese, M. C., Ho, M., Hollis, S., Rosiak-Jedrychowicz, K., Kavanaugh, A., et al. (2014). Effects of fostamatinib, an oral spleen tyrosine kinase inhibitor, in rheumatoid arthritis patients with an inadequate response to methotrexate: results from a phase III, multicenter, randomized, doubleblind, placebo-controlled, parallel-group study. *Arthritis Rheumatol.* 66, 3255– 3264. doi: 10.1002/art.38851
- Weinblatt, M.E., Kavanaugh, A., Burgos-Vargas, R., Dikranian, A.H., Medrano-Ramirez, G., Morales-Torres, J.L., et al. (2008). Treatment of rheumatoid arthritis with a Syk kinase inhibitor: a twelve-week, randomized, placebocontrolled trial. *Arthritis Rheum*. 58, 3309–3318. doi: 10.1002/art.23992
- Weinblatt, M. E., Kavanaugh, A., Genovese, M. C., Jones, D. A., Musser, T. K., Grossbard, E. B., et al. (2013). Effects of fostamatinib (R788), an oral spleen tyrosine kinase inhibitor, on health-related quality of life in patients with active rheumatoid arthritis: analyses of patient-reported outcomes from a randomized, double-blind, placebo-controlled trial. J. Rheumatol. 40, 369–378. doi: 10.3899/jrheum.120923
- Weinblatt, M. E., Kavanaugh, A., Genovese, M. C., Musser, T. K., Grossbard, E. B., and Magilavy, D. B. (2010). An oral spleen tyrosine kinase (Syk) inhibitor for rheumatoid arthritis. N. Engl. J. Med. 363, 1303–1312. doi: 10.1056/NEJMoa1000500

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Kang, Jiang, Qin, Wang, Yang, Wu, Huang, Ye and Wu. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

19