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Cystic fibrosis (CF) is an autosomal recessive disorder, caused by genetic mutations 
in CF transmembrane conductance regulator protein. Several reports have indicated 
the presence of specific fatty acid alterations in CF patients, most notably decreased 
levels of plasmatic and tissue docosahexaenoic acid (DHA), the precursor of specialized 
pro-resolving mediators. We hypothesized that DHA supplementation could restore 
the production of DHA-derived products and possibly contribute to a better control 
of the chronic pulmonary inflammation observed in CF subjects. Sputum samples 
from 15 CF and 10 chronic obstructive pulmonary disease (COPD) subjects were 
collected and analyzed by LC/MS/MS, and blood fatty acid were profiled by gas 
chromatography upon lipid extraction and transmethylation. Interestingly, CF subjects 
showed increased concentrations of leukotriene B4 (LTB4), prostaglandin E2 (PGE2), 
and 15-hydroxyeicosatetraenoic acid (15-HETE), when compared with COPD patients, 
whereas the concentrations of DHA metabolites did not differ between the two groups. After 
DHA supplementation, not only DHA/arachidonic acid (AA) ratio and highly unsaturated 
fatty acid index were significantly increased in the subjects completing the study (p < 0.05) 
but also a reduction in LTB4 and 15-HETE was observed, together with a tendency for 
a decrease in PGE2, and an increase in 17-hydroxy-docosahexaenoic acid (17OH-DHA) 
levels. At the end of the washout period, LTB4, PGE2, 15-HETE, and 17OH-DHA showed 
a trend to return to baseline values. In addition, 15-HETE/17OH-DHA ratio in the same 
sample significantly decreased after DHA supplementation (p < 0.01) when compared 
with baseline. In conclusion, our results show here that in CF patients, an impairment in 
fatty acid metabolism, characterized by increased AA-derived metabolites and decreased 
DHA-derived metabolites, could be partially corrected by DHA supplementation.
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INTRODUCTION

Cystic fibrosis (CF) is an autosomal recessive disorder caused 
by genetic mutations in CF transmembrane conductance 
regulator (CFTR) protein (Cant et al., 2014). Defective CFTR 
causes impaired or absent transport of chloride through cell 
membranes, with an impaired mucociliary clearance and viscous 
mucus in the airways, which results in the inability of the airways 
to clear bacteria (Ciofu et al., 2013). Patients with CF experience 
declining pulmonary function related to chronic airway 
inflammation, which results from epithelial and immune cell 
secretion of proinflammatory mediators that promote neutrophil 
influx into the airways (Cantin et al., 2015). This inflammatory 
response results in a marked neutrophil infiltration with 
release of reactive oxygen species (ROS), pro-inflammatory lipid 
mediators (LMs), and proteases, including neutrophil elastase, 
with the final result of cleaving structural proteins, leading to 
bronchiectasis (McCarthy et al., 2014). Although new therapies 
may be able to target the underlying abnormality rather than 
its downstream effects (Prickett and Jain, 2015), modulating 
the airway inflammation in patients with CF may still provide 
relief and contribute to the management of the pathology (Jones 
and Helm, 2009; Ratjen, 2009). In fact, although the impact of 
CFTR modulators on lung function is exciting, they have not 
yet demonstrated an effect on inflammation; therefore, anti-
inflammatories for the treatment of CF subjects are still needed.

Several reports have indicated the presence of specific fatty 
acid (FA) alterations in CF patients (Rivers and Hassam, 1975). 
When this observation was described more than 40 years ago, 
the primary abnormality identified was decreased linoleic acid 
(LA) levels in the plasma of CF patients. FA acid in the blood 
and tissues of CF patients, most notably decreased levels of DHA 
(Freedman et al., 1999), suggesting that FA alterations might 
play a role in the symptoms and progression of the CF disease 
(Freedman et al., 2004).

Several classes of DHA-derived LMs, arising from different 
lipoxygenases as well as aspirin-inactivated cyclooxygenase-2 
(COX-2), such as resolvins (Serhan et al., 2002), protectins 
(Marcheselli et al., 2003; Serhan et al., 2011), and maresins 
(Serhan et al., 2009), and their aspirin-triggered epimers, 
have been identified as potentially important factors in the 
resolution phase of the inflammatory reaction (Serhan, 2014). 
These new compounds possess potent and specific activities in 
controlling the resolution of inflammation: the term resolvins, 
resolution phase interaction products, was introduced to 
indicate that the new structures are endogenous, local-acting 
mediators (autacoids) possessing potent anti-inflammatory, 
and immunoregulatory properties (Serhan et al., 2002). These 
include reduction of neutrophil infiltration and regulation of the 
cytokine–chemokine axis as well as the production of ROS. The 
protectin family, or neuro-protectin when of neural origin (Hong 
et al., 2003), was named after the potent anti-inflammatory and 
protective actions demonstrated in different animal models, such 
as stroke and Alzheimer’s disease (Lukiw et al., 2005).

Protectin D1 (PD1), and its precursor 17-hydroxy-
docosahexaenoic acid (17OH-DHA), has been identified in exhaled 
breath condensates from healthy volunteers, while significantly 

lower concentrations were detected in exhaled breath condensates 
from asthmatic subjects (Levy et al., 2007), suggesting that 
endogenous PD1 may represent a counterregulatory signal in 
airway inflammation and suggesting new therapeutic strategies 
for the modulation of lung inflammation.

Recently, several studies have tested the efficacy of DHA 
supplementation in restoring the production of SPMs, mainly 
looking at the concentrations of SPMs in plasma, on the 
assumption that SPMs do actually circulate (Colas et al., 2014; 
Elajami et al., 2016), even if negative reports have also appeared in 
the literature (Fischer et al., 2014; Skarke et al., 2015). In the present 
study, we evaluated the concentrations of metabolites arising 
from both arachidonic acid (AA) and DHA at the relevant site of 
synthesis, that is, within the airways, using induced sputum from 
CF patients before and after supplementation with DHA, under 
the working hypothesis that DHA supplementation may boost the 
production of the pro-resolution metabolites, such as resolvins 
and protectins, while using the concentrations of eicosanoids 
as inflammatory markers of the ongoing inflammatory reaction 
within the airways of CF subjects, as well as for normalization of 
the samples. At the same time, changes in red blood cells (RBC) 
membranes FA profile were evaluated, to assess the efficacy of 
the 10 weeks supplementation in correcting the deficit of DHA 
observed in CF subjects. We also compared the concentrations 
of metabolites arising from both AA and DHA from CF patients 
to those from patients affected by chronic obstructive pulmonary 
disease (COPD), which is characterized by an acquired 
neutrophilic airway inflammation similar to that of CF subjects 
but in the presence of a normal plasmatic FA profile.

MATERIALS AND METHODS

Subjects
CF subjects meeting inclusion criteria and providing informed 
consent were consecutively recruited over the period of 6 months 
(six males and nine females; age range, 20 to 40 years) at the 
Department of Medicine and Surgery, Respiratory Disease 
Unit and the Department of Pediatrics, Children Hospital of 
the University of Parma; 10 COPD patients (age range, 45 to 
70 years; four males and six females), were recruited upon 
informed consent, at the Department of Oncology, Haematology, 
Respiratory Diseases and Ospedale Villa Pineta di Gaiato, Pavullo 
(MO). At baseline all subjects performed nutritional status 
evaluation, Shwachman-Kulczycki score evaluation, spirometry, 
sputum induction. The protocol was approved by the Ethical 
Committees of the Clinical institutions involved.

All patients with CF were diagnosed by evidence of CFTR 
dysfunction (elevated sweat test) and/or identification of two 
pathological CFTR mutations (INNO-LiPA CFTR19®). The 
inclusion criteria were: genotype ΔF508 homozigous, mild/
moderate pulmonary disease (forced expiratory volume at 
the 1st second [FEV1] ≥40% predicted value), and pancreatic 
insufficiency. All patients were clinically stable and following 
standard CF therapy.

COPD subjects, GOLD stage 2 to 3 under treatment 
according to the GOLD document (Vogelmeier et al., 2017), 
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were examined at the time of enrolment, whereas CF 
patients were examined both at enrolment; after 10 weeks of 
supplementation with Aladin® 500 mg (Laborest, Italy), two 
capsules, three times a day; and after an additional 10 weeks 
of washout. Dosage and duration regimen adopted were those 
already routinely used by the CF hospital unit, and were based 
on average values present in the literature (Coste et al., 2007; 
Oliver and Watson, 2016). Nine CF patients (five female) 
completed the study.

All subjects recruited performed nutritional status evaluation, 
spirometry, and sputum induction (SI), whereas blood sampling 
for FA profiling was performed in CF subjects only. Sputum and 
blood samples were kept at –80°C until analysis.

The pulmonary functions forced vital capacity (FVC) and 
FEV1 was measured with a spirometer and a body pletismograph 
(B3Box Biomedin, Padua, Italy), and oxygen saturation (SaO2) 
was measured by pulse oxymetry (Nellcor N-395).

Sputum Collection
Induced sputum collection was performed in accordance with the 
European Respiratory Society task force (Efthimiadis et al., 2002; 
Paggiaro et al., 2002). FEV1 and FVC were measured at baseline 
and after inhalation of salbutamol (200 µg by metered dose 
inhalers). After that, subjects were asked to rinse their mouth 
before inhalation of sterile hypertonic saline (NaCl, 3%, prepared 
by the hospital chemist) nebulized with an ultrasonic device 
(Heyer Orion 1, BAD EMS; mean volume output: 2.40 ml/min) 
for four cycles of 5 min each. After each cycle and when needed, 
they were asked to rinse their mouth and cough into a plastic 
container. Three flow volume curves were performed before and 
after each inhalation, and the best FEV1 was recorded. Induction 
of sputum was stopped if FEV1 value fell by at least 15% from 
baseline or if troublesome symptoms occurred. The collected 
sputum samples were processed as previously described (Kodric 
et al., 2007). The volume of the sputum sample was measured, and 
an equal volume of dithiotreitol 0.1% was added and incubated at 
37°C for 30 min. Ten microliters of the homogenized sample was 
used to determine the total and differential cell count, expressing 
the result as number of cells/ml and % of total cells, respectively. 
The remaining sputum was centrifuged at 400g for a 5-min 
period. The supernatant was aspirated and stored for LC/MS/MS 
analysis.

Mass Spectrometry of AA and DHA 
Metabolites
After thawing, sputum supernatant samples (0.2-1 ml) were 
added with stable isotope labeled internal standards ([d4]LTB4, 
[d4]PGE2, [d8]5-HETE, and [d5] lipoxin A4 (LXA4) 2.5 ng each), 
centrifuged to remove particulate, acidified with acetic acid 
(final concentration 0.01%) and extracted using preconditioned 
polymeric solid phase extraction cartridges (Strata-X, 33 µm 
Polymeric Reversed Phase; Phenomenex, Torrance, CA). 
After washing with ultrapure water, DHA- and AA-derived 
metabolites were eluted using methanol/water, 90/10, v/v 
(0.5 ml), and the eluate taken to dryness using a rotary vacuum 
evaporator (SpeedVac; Thermo Scientific, Waltham, MA). 

Upon reconstitution in 40 µL HPLC solvent A (8.3 mM acetic 
acid buffer to pH 5.7 with ammonium hydroxide) plus 20 µl of 
HPLC solvent B (acetonitrile/methanol, 65:35, v/v), an aliquot 
of each sample (20 µl) was injected onto a C18 HPLC column 
(Ascentis 150 × 2 mm, 3 µm; Supelco, Bellefonte, PA) and 
eluted at the rate of 400 µl/min with a linear gradient from 45% 
solvent B, which was increased to 75% in 12 min, to 98% in 2 min, 
then held for 11 min before re-equilibration at 45% B for 10 min. 
The HPLC effluent was directly infused into an triple quadrupole 
mass spectrometer (6460, Agilent) equipped with electrospray 
ion source for mass spectrometric analysis in the negative ion 
mode using multiple reaction monitoring (MRM) for the specific 
m/z transitions: 343-281 for 17OH-DHA (the precursor of both 
resolvins and protectin), 359-206 for PD1, 375-141 for resolvin 
D2 (RvD2), 335-195 for LTB4, 319-219 for 15-HETE, 351-271 for 
PGE2, 327-116 for [d8]5-HETE, 339-197 for [d4]LTB4, 359-275 
for [d4]PGE2, and 356-222 for [d5]LXA4, that was used as IS for 
RvD2 (Pioselli et al., 2010). Quantitation was performed using 
isotope dilution of the internal standards, and data were analyzed 
using MassHunter software. Standard curves were obtained using 
synthetic PD1 (a gift from Dr. Thierry Durand, CNRS, Montpellier, 
France), LTB4, PGE2, RvD2, 15-HETE, and 17OH-DHA (Cayman 
Chem, Ann Arbor, MI). The peak–area ratios of every compound 
to the relevant deuterated internal standard was calculated and 
plotted against the amount of the synthetic standards. Calibration 
lines were calculated by the least squares linear regression method 
and the correlation coefficient r2 was always better than 0.99. To 
calculate the concentration of any given analyte, the peak–area 
ratio to the relevant internal standard was calculated and read off 
the corresponding calibration line. Detection limit varied between 
1 and 25 pg injected (3 to 75 pg in the sample), depending on 
the analyte.

Optimization of declustering potential, collision energy 
and CXP, was carried out for each metabolite directly injecting 
1 to 5 ng of synthetic standard using the same eluent used for 
the analysis.

FA Analysis
Blood samples were collected in 10% sodium heparin and 
centrifuged at 200g for 18 min.

The lower fraction was additionally centrifuged at 800g for 
18 min, and the pellet washed twice with phosphate buffer 
containing 0.1 M NaH2PO4 (5:1 v/v). Cells were lysed with water, 
followed by washing (twice) to obtain the RBC membranes 
for the lipid extraction. Total lipids (TL) were extracted 
according to Folch. Briefly, 5-ml chloroform-methanol 2:1 
will be added and homogenized with a Politron, followed by 
1 ml phosphate buffered saline. After 2 h at -20°C, the organic 
phase of samples will be evaporated under a stream of nitrogen, 
and a volume of 2:1 chloroform:methanol solution containing 
butylatedhydroxytoluene (5 mg/ml) as antioxidant was added. 
The lipid concentration of the extracts was determined 
by microgravimetry.

FA methyl esters prepared by acid transmethylation and 
analyzed by gas–liquid chromatography (GC 2010 Shimadzu), 
using a capillary column of 15 m, 0.1 I.D., 0.1 µm film (DB-FFAP, 
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Agilent); temperature was programmed from 130°C to 220°C, 
and peaks were identified using pure reference compounds. Data 
were expressed as percentage of total amounts of FAs.

Data Analysis
Experimental values were expressed as the mean and standard 
error of the mean (SEM). Statistical analysis was performed using 
t-test for paired or unpaired data, or one-way ANOVA followed 
by Dunnett’s t test as appropriate.

RESULTS

LC/MS/MS analysis of sputum samples detected significant 
amounts of several LMs, such as LTB4, PGE2, and 15-HETE, 
as well as 17OH-DHA, which represents the precursor of 
protectin and resolvins; RvD2 could be detected at a s/n 
ratio above 10 only in a sample from the COPD basal group 
(1.7 ng/ml), but in none of the CF samples obtained before 
supplementation with DHA. PD1 was also only detected in 6 
of 10 COPD subjects, with an average concentration, in these 
positive subjects, of 400 ± 220 pg/ml.

Comparing the values observed in CF subjects with 
those of COPD subjects, showed markedly higher values of 
LTB4, PGE2, and 15-HETE in CF subjects (Figure 1A–C). 
Surprisingly, the concentrations of the precursor of resolvins/
protectins 17OH-DHA resulted remarkably similar in the two 

groups, therefore unmasking a rather large unbalance toward 
AA-derived, mainly pro-inflammatory mediators over the 
potentially pro-resolving DHA-derived metabolites in CF 
subjects (Figure 1D).

Analysis of FA composition before and after 10 weeks of 
DHA supplementation was performed in eight of the nine CF 
subjects that completed the study (one blood sample could not 
be collected) and showed a significant increase in the DHA/AA 
ratio, and in the n-3 highly unsaturated FA (HUFA) index, that is 
the percentage of n-3 FAs over the total amount of HUFA present 
in RBCs phospholipids. The FA composition of RBC membranes 
was used as it reflects fat intakes but since RBCs have a rather 
long lifespan, their FA profile is considered a better long-term 
marker of FA intake within a middle term time period (from 3 
weeks to 3 months) than platelet or plasma lipids (Stanford et al., 
1991; Theret et al., 1993).

The observed changes were still noticeable at the end of the 10 
weeks washout period, reflecting a lasting effect on membrane 
phospholipid FA composition, even if a trend toward basal values 
was present (Figure 2).

The sputum concentrations of LTB4 and 15-HETE decreased 
at the end of the DHA supplementation (Figures 3A, C) and 
remained lower, on average, at the end of the washout period, even 
if with a trend to recover pre-supplementation values. A similar 
trend (although less pronounced and not statistically significant) 
was observed for PGE2 (Figure 3B), whereas 17OH-DHA 
showed increased concentrations at the end of the 10 weeks 

FIGURE 1 | Induced sputum supernatant concentrations of LTB4 (A), PGE2 (B), 15-HETE (C), and 17OH-DHA (D) in CF subjects and in COPD subjects. Lipid 
mediators were quantitated by LC/MS/MS as described in Materials and Methods. Data were analyzed with t test for unpaired data and are expressed as mean ± 
SEM (n = 15 for CF and n = 10 for COPD); *p < 0.05 vs COPD.
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of supplementation with (Figure 3D), generating a significant 
correction of the unbalance between AA- and DHA-derived LMs 
observed under basal conditions. This correction was particularly 
evident when focusing on 15-HETE and 17OH-DHA, metabolites 
arising from the same enzymatic activities, namely, 15-LOX or 
aspirin-inactivated COX-2, on AA and DHA, respectively. Indeed, 
10 weeks of supplementation with DHA significantly decreased 
the ratio between the concentrations of 15-HETE and 17OH-DHA 
observed in the same sputum sample to values that were not different 

from those observed in COPD subjects (Figure 4). Interestingly, 
RvD2 could be detected at the concentrations of 570 and 283 pg/
ml in two FC samples obtained after DHA supplementation. PD1 
could not be quantitated in any sample from FC subjects, either 
before or after DHA supplementation.

Differential cell count showed a non-statistically significant 
decrease in neutrophils upon DHA supplementation, which rapidly 
reversed upon washout (before supplementation 80.2 ± 8.1%; after 
supplementation 61.5 ± 31.5%; after washout 78.7 ± 12.1%).

FIGURE 2 | Analysis of fatty acid composition in CF subjects before (visit 1) and after (visit 2) 10 weeks of DHA supplementation, and 10 weeks after the end of 
DHA supplementation (visit 3). Polyunsaturated fatty acid composition is reported as the n-3 HUFA index (A), which is the percentage of n-3 fatty acids over the 
total amount of HUFA present in red blood cells, as well as DHA/AA ratio (B), which is the percentage of n-3 fatty acids over the total amount of HUFA present in 
red blood cells. Data are expressed as mean ± SEM (n = 8). Statistical analysis was carried out by ANOVA repeated measure; *p < 0.05.

FIGURE 3 | Induced sputum supernatant concentrations of LTB4 (A), PGE2 (B), 15-HETE (C), and 17OH-DHA (D) in CF subjects before (CF basal) and after 
(CF-DHA) 10 weeks of DHA supplementation, and 10 weeks after the end of DHA supplementation (CF washout). Lipid mediators were quantitated by LC/MS/MS as 
described in Materials and Methods. Data were analyzed with ANOVA followed by Dunnett’s test, and are expressed as mean ± SEM (n = 9-15); *p< 0.05 vs CF basal.
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No statistically significant differences in pulmonary 
functions were observed after 10 weeks of DHA supplementation 
(FEV1 before supplementation, 69.8 ± 19.9% of predicted; after 
supplementation, 75.6 ± 19.4%; after washout, 76 ± 21%).

DISCUSSION

The link between the genetic defects in CFTR and inflammation/
chronic bacterial infection is still unclear, but mutations in 
CFTR, together with the resulting limitation of water movement 
across the epithelium causing an impaired mucociliary clearance, 
may also affect the innate immune response associated with the 
epithelial cells, causing enhanced and ineffective inflammatory 
response that fails in controlling bacterial infections (Cohen and 
Prince, 2012).

DHA-derived LMs, such as resolvins, maresins, and protectin, 
collectively defined as part of the SPMs genus, could play a 
critical role in the resolution phase of the inflammatory reaction, 
enhancing clearance of microorganisms, and promoting tissue 
repair (Chiang and Serhan, 2017). It has been demonstrated that 
SPMs can modulate viral and bacterial infections, increasing 
phagocytosis and the ability to kill bacteria (Russell and 
Schwarze, 2014). Interestingly, PD1 and its immediate precursor 
17-hydroxy-docosahexaenoic acid (17OH-DHA) have been 
identified in exhaled breath condensates from normal subjects, 
whereas lower concentrations were observed in subjects with 
asthma exacerbations (Levy et al., 2007), suggesting a potential 
role for PD1 as a potential modulator of airway inflammation 
and pointing to a novel therapeutic approach to modulate 

inflammation in the lung. On the other hand, AA metabolites have 
long been known as an hallmark of the inflammatory response, 
even if their specific contribution to the chronic inflammation 
observed in CF patients has not been clearly established (Reid 
et al., 2007).

Analysis of AA and DHA-derived LMs in sputum samples 
from CF subjects was performed under the hypothesis that 
the supplementation with DHA may boost the formation of 
DHA-derived anti-inflammatory/pro-resolution LMs when 
compared with AA-derived pro-inflammatory mediators, the 
latter used as marker of the ongoing chronic inflammation 
within the airways of CF subjects. Such analysis, in turn, 
also allows and inter-samples normalization that may result 
critical in samples with high variability, such as induced 
sputum supernatants.

A small group of COPD subjects was used as a comparator 
based on the observation that airway inflammation in both CF 
and COPD subjects is showing similar patterns, such as repeated 
infections and mostly neutrophilic inflammatory infiltrates, but 
with the COPD subjects lacking the altered profile of long-chain 
polyunsaturated FAs that is present in CF subjects. Although 
there are significant limitation associated with the comparison 
with COPD subjects (i.e., there is no possibility to match age 
between the two groups), the results obtained in CF subjects 
when compared with COPD patients showed a marked unbalance 
between pro-inflammatory mediators derived from AA and 
17OH-DHA, that represents the precursor of protectins and 
resolvins, with both higher concentrations of pro-inflammatory 
LTB4 and PGE2, and lower concentrations of 17OH-DHA in 
CF subjects. Potential limitation in sensitivity inherent with the 

FIGURE 4 | Ratio values of the concentration of 15-HETE and 17OH-DHA in each sample from COPD subjects (COPD), CF subjects before (CF basal) and after 
(CF-DHA) 10 weeks of DHA supplementation and 10 weeks after the end of DHA supplementation (CF washout). Lipid mediators were quantitated by LC/MS/MS 
as described in Materials and Methods. Data were analyzed with ANOVA followed by Dunnett’s test and were expressed as mean ± SEM (n = 9-15 for CF and n = 
10 for COPD).
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instrumentation used prevented the systematic assessment of 
biologically active protectins and resolvins in most samples, but it 
is interesting to note that they could only be detected in a limited 
number of samples in COPD subjects only. No chiral analysis was 
carried out for the mono-hydroxy derivative 17OH-DHA, but it 
must be noted that both the isomers, 17S and 17R, are precursors 
of compounds with significant biological activities, that is, 
resolvins/protectins and aspirin-triggered resolvins/protectins, 
respectively (Figure 5) (Serhan et al., 2004; Weylandt et al., 2012).

Correlations between altered FA levels and genotype, 
pancreatic status, and respiratory deficiency have been previously 
reported in CF subjects (Strandvik et al., 2001; Coste et al., 2008; 
Maqbool et al., 2008; Rise et al., 2010), and evidence has also 
been provided that a prolonged n-3 FA supplementation may 
have some positive effects on CF (Oliver and Watson, 2016). In 
our study, DHA supplementation resulted in a decrease of pro-
inflammatory mediators, such as LTB4, suggesting that the lower 
concentrations of DHA observed in CF subjects (Rise et al., 2010) 
could indeed cause a lack of anti-inflammatory/pro-resolving 
LMs. 15-HETE also showed a significant decrease, but its role 
is more complex in that while possessing pro-inflammatory 
activities on the airways (Johnson et al., 1985; Li et al., 2013), it may 
also serve as precursor of anti-inflammatory lipoxins (Serhan, 
1989) (see Figure 5), and therefore the net change associated 
with its decrease could be nil. Nevertheless, the concentrations 
of 15-HETE can be used, as we did, as a normalizing factor, 
as they could be the result of the same enzymatic activities 
generating 17OH-DHA, namely 15-LO (for  the S isomers) or 

aspirin-inactivated COX-2 (for  the  R  isomers). In a biological 
sample characterized by a significant variability, such as induced 
sputum, absolute changes could be the result of different sampling 
rather than actual differences between patients conditions, 
whereas the assessment of relative changes, such as in the case of 
the ratio 15-HETE/17OH-DHA, is substantially immune from 
differences associated to changes in sampling.

The association between DHA supplementation, increased 
concentrations of the precursor of resolvins/protectins, and lower 
concentrations of pro-inflammatory LMs, such as LTB4, together 
with a tendency to a decrease in neutrophil infiltration also observed 
upon supplementation, provides evidence in support of a potential 
anti-inflammatory activity of n-3 PUFA supplementation in CF 
subjects. Interestingly, despite potential limitation in sensitivity of 
the mass spectrometer used that prevented the assessment of SPMs 
in most samples, it is worth noting that RvD2 was only detected in 
two samples obtained after supplementation with DHA, suggesting 
that indeed the increase in the precursor 17OH-DHA may be 
associated with an enhanced formation of SPMs.

The lack of clinical parameter amelioration observed is not 
surprising and could be due to the limited time of supplementation; 
the efficacy of n-3 FA supplementation has previously been 
reported as controversial due to different doses and preparations 
used, duration of supplementation, and differences in populations 
studied. Hanssens et al. found a reduced number of exacerbations 
and a decrease of the duration of antibiotic therapy after 9 months 
of n-3 supplementation in the absence of changes in lung function 
(Hanssens et al., 2016); on the contrary, De Vizia et al. reported 

FIGURE 5 | Schematic of the biosynthetic pathways of the compounds evaluated. In bold: precursors. In italics: enzymatic activities. In shaded boxes: biologically 
active compounds; striped: pro-inflammatory, solid: anti-inflammatory, pro-resolution. AT resolvins, AT protectin: aspirin-triggered resolvins, protectin (Weylandt 
et al., 2012), ASA/COX-2, aspirin acetylated COX-2.
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an improvement of FEV1 not confirmed by others (De Vizia et al., 
2003; Van Biervliet et al., 2008; Alicandro et al., 2013). Altogether, 
the results reported in these studies suggest that clinical parameters 
could be affected only after longer period of n-3 supplementation 
than those used in this study (i.e., 9 months to 1 year). In fact, anti-
inflammatory treatments that were shown to benefit CF subjects, 
such as high-dose ibuprofen, were assessed on long-term function 
decline rather than immediate improvement of pulmonary 
parameters (Lands et al., 2007; Cantin et al., 2015).

In conclusion, our results provide preliminary evidence that 
the alterations in the FA profile observed in CF patients may result 
in a decrease in DHA-derived metabolites such as the SPMs, as 
suggested by comparison to COPD patients, who are affected by 
an acquired neutrophilic airway inflammation in the absence of 
plasmatic FAs alterations. This impairment was partially and 
reversibly corrected by DHA supplementation, which caused 
a simultaneous tendency toward a decrease of AA-derived 
metabolites and an increase in precursor to protectin and resolvin 
SPMs, together with a trend toward a decrease in neutrophil 
infiltration. Even with all the limitations of a small, pilot study, 
the results of this study support additional studies on the use of 
n-3 PUFA supplementation in CF subjects and suggest a potential 
usefulness of therapeutic approaches based on the local treatment 
with n-3 PUFA-derived endogenous anti-inflammatory molecules.
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