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Anatomical Therapeutic Chemical (ATC) classification system proposed by the World 
Health Organization is a widely accepted drug classification scheme in both academic 
and industrial realm. It is a multilabeling system which categorizes drugs into multiple 
classes according to their therapeutic, pharmacological, and chemical attributes. In this 
study, we adopted a data-driven network-based label space partition (NLSP) method for 
prediction of ATC classes of a given compound within the multilabel learning framework. 
The proposed method ATC-NLSP is trained on the similarity-based features such as 
chemical–chemical interaction and structural and fingerprint similarities of a compound 
to other compounds belonging to the different ATC categories. The NLSP method trains 
predictors for each label cluster (possibly intersecting) detected by community detection 
algorithms and takes the ensemble labels for a compound as final prediction. Experimental 
evaluation based on the jackknife test on the benchmark dataset demonstrated that our 
method has boosted the absolute true rate, which is the most stringent evaluation metrics 
in this study, from 0.6330 to 0.7497, in comparison to the state-of-the-art approaches. 
Moreover, the community structures of the label relation graph were detected through 
the label propagation method. The advantage of multilabel learning over the single-
label models was shown by label-wise analysis. Our study indicated that the proposed 
method ATC-NLSP, which adopts ideas from network research community and captures 
the correlation of labels in a data driven manner, is the top-performing model in the ATC 
prediction task. We believed that the power of NLSP remains to be unleashed for the 
multilabel learning tasks in drug discovery. The source codes are freely available at https://
github.com/dqwei-lab/ATC.

Keywords: drug classification, multilabel classification, label correlation, label space partition, label propagation

INTRODUCTION

The Anatomical Therapeutic Chemical (ATC) Classification System (MacDonald and Potvin, 
2004), maintained by the World Health Organization Collaborating Centre for Drug Statistics 
Methodology, is the most widely accepted and canonical scheme for drug categorization. This system 
assigns different group labels for drugs based on the organ or systems where they take effect and/
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or their therapeutic, pharmacological, and chemical attributes. 
The ATC system is a strict hierarchy, including five levels of 
classification, and for the first level, there are 14 main groups: 
1) alimentary tract and metabolism (coded by A); 2) blood and 
blood-forming organs (coded by B); 3) cardiovascular system 
(coded by C); 4) dermatologicals (coded by D); 5) genitourinary 
system and sex hormones (coded by G); 6) systemic hormonal 
preparations, excluding sex hormones and insulins (coded by H); 
7) anti-infectives for systemic use (coded by J); 8) antineoplastic 
and immunomodulating agents (coded by L); 9) musculoskeletal 
system (coded by M); 10) nervous system (coded by N); 11) 
antiparasitic products, insecticides, and repellents (coded by P); 
12) respiratory system (coded by R); 13) sensory organs (coded 
by S); and 14) various (coded by V). Given a new compound, 
prediction of its ATC classes can provide us with deeper insights 
into its therapeutic indications and side effects, thus accelerating 
both basic research and drug development (Hutchinson et al., 
2004; Dunkel et al., 2008).

Traditionally, identification of ATC classes for a new drug 
using experimental methods is both time- and resource-consuming. 
Therefore, in silico prediction of ATC classes of a compound by 
machine learning techniques is a hot field in drug discovery and 
development. Previous studies (Dunkel et al., 2008; Wu et  al., 
2013) formulate the prediction of ATC classes as a single-label 
learning task, which is suggested to be inappropriate due to the 
multilabel nature of this biological system (Chou, 2013). Within 
the multilabel learning framework, Cheng et al. (2017b) proposed 
a multilabel predictor iATC-mISF, which utilized multilabel 
Gaussian kernel regression and three types of features (chemical–
chemical interaction, structural similarity, and fingerprint 
similarity). The iATC-mISF has been upgraded as iATC-mHyb 
(Cheng et al., 2017a) by further incorporating drug ontological 
information. Besides one-dimensional representation of features, 
inspired by the histograms of oriented gradients (HoG) method 
proposed by the computer vison community (Dalal and Triggs, 
2005), Nanni and Brahnam (2017) reshaped the features into 
two-dimensional matrix and performed slightly better than iATC-
mISF. Continuing in this direction, the same group (Lumini and 
Nanni, 2018) applied pretrained convolutional neural networks 
models on the two-dimensional feature matrix as a featurizer 
and achieved best performance among the previously published 
methods on this task.

Typically, multilabel (ML) classification algorithms are 
classified into three major groups: algorithm adaptation, problem 
transformation, and ensembles of multilabel classifier (EMLC) 
(Wan et al., 2017). Algorithm adaptation methods incorporate 
specific tricks that modify traditional single-label learning 
algorithms into multilabel ones. The representative algorithm of 
this group is ML-kNN (Zhang and Zhou, 2005). For the problem 
transformation method, it converts multilabel learning problem 
into one or more single-label problems. The common strategies 
for such a transformation include binary relevance, classifier 
chains, label ranking, and label powerset (LP) (Read et al., 2011). 
LP trains models on each possible subset of label sets (Gibaja and 
Ventura, 2014). For a dataset with high cardinality in the large 
label set, LP is prone to be overfitting because of the exponentially 
increased number of subsets. To tackle the overfitting nature of 

label powerset, (Tsoumakas et al., 2011) proposed the RAkELd 
method, which divides the label set into k disjoint subsets and 
use label powerset in these subsets. One major drawback of 
RAkELd is that the k is arbitrarily chosen without incorporating 
the label correlations, which can be possibly learnt from the 
training data. The network-based label space partition (NLSP) 
(Szymański et al., 2016) is an EMLC built upon ML. This NLSP 
method divides the label set into k small-sized label sets (possibly 
intersecting) by a community detection method, which can 
incorporate the label correlation structures in the training set, 
such that it finally learns k representative ML classifiers. As a 
result, NLSP tackles much less subsets compared to LP on the 
original label set and selects k in a data-driven manner. For more 
detailed explanation of multilabel learning, refer to (Zhang and 
Zhou, 2014; Moyano et al., 2018). 

In this study, we adopted an NLSP method to explore the 
correlation among labels. Our NLSP method was evaluated 
on a benchmark dataset (Chen et al., 2012) by the jackknife 
test. The proposed method demonstrates its superiority over 
other state-of-the-art approaches by our experimental results. 
The main strength of our method hinges on two aspects. On 
the one hand, the NLSP clusters the label space into subspaces 
and utilizes the correlation among labels. On the other hand, 
the ensemble learning nature of NLSP on the overlapping 
subspace could further improve model performance. 
Interesting patterns on the label relation graph were also 
detected by NLSP. In addition, the label-wise analysis of the 
best NLSP model was performed to provide experimental 
biologists with more insights.

MATERIALS AND METHODS

Benchmark Dataset and Sample 
Formulation
We utilized the same dataset as the previous study (Cheng et al., 
2017b) to facilitate model comparison. This dataset consists of 
3,883 drugs, and each drug is labeled with at least one or more of 
14 main ATC classes. It is a tidy dataset where no missing value 
and contradictory record. The UpSet visualization technique 
(Lex et al., 2014) was used for quantitative analysis of interactions 
of label sets.

Then, we adopted the same method provided by (Cheng et al., 
2017b) to represent the drug samples. The dataset can be 
formulated in set notation as the union of elements in each class: 
   = …1 2 14 

 (1), and a sample D can be represented by 
concatenating the following three types of features.

1. A 14-dimentional vector, DInt = [Φ1Φ2Φ3 … Φ14]T (2), which 
represents its maximum interaction score Φi (Kotera et al., 
2012) with the drugs in each of the 14 i .

2. A 14-dimentional vector, DStrSim = [Ψ1Ψ2Ψ3 … Ψ14]T (3) which 
represents its maximum structural similarity score Ψi (Kotera 
et al., 2012) with the drugs in each of the 14 i .

3. A 14-dimentional vector, DFigSim = [T1T2T3 … T14]T (4), which 
represents its molecular fingerprint similarity score Ti (Xiao 
et al., 2013) with the drugs in each of the 14 i .
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Therefore, a given drug D is formulated by:

 D D D D T= ⊕ ⊕ = …Int StrSim FigSim [@ @ @ @ ]1 2 3 42  (5)

Where ⊕ represents the symbol for orthogonal sum and 
where
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For more details, refer to Cheng et al. (2017b).

Measuring Label Correlation
In order to evaluate the correlation between two labels, we 
calculated the bias corrected Cramér’s V statistic for all the 
label pairs (Bergsma, 2013). Cramér’s V (sometimes referred 
to as Cramér’s phi and denoted as φc) statistic is a measure of 
association between two nominal variables, ranging from 0 to 
1 (inclusive). The bias corrected Cramér’s V statistic is given 
by (here n denotes sample size and χ2 stands for the chi-square 
statistic without a continuity correction for a contingency table 
with r rows and c columns)
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Network-Based Label Space Partition
The NLSP is a newly proposed multilabel learning method 
and has achieved top performance in some predictive tasks 
(Szymański et al., 2016). In this study, we adopted the data-driven 
NLSP method for prediction of ATC classes of a compound. 
NLSP divides the predictive modeling task into the training and 
classification phase. 

In the training phase, four steps are preformed:

1. Establishing a label co-occurrence graph on the training set. 
The label co-occurrence graph G has the label set L as the 
vertex set and the edge between two vertices (labels) exists if 
at least one sample S in training set Dtrain is assigned by these 

two labels li and lj together (here li, lj denote labels of the set 
Ls, which stands for the assigned label set of a sample S; || || 
stands for the cardinality of a given set):

 E l l S L l L l Li j s train i s j s= ∃ ∈ ∈ ∧ ∈( ){ }{ , } : ( ( , ) D )  (13)

We can also easily assign weights to G by defining a counting 
function w: L → ℕ:

 

w l l Si j,( ) = number of sample that have both labells assigned

D= ∈ ∧ ∈ ∧ ∈{ }S S L l L l Ls train i s j s: ( , )
  

  (14)

2. Detecting community on the label co-occurrence graph. 
There are various community detection algorithms. In this 
study, we utilized the following two methods to identify 
communities because both of the two methods have linear 
time complexity: 

a) Largest modularity using incremental greedy search 
(Louvain method) (Blondel et al., 2008): This method 
is based on greedy aggregation of communities, 
beginning with communities with single convex and 
merging the communities iteratively. In each step, two 
communities are merged when the merging makes the 
highest contribution to modularity. The algorithm halts 
when there is no merge that could increase current 
modularity. This method is frequently referred as 
“Louvain method” in the network research community. 
The detailed explanation of this method is described in 
Supplementary Method S1. 

b) Multiple async label propagation (LPA) (Raghavan 
et al., 2007): This method assigns unique tags to every 
vertex in a graph and then iteratively updates the tags of 
every vertex. This update reassigns the tag of the majority 
of neighbors to the central vertex. The updating order 
of vertices shuffled at each iteration. The algorithm 
is stopped when all vertices have tags identical to the 
dominant tag in proximity. The detailed description of 
LPA is appended in Supplementary Method S2.

3. For each community Ci, corresponding training set Di is 
created by taking the original dataset with label columns 
presented in Li. 

4. For each community, a base predictor bi is learnt on the 
training set Di. In this study, we compared the performance of 
five types of base predictors: 

(a) Extremely randomized trees (ERT) (Geurts et al., 
2006; Li et al., 2019) is an ensemble method that 
adds more randomness compared to random forests 
by the random top–down splitting of trees instead of 
computing the locally optimal cut-point for each feature 
under consideration. This increase in randomness 
allows to reduce the variance of the model a bit, at the 
expense of a slightly greater increase in bias.
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(b) Random forests (RF) (Breiman, 2001) is an ensemble 
method that combines the probabilistic predictions of 
a number of decision tree-based classifiers to improve 
the generalization ability over a single estimator. 

(c) Support vector machine (SVM) (Cortes and Vapnik, 
1995) is a widely used classification algorithm which 
tries to find the maximum margin hyperplane to 
divide samples into different classes. Incorporated by 
kernel trick, this method could handle both linear and 
no-linear decision boundary.

(d) Extreme gradient boosting (XGB) (Chen and 
Guestrin, 2016) is a newly proposed boosting method, 
which has achieved state-of-the-art performance on 
many tasks with tabular training data (Chen et al., 
2018). Traditional gradient boosting machine is a meta 
algorithm to build an ensemble strong learner from 
weak learners such as decision trees, while XGB is an 
efficient and distributed implementation of gradient 
boosting machine. 

(e) Multilayer perceptron (MLP) (Ruck et al., 1990) is 
a supervised learning algorithm which could learn 
nonlinear models. It has one or more nonlinear hidden 
layers between the input and output. For each hidden 
layer, different numbers of hidden neurons can be 
assigned. Each hidden neuron yields a weighted linear 
summation of the values from the previous layer, and 
the nonlinear activation function is followed. The 
weights are learnt through backpropagation algorithm 
or variations upon it.

In the classification phase, we just perform predication on all 
communities detected in the training phase and fetch the union 
of assigned labels:

 b S b Sj
k

i( ) ( )= = 1  (15)

Parameter Tuning
There are two layers of hyperparameters tunable for NLSP:

1. The base learner: we chose five types of base learners.

(a) Extremely randomized trees: we tuned the 
hyperparameter of number of trees at [500, 1000], 
other hyperparameters are at the default values.

(b) Random forests: we tuned hyperparameter of number 
of trees at [500, 1,000], other hyperparameters are at 
the default values.

(c) Support vector machine: we tuned the hyperparameter 
of C (penalty) at [0.01, 0.1, 1, 10, 100], we chose the 

radial basis function with gamma value of 1 1
42N features

= ,  

other hyperparameters are at the default values.
(d) Extreme gradient boosting: we tuned the hyperparameter 

of number of trees at [10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 
other hyperparameters are at the default values.

(e) Multilayer perceptron: We tuned the hyperparameter 
of hidden layer sizes at [50, 100, 200, 500, 1,000], other 
hyperparameters are at the default values.

2. The cluster: for each type of base learner, we try to compare 
two community detection methods.

(a) Largest modularity using incremental greedy search 
(Blondel et al., 2008).

(b) Multiple async label propagation (Raghavan et al., 2007). 

Performance Measures of Multilabel 
Learning
Evaluation of a multilabel learning model is not a trivial task 
(Zhang et al., 2015; Yuan et al., 2016; Zhang et al., 2017; You 
et al., 2018; Xiong et al., 2019; You et al., 2019). Inspired by the 
definition of Chou et al. (Chou, 2013) and practice of Madjarov 
et al. (2012), we utilized the following five metrics to evaluate the 
multilabel learning models throughout this work.
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 (16)

where N is the total number of samples, M is the total number 
of labels, ⋃ represents union in set theory and ⋂ represents 
intersection in set theory, k  denotes the true label set of k-th 
sample, k

*  means the predicted label vector of k-th sample, ⊝ 
stands for the symmetric difference between two sets, and 

 ∆ s in( , ) ,
,

*
*

   
k k

k kif all the label equal
otherwi

= 1
0 sse




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 (17)

In order to avoid the zero-divisor problem generated by all 
negative predictions, we add a pseudo-number 1 to 0 divisors in 
the calculation of the aiming metric. These above metrics have 
been used in a series of studies (Cheng et al., 2017a; Cheng et al., 
2017b; Nanni and Brahnam, 2017).

Performance Measures of Single-Label 
Learning
Apart from the metrics in the multilabel framework, we 
also utilized the following metrics to assess the single-label 
classification models. 
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where TP, TN, FN, and TN are true positives, true negatives, 
false positives, and false negatives for the prediction of each 
label, respectively. These metrics have widely been used in a 
large number of bioinformatics applications recently (Feng et al., 
2017; Niu and Zhang, 2017; Sun et al., 2017; Wang et al., 2017; Xu 
et al., 2017; He et al., 2018; Li et al., 2018; Pan et al., 2018; Qiao 
et al., 2018; Xiong et al., 2018; Xu et al., 2018; Zhang et al., 2018; 
Bian et  al., 2019; Wei et al., 2019a; Wei et al., 2019b; Zou et al., 
2019). In addition, we also calculated the area under the receive 
operating characteristic curve (AUC) by the trapezoidal rule.

Model Validation Method
There are mainly three methods to evaluate the generalization 
ability of a classification model, such as the independent testing 
method, k-fold cross validation, and the jackknife method. In order 
to fairly compare our proposed model with previous works on the 
same benchmark dataset, we utilized the jackknife method for the 
model validation in the multilabel learning framework. Jackknife 
is a resampling method for parameter estimation. The jackknife 
estimation of a parameter is constructed by calculating the parameter 
for each subsample omitting the i-th observation and then takes the 
mean value of these parameters as final estimation. 

In the model validation of single-label analysis, we utilized 
10 times repeated 10-fold cross validation (10 × 10-fold CV) 
method. In k-fold cross validation (CV), the sample set is 
randomly partitioned into k subsets with equal size. Of the 
k subsets, one subset is selected as the validation data for 
testing the model, and the remaining k − 1 subsets are used for 
training. The cross-validation process is then repeated k times 
(the folds), with each of the k subsets used exactly once as the 
validation data. The 10-fold cross-validation is proven to be a 
better alternative of jackknife method in terms of bias, variance, 
and computation complexity (Kohavi, 1995). We also repeated 
10-fold CV 10 times in shuffled benchmark dataset to further 
reduce the estimation variance.

RESULTS AND DISCUSSION

Label Correlation Analysis
One major advantage of multilabel learning framework is the 
explicit exploitation of label correlations (Zhang and Zhou, 2014). 
We calculated bias corrected Cramér’s V statistics for all the label 
pairs and depicted them in a heatmap manner (Figure  1A), 
and the UpSet visualization of label intersections is depicted in 
Figure 1B. The results indicated that 46 drugs are both labeled 
as ATC category 4 (dermatologicals) and ATC category 12 
(respiratory system), 43 drugs are both labeled as ATC category 13 
(sensory organs) and ATC category 7 (anti-infectives for systemic 
use), which can be explained by the fact that many widely applied 
corticosteroids, such as dexamethasone, betamethasone, and 
fluocortolone, can be used both in dermatology and respirology 
medicine. We also found that several label sets are correlated, 
especially for ATC category 4 (dermatologicals) and ATC 
category 13 (sensory organs), of which the Cramér’s V statistic 

FIGURE 1 | Label correlation landscape. (A) The pair wise visualization of Cramér’s V statistics for all the labels in a heatmap manner. (B) The UpSet visualization of 
label intersections. The horizontal bar shows the number of drugs per ATC category, and the vertical bar shows the number of drugs per ATC category intersection.
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is 0.29. Details about the pairwise intersection numbers of drugs 
and the pairwise Cramér’s V statistics between all the labels are 
shown in Table S1 and Table S2.

Multilabel Performance Comparison
Table 1 shows the prediction performances based on the 
jackknife test among different methods on the benchmark 
dataset. We found the absolute true value of almost all our 
NLSP-based methods performed better than that of other 
methods, which is the most stringent metric for multilabel 
learning. Among all the NLSP-based models, the NLSP-XGB-
LPA performs the best, consistently better than all the other 
methods trained on benchmark dataset, in terms of aiming, 
coverage, accuracy, and absolute true. As for the value of 
absolute true, our NLSP-XGB-LPA has boosted ~11.67% 
compared to the best deep learning model trained on the 
same benchmark dataset (Lumini and Nanni, 2018). As for the 
clusterer, we found that the LPA method performs consistently 
better than the Louvain method in all the NLSP-based models 
(Figure S1), so we append the suffix of “-LPA” to all the NLSP-
based models. We then trained the final NLSP-XGB-LPA 
model on the full benchmark dataset using previous optimized 
hyperparameters. This model can be accessed through https://
github.com/dqwei-lab/ATC. 

Label Community Analysis
One major innovation of NLSP method is the construction 
of label relation graph, which is built on the concept of label 
co-occurrence (Szymanski and Kajdanowicz, 2019). The 
communities detected in the label relation graph will not 
only help to improve the classification performance but also 
provide us with deeper insights of the intrinsic label structure. 

We extracted the community membership information from 
the final model of NLSP-XGB-LPA (shown in Figure 2). We 
found that there are two communities detected, in which ATC 
category 8 (anti-infectives for systemic use) lies in a unique 
community. In terms of medicinal chemistry and clinical 
pharmacotherapeutics, anti-infectives for systemic use are 
structure variant and usage limited compared to other 16 
types of drugs. For example, daptomycin (DB00080) is one 
of the anti-infectives for systemic use, which is composed of 
an unusual molecular structure of lipopeptide with limited 
indications for skin and skin structure infections caused by 
Gram-positive infections, S. aureus bacteremia, and right-sided 
S. aureus endocarditis (Henken et al., 2010). The community 
membership learnt from benchmark dataset is surprising but 
intuitive. This result suggests the potential pattern extraction 
power of network-based machine learning models in terms  
of pharmacology.

Single-Label Analysis 
Apart from multilabel learning metrics, it is often useful to 
evaluate multilabel learning models in a label-wise manner 
(Michielan et al., 2009; Mayr et al., 2016). We utilized the 
parameters of the best-performing model of NLSP-XGB-LPA 
and conducted 10 times repeated 10-fold cross-validation 
(10 × 10-fold CV) because the jackknife test is rather time 
consuming. The details are listed in Table 2. We found that our 
NLSP-XGB-LPA performs well in all the single-label subtasks 
of ATC prediction, especially for the label of “anti-infectives 
for systemic use,” reaching an AUC at 0.9946. Compared to a 
dedicated single-label classification system for cardiovascular 
system (Gurulingappa et al., 2009), our best-performing 
multilabel model boosted the value of accuracy from 0.8947 
into 0.9490.

TABLE 1 | Comparison with other state-of-the-art multilabel predictors.

Method DLa Aiming Coverage Accuracy Absolute true Hamming loss

EnsANet_LR ⊕ DOc (τ = 0.25)
(Lumini and Nanni, 2018)

Yes 0.7957 0.8335 0.7778 0.7090 Not available

EnsANet_LR ⊕DOc (τ = 0.5)
(Lumini and Nanni, 2018)

Yes 0.9011 0.7162 0.7232 0.6871

EnsLIFT
(Nanni and Brahnam, 2017)

No 0.7818 0.7577 0.7121 0.6330

iATC-mHybc

(Cheng et al., 2017a)
No 0.7191 0.7146 0.7132 0.6675

Chen et al.
(Chen et al., 2012)

No 0.5076 0.7579 0.4938 0.1383

iATC-mISF
(Cheng et al., 2017b)

No 0.6783 0.6710 0.6641 0.6098

NLSP-ERT-LPA No 0.7948 0.7691 0.7578 0.7213 0.03817
NLSP-RF-LPA No 0.8072 0.7889 0.7778 0.7489 0.03427
NLSP-SVM-LPA No 0.7844 0.7529 0.7370 0.6925 0.04322
NLSP-XGB-LPA No 0.8135 b 0.7950 0.7828 0.7497 0.03429
NLSP-MLP-LPA No 0.7958 0.7858 0.7591 0.7090 0.04032

a DL denotes whether this model is a deep learning-based method. 
b The bold value stands for the best value of specific metrics.
c These models are trained on a modified benchmark dataset, whose metrics are not comparable to our model.
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FIGURE 2 | Label relation graph. Different colors stand for different communities. The line width represents the weight between two labels. Communities are 
detected by multiple async label propagation method, while the weight represents the frequency of label co-occurrence.

TABLE 2 | Label-wise analysis of best-performing multilabel learning model.

Predictive label Accuracy Specificity Recall F1 score AUC Evaluation method 

Alimentary tract and metabolism 0.9269 0.7312 0.7549 0.7406 0.9550 10 × 10-fold CV
Blood and blood forming organs 0.9793 0.7754 0.5644 0.6430 0.9493 10 × 10-fold CV
Cardiovascular system 0.9490 0.8371 0.8274 0.8306 0.9752 10 × 10-fold CV
Dermatologicals 0.9403 0.7966 0.6038 0.6845 0.9472 10 × 10-fold CV
Genitourinary system and sex hormones 0.9691 0.8148 0.6682 0.7294 0.9539 10 × 10-fold CV
Systemic hormonal preparations, excluding sex
hormones and insulins

0.9867a 0.8227 0.7605 0.7816 0.9940 10 × 10-fold CV

Anti-infectives for systemic use 0.9793 0.9276 0.9170 0.9215 0.9946 10 × 10-fold CV
Antineoplastic and immunomodulating agents 0.9792 0.8683 0.7724 0.8126 0.9804 10 × 10-fold CV
Musculoskeletal system 0.9820 0.8707 0.7836 0.8209 0.9842 10 × 10-fold CV
Nervous system 0.9511 0.8581 0.8913 0.8733 0.9825 10 × 10-fold CV
Antiparasitic products, insecticides and repellents 0.9863 0.8312 0.7358 0.7714 0.9803 10 × 10-fold CV
Respiratory system 0.9573 0.8432 0.7516 0.7923 0.9720 10 × 10-fold CV
Sensory organs 0.9492 0.8206 0.6367 0.7140 0.9487 10 × 10-fold CV
Various 0.9717 0.7681 0.6997 0.7241 0.9703 10 × 10-fold CV

Cardiovascular system 
(Gurulingappa et al., 2009)

0.8947 Not available 100 × bootstrapping

Cardiovascular system
(Gurulingappa et al., 2009)

0.7712 Test set

SuperPred (Dunkel et al., 2008) 0.676b Jackknife

a The bold value stands for the best value of specific metrics.
b The mean accuracy of flattened 850 ATC classes.
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CONCLUSION

Based upon the NLSP method, we have achieved the state-of-the-
art performance on the benchmark dataset using the similarity-
based features such as chemical–chemical interaction and 
structural and fingerprint similarities of a compound to other 
compounds belonging to the different ATC categories. Label 
community and single-label analysis were also performed on 
the benchmark dataset. There are three major conclusions can 
be reached. First, compared to dedicated single-label models 
(Dunkel et al., 2008; Gurulingappa et al., 2009), multilabel 
learning framework could improve the performance on single-
label metrics by incorporating label correlation information. 
Second, compared to feature engineering tricks (Nanni and 
Brahnam, 2017; Lumini and Nanni, 2018), the introduction of 
new method such as NLSP could generate more performance 
improvement. Third, at least in the ATC prediction task, the 
NLSP method, which adopts ideas from network research 
community and captures the correlation of labels in a data-
driven manner, can perform better than the models based on 
deep learning techniques, especially in the absolute true rate 
metric. The idea behind NLSP method is fascinating, and the 
power of NLSP remains to be unleashed for the multilabel 
learning tasks in drug discovery.

Although the NLSP method was the first time to be applied 
to the multilabel classification task in pharmacology and 
achieved good performance in the preliminary results, there are 
shortcomings in several aspects in this study. First, the similarity-
based features are not recalculated for the specific communities 
detected by the NLSP methods. Second, the rigidity of the model 
validation can be improved by the independent external dataset. 
Last but not the least, the number of communities detected by 
NLSP on this drug classification problem is too low, which may 
be not an ideal dataset for proving the predictive power of the 

NLSP-based method. These problems can be addressed in the 
further studies.
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