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The ancient tradition of taking parts of a plant or preparing plant extracts for treating 
certain discomforts and maladies has long been lacking a scientific rationale to support 
its preparation and still widespread use in several parts of the world. In an attempt to 
address this challenge, we collected and integrated data connecting metabolites, plants, 
diseases, and proteins. A mechanistic hypothesis is generated when a metabolite is known 
to be present in a given plant, that plant is known to be used to treat a certain disease, 
that disease is known to be linked to the function of a given protein, and that protein is 
finally known or predicted to interact with the original metabolite. The construction of 
plant–protein networks from mutually connected metabolites and diseases facilitated the 
identification of plausible mechanisms of action for plants being used to treat analgesia, 
hypercholesterolemia, diarrhea, catarrh, and cough. Additional concrete examples 
using both experimentally known and computationally predicted, and subsequently 
experimentally confirmed, metabolite–protein interactions to close the connection circle 
between metabolites, plants, diseases, and proteins offered further proof of concept for 
the validity and scope of the approach to generate mode of action hypotheses for some 
of the therapeutic uses of remedial herbs.

Keywords: ethnopharmacology, traditional medicine, network pharmacology, mechanism of action, 
phytochemicals, endogenous metabolites, plant metabolomics

INTRODUCTION

Plant leaves, roots, barks, and extracts have been used since the dawn of human history to treat various 
discomforts and maladies. The healing properties of remedial herbs were most likely identified 
through a long and serendipitous learning process that once acquired was carefully passed through 
generations. Still today, traditional medicines represent a well-established therapeutic alternative to 
synthetic drugs in vast parts of the world (Tao et al., 2014). However, there is still a profound lack 
of understanding about the specific chemical ingredient(s) and the exact mechanism(s) of action by 
which medicinal plants exert their therapeutic effect.

In recent years, global efforts to generate, collect, store, and make publicly available data 
connecting plants with their endogenous metabolites (phytoconstituents), interacting proteins, and 
disease indications have set the ground to develop novel systems approaches to unveiling the mode of 
action of remedial herbs (Liu et al., 2013; Lagunin et al., 2014; Chen et al., 2017). This is schematically 
illustrated in Figure 1. A number of publicly available well annotated databases on medicinal plants 
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in use in different regions of the planet exist already (Chen, 2011; 
James et al., 2013; Ntie-Kang et al., 2013; Tota et al., 2013; Pathania 
et al., 2015; Mohanraj et al., 2018). Once data connecting the 
different aspects of ethnopharmacological relevance are known, 
the circle is closed and mechanistic hypotheses emerge naturally. 
The problem arises when gaps of data exist and the circles 
cannot be closed. In this respect, most current ethnomedicinal 
studies still focus on which parts of the plant are used to treat 
common ailments (Chassagne et al., 2016). Initiatives to identify 
and isolate some of the chemical structures present in those 
parts of therapeutic interest are expensive and inefficient. This 
notwithstanding, at least 50,000 endogenous plant metabolites 
have been already identified (Hounsome et al., 2008).

However, in vitro affinity data between plant metabolites and 
human proteins are scarce to find in public repositories (Bolton 
et  al., 2008; Gaulton et al., 2012). Therefore, more efforts are 
needed in this direction to close the gap between therapeutic use 
and mode of action in remedial herbs (represented as a dotted line 
in Figure 1). One option is to process large libraries of isolated 
small molecules from plants through in vitro high-throughput 
screening assays to identify affinities for therapeutically relevant 
proteins. This is a highly tedious and expensive endeavor if one 
wants to be comprehensive. Alternatively, modern state-of-
the-art computational methods to predict the affinity of small 
molecules across thousands of proteins can be used to prioritize 
any further in vitro testing of selected small molecules on 
particular proteins (Vidal et al., 2011; Garcia-Serna et al., 2015). 
Applications on predicting the targets of natural medicines are 
increasingly being reported (Keum et al., 2016; Fang et al., 2017; 
Sawada et al., 2018; Yi et al., 2018).

The last step involves connecting those confirmed interacting 
proteins with the actual disease for which the plant is prescribed. 
This task is now facilitated by the recent construction of databases 
connecting human genes with diseases (Piñero et al., 2017). The 
aim of this work is to collect and integrate all pieces of data and 
processes that allow for automatically generating mechanistic 
hypotheses for the known therapeutic uses of plants.

RESULTS AND DISCUSSION

Among the 372 medicinal plants present in our integrated 
database, Sambucus nigra (black elder) is the plant associated with 
the highest number of therapeutic uses (31). It is recommended 
for bronchitis, migraine, diarrhea, nausea, hyperuricemia, and 
influenza, to name just a few. Genus Sambucus belongs to the 
Caprifoliaceae family of flowering plants, whose leaves, flowers, 
and berries are traditionally used worldwide for a wide variety 
of medicinal applications (Dulf et al., 2013; Mahmoudi et al., 
2014). Following Sambucus nigra in the list of plants with widest 
therapeutic use are Allium sativum (24), Rosmarinus officinalis 
(22), Mentha spicata (21), Urtica dioica (21), Salvia officinalis 
(21), and Thymus vulgaris (21), all of them found easily in many 
parts of the world and used as food and/or spice.

If we focus on cardiovascular diseases, a total of 171 plants 
were found to be associated with 46 different therapeutic 
uses. For illustrative purposes, the network of plants linked 
to cardiovascular diseases is shown in Figure 2. Among 
those, Ginkgo biloba is the plant with the most cardiovascular 
uses (with  14), followed by Camellia sinensis (with 8) and 
Allium cepa, Crataegus monogyna, Olea europea, Urtica doica, 
and Vitis vinifera (with 7). Among diseases, hypertension, 
hypercholesterolemia, hyperglycemia, and haemorrhoids are 
clearly the cardiovascular aspects being most addressed by 
remedial herbs.

Ginkgo biloba and Camellia sinensis are indigenous plants 
from Asia (Cybulska-Heinrich et al., 2012; Moore et al., 2009). 
The extracts of the leaves and nuts from Ginkgo biloba have been 
used for hundreds of years to treat a wide variety of disorders, 
such as asthma, vertigo, tinnitus, as well as general circulatory 
problems (Cybulska-Heinrich et al., 2012). Camellia sinensis is 
a plant from which green tea can be produced. This beverage 
has a long traditional use as social drink but also as medicine 
in the treatment and prevention of disorders, dysfunctions, 
or diseases in humans and other animals (Batista et al., 2009; 
Moore et al., 2009). Aesculus hippocastanum (horse chestnut) 
is native to the countries of the Balkan Peninsula, but it is 
cultivated worldwide for its beauty. Historically, seed extracts 
from this plant have been used as a treatment for many ailments 
(Anonymous, 2009). Crataegus monogyna (hawthorn) is known 
as a traditional medicinal plant in many countries, growing in 
shrub communities and decidious thin forests (Öztürk and 
Tunçel, 2011). Vitis vinifera (grapevine) is an indigenous plant 
from southern and Western Asia, but it is cultivated today in all 
temperature regions of the world (Nassiri-Asl and Hosseinzadeh, 
2009). Finally, Allium cepa (onion) is one of the most important 
vegetables worldwide and is extensively cultivated. It is an 
herbaceous bulbous plant that has a long tradition of being 
beneficial against inflammation, general cardiovascular diseases, 
and cancer (Slimestad et al., 2007).

Regarding knowledge on the chemical composition of plants, 
Camellia sinensis (green tea) is the plant with the highest number 
of chemical structures identified (710), followed by Zea mays (677) 
and Panax ginseng (601). Other chemically well characterized 
plants are Citrus sinensis (orange tree), Apium graveolens (celery), 
and Daucus carota (carrot), with 589, 533, and 507 known 

FIGURE 1 | Scheme showing the data sources and the process of closing 
the gap between the therapeutic use of plants and the protein targets 
predicted for the endogenous plant metabolites.
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molecules, respectively. In contrast, many plants in the database 
have only one or very few endogenous metabolites identified, 
such as Rhamnus alaternus (Mediterranean blackthorn), Lonicera 
etrusca (honeysuckle), or Hernaria glabra (herniaria).

A detailed analysis of all the links between plants, metabolites, 
targets, and diseases in our integrated database (Figure 1) 
identified a total of 31,808 mechanistic hypotheses. At this stage, 
a mechanistic hypothesis is generated if a given plant known 
to have some therapeutic use contains at least one endogenous 
metabolite that is either known or predicted to interact with a 
human protein associated with its original therapeutic use. It 
ought to be stressed here that the concentration of any plant 
metabolite in a herbal preparation is very low and that, by any 
means, the results presented below imply that the metabolite 
assigned to the mechanistic hypothesis is the sole responsible of 
the therapeutic action of the plant but it will somehow contribute 
it. In this respect, a total of 893 mechanistic hypotheses for 

its different therapeutic uses could be generated for Glycine 
max (soybean). Among the plants with the highest number of 
mechanistic hypotheses generated, we found Ginkgo biloba 
(793), Camellia sinensis (781), Citrus limon (578), and Vitis 
vinifera (563). Out of the total number of 31,808 mechanistic 
hypotheses generated, 14,308 involved known interactions 
between endogenous metabolites and protein targets, whereas 
the remaining 17,500 hypotheses emerged from predicted 
interactions (see Materials and Methods).

Retrospective Validation
Among the molecules involved in the mechanistic hypotheses 
generated with known metabolite–protein interactions, we 
identified some well-known single active principles, such as 
atropine, morphine, and digitoxin, as well as a mixture of active 
principles, such as the one composed of quercetin, luteolin, and 
apigenin (Figure 3).

FIGURE 2 | Network of remedial herbs (gray circles) linked to therapeutic uses in cardiovascular diseases (white circles).
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Atropine is found mainly in Atropa belladonna and Datura 
stramonium (Kurzbaum et al., 2001; Caksen et al., 2003), both 
used commonly for their analgesic action (Duttaroy et al., 2002; 
Overington et al., 2006). This molecule is known to be active 
against the muscarinic acetylcholine receptor M4, a therapeutic 
target associated with some analgesics. Therefore, we have 
all links described in Figure 1 confirmed and thus forming a 
mechanistic hypothesis for the analgesic action of these plants 
(Soni et al., 2012; Owais et al., 2014).

Another widely recognized molecule for its analgesic activity 
is morphine. It is found in Papaver somniferum (opium poppy), 
and it was the first active alkaloid extracted from this plant 
(Jurna, 2003). Opium has been used in traditional medicinal 
as sedative and analgesic (Calixto et al., 2001). According to all 
links established in our database, morphine would be directly 
identified as a candidate to contribute to the analgesic action of 
opium through its interaction with µ-type opioid receptor (Choi 
et al., 2006; Yamada et al., 2006), a receptor well known for its 
association with analgesia (Inturrisi, 2002).

Digitoxin is a glycoside with known activity against the sodium/
potassium-transporting ATPase subunit α-1, a protein associated 
with heart failure (Müller-Ehmsen et al., 2002; Hauck et al., 2009). 
Digitoxin is found in Digitalis purpurea (Chen et al., 2001), a plant 
used in traditional medicine for treating precisely this particular 
disease. Digitoxin has not only been proven to interact with the 
sodium/potassium-transporting ATPase subunit α-1, but it has also 
been shown to be indeed effective in heart failure (Belz et al., 2001).

Finally, we selected an example in which three compounds, 
namely, quercetin, luteolin, and apigenin, all confirmed 
endogenous metabolites of Achillea millefolium (yarrow), a 
plant used traditionally for treating depression, are known to 
have biologically relevant affinities for monoamine oxidase A 
(Lemmens-Gruber et al., 2006; Han et al., 2007; Benetis et al., 
2008; Bandaruk et al., 2014), which, in turn, is one of the target 
proteins for depression (Thase et al., 1995).

A more systematic analysis of all the mechanistic hypotheses 
that could be derived directly from known data and associations 
revealed that, among all disease categories, the circulatory, 
respiratory, and musculoskeletal systems collectively represented 
over 47% of all mechanistic hypotheses generated. The plant–
protein networks derived for some specific diseases within these 
categories are shown in Figure 4.

In the analgesia network (Figure 4, top), one can observe that 
plants have multiple connections with a diverse range of proteins. 
This reflects the fact that some of the endogenous metabolites 
found in those plants have biologically relevant affinities for 
many of those proteins. Among them, aldose reductase (Young 
et al., 1983), muscarinic acetylcholine receptors (Duttaroy et al., 
2002), and opioid receptors (Inturrisi, 2002) are the ones being 
most targeted by metabolites from these plants. Altogether, the 
formation of this complex network is indicative of a variety of 
plausible mechanisms of action relevant to analgesia, although 
one cannot exclude the possibility that the proteins involved in 
this analgesia network are closely related by cross-pharmacology, 
that is, they interact with similar ligands (Keiser et al., 2007; 
Briansó et al., 2011).

In contrast, the catarrh and cough networks (Figure 4, 
bottom) show that plants indicated for these therapeutic uses 
have endogenous metabolites targeting very much the same 
proteins. For catarrh, all plants contain some chemical entity 
that is active on the dopamine D1B, D2, and D3 receptors, all 
of them well known to be associated with respiratory diseases 
(Birrell et al., 2002). For cough, all plants contain at least one 
chemical entity with affinity for the µ and δ opioid receptors 
(Kotzer et al., 2000).

In between these two limit situations, the plant–protein networks 
obtained for hypercholesterolemia and diarrhea (Figure 4, middle) 
are consistent with different plants linked to these therapeutic uses 
acting through a small number of different mechanistic hypotheses. 
In this respect, most plants used for treating hypercholesterolemia 

FIGURE 3 | Scheme showing some of the closed circles confirmed retrospectively for some of the plants being used in cardiovascular diseases.
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FIGURE 4 | Network of remedial herbs (gray circles) linked to proteins (white circles) associated with various maladies, namely, analgesia, hypercholesterolemia, 
diarrhea, catarrh, and cough.
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seem to contain some chemical ingredient biologically active 
on the peroxisome proliferator-activated receptor α (56) and 
the hydroxycarboxylic receptor 2 (Karpe and Frayn, 2004). 
However, other plants may be exerting their therapeutic effect 
through interactions with some enzymes also associated with 
hypercholesterolemia, such as fatty acid synthase (Marseille-
Tremblay et al., 2007) and squalene monooxygenase (Belter 
et  al., 2011). Likewise, plants used for treating diarrhea contain 
chemical entities that have affinities for the µ and κ opioid receptors 
(Callahan, 2002), the 5-hydroxytryptamine 3A receptor channel 
(Sikander et  al., 2009), and/or the calcium-activated potassium 
channel subunit α-1 (Deng et al., 2015). Even though many plants 
are targeting all of them, others seem to target only one or two.

It is important to highlight at this stage that the use of known 
data only is prone to the effects of completeness, and thus, 
several links may actually be missing in the networks discussed. 
In fact, looking at the distribution of the affinity values for 
those known interactions, we observe that in many cases these 
interacting chemicals are found also in plants that are not used 
for treating the disease associated with the interacting protein. 
Some of the reasons why these plants have not been used 
for these illnesses could be, for example, that the compound 
concentration is not enough in the plant or the plant really has 
this therapeutic action but it is simply not used for it. The same 
plant may have different uses in different parts of the world. 
Last but not least, it could well be that the action of some of 
these compounds requires the presence of some bioenhancer 
(Dudhatra et al., 2012), the therapeutic action being ultimately 
the result of multiple compounds acting synergistically. 
Overall, from the initial number of 372 plants associated with 
at least one therapeutic use, only 193 contain known data for all 
necessary links to derive a mechanistic hypothesis. Accordingly, 
the following section illustrates the use of high-confidence 
predictions as a means to enlarge the coverage of plants for 
which mechanistic hypotheses can be derived.

Prospective Evaluation
Before embarking into the analysis of some of the mechanistic 
hypotheses emerging from predicted interactions, we validated 
the expected accuracy of those predictions for which known 
data was available. Overall, a good correlation was found 
between known and predicted affinity values for the same 
molecule–protein interactions. The median of the difference in 
affinities was 0.332, with 25% and 75% quartiles being at −0.1 
and 0.7 with respect to the median, respectively, with a standard 
deviation of 0.794. Then, for those predicted interactions only, 
we focused on those providing a balance between potency of the 
predicted affinity and novelty of the prediction, as regarded by 
the similarity to the closest molecule for which the affinity for the 
same protein is known already. Among those, we prioritised the 
confirmation of the proposed mechanistic hypotheses for two 
single compounds, namely, rybosylzeatin and isorhamnetin, and 
one compound mixture, composed of cyanidin, delphinidin, and 
malvidin. The results are compiled in Figure 5.

Ribosylzeatin is an endogenous metabolite present in Ginkgo 
biloba (gingko), Glycine max (soybean), and Vitis vinifera 
(grapevine). This small molecule was predicted to have low 
micromolar affinity for the adenosine A1 and A3 receptors and 
in vitro testing performed subsequently confirmed 57% and 
65% binding, respectively, at 10mM concentration. Accordingly, 
a mechanistic hypothesis could be derived suggesting that the 
interaction of ribosylzeatin with the adenosine A1 and A3 receptors 
may be contributing to the beneficial effects of those plants in the 
treatment of a number of cardiovascular diseases where these 
receptors are known to play a role, namely, cardiac dysrhythmias, 
supraventricular tachycardia, acute ischaemic heart disease, 
and mycocardial ischemia (Kiesman et al., 2009; Fishman et al., 
2012). In this respect, soybean is known as an important source of 
proteins in diet, widely used as herbal medicine for the treatment 
of several cardiovascular diseases. Also, the cardioprotector 
properties of grapevine have been exploited in folk medicine since 

FIGURE 5 | Scheme showing some of the closed circles confirmed prospectively for some of the plants being used in cardiovascular diseases.
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ancient times. In particular, the therapeutic action of grapevine 
against ventricular tachycardia was recently demonstrated in 
rats (Zhao et al., 2010). However, in this study, the authors used 
a proanthocyanidin grape seed extract. On the basis of the 
hypothesis generated here, we would suggest that ribosylzeatin 
is one of the active ingredients in grapevine participating in this 
therapeutic effect in synergy with other proanthocyanidins.

Isorhamnetin is a phytochemical present in multiple plants 
used for the treatment of hypertension. A low micromolar 
affinity between isorhamnetin and the dopamine D4 receptor was 
predicted. Upon in vitro testing, the experimental value obtained 
was only 28% binding. Despite this rather low affinity value, we 
could suggest that this compound may well be contributing to 
some extent to the effect on hypertension of the plants in which 
it is present. In fact, a similar chemical present in most of those 
plants listed and suggested to be partly responsible for their 
therapeutic action on hypertension is quercetin, reported to have 
also a low experimental affinity value of 5 µM against the same 
dopamine D4 receptor.

Finally, very much along the same lines reported above for 
the hypotheses generated from known metabolite–protein 
interactions, we were also keen on having a prospective mixture 
example. Accordingly, we predicted activity of cyanidin, 
delphinidin, and malvidin, all present in Vaccinium myrtillus 
(bilberry), on the arachidonate 5-lipoxygenase (ALOX5). In 
vitro testing of its mixture confirmed a 41% inhibition. This 
result provides a mechanistic hypothesis for the therapeutic use 
of bilberry for atherosclerosis and ischemic heart disease. It has 
been already suggested that quercetin is partially responsible 
for the therapeutic action of this plant due to its affinity for 
the ALOX5. We could add now delphinidin, cyanidin, and 
malvidin to the list of potential chemical effectors of this plant. 
Indeed, bilberry fruit contains high concentration of several 
anthocyanidins (Cassinese et al., 2007; Chu et al., 2011). In fact, 
other anthocyanidins present in bilberry, such as peonidin and 
petunidin, were also predicted to be active against this protein. 
So all these compounds may actually contribute synergistically 
to the therapeutic effect attributed to bilberry for the treatment 
of atherosclerosis and ischemic heart disease.

CONCLUSIONS

An effort to integrate data linking metabolites, plants, diseases, 
and proteins has been shown to be useful to generate mechanistic 
hypotheses for some of the therapeutic uses of remedial herbs. 
In this respect, the use of predicted interactions largely increases 
our ability to generate mechanistic hypotheses for plants for 
which known data is scarce. This notwithstanding, one ought to 
admit that many computationally derived hypotheses may either 
be false positives or not truly contribute to the therapeutic effect 
exhibited by the medicinal plant. Unfortunately, it is impossible 
to pursue experimental confirmation of all hypotheses generated 
and offer general statistics of this limitation. Nonetheless, the 
examples presented offer clear potential for the use of this type of 
systems approaches to contribute to finding a scientific rationale 
for traditional medicines. There is much more to learn about 

nature and its use for therapeutic purposes, and more research in 
this direction is certainly necessary.

MATERIALS AND METHODS

Linking plants to diseases. A very first version of the database 
was created containing the therapeutic use of plants in traditional 
Catalan medicine (Gausachs, 2008). Plants were stored using 
their scientific name in Latin, whereas therapeutic uses were 
mapped to their corresponding disease identifier in ICD-10 
(International Classification of Diseases Version 10). This initial 
database was complemented with additional therapeutic uses 
found for those plants in other public sources (Raja et al., 1997; 
Rigat et al., 2007; James et al., 2013). Data from the different 
sources was integrated using Latin names for plants and ICD-10 
identifiers for diseases from 18 categories. In total, 372 medicinal 
plants associated with 187 therapeutic uses were collected at this 
stage (Supplementary Material).

Linking plants to metabolites. The endogenous metabolites 
identified at present for every single plant in the database 
were extracted from three different sources, namely, Dr Duke 
Phytochemical and Ethnobotanical Database (U.S. Department 
of Agriculture, Agricultural Research Service., 1992-2016), the 
KNApSAcK database (Nakamura et al., 2014), and Gausachs’ 
work on Catalan remedial herbs (Gausachs, 2008). Among those, 
only KNApSacK contains chemical structures linked to chemical 
names. Structures for the chemical names available only in the 
other two sources were extracted from PubChem (Bolton et al., 
2008). The final set of chemical structures from all sources 
was unified and stored using InChI Keys. In the end, a total of 
7,443 unique chemical structures present in 322 of those 372 
medicinal plants could be gathered and added to the database 
(Supplementary Material).

Linking proteins to diseases. Next, a list of both known and 
explored human proteins associated with diseases was extracted 
from the Therapeutic Target Database (Zhu et al., 2012). These 
data was complemented with curated protein−disease links, with 
focus on cardiovascular diseases, available in the literature (Cases 
and Mestres, 2009). The final list of proteins was stored and unified 
using their UniProt identifiers (The UniProt Consortium, 2015). 
A final number of 724 unique proteins known to be relevant for 
166 out of the initial 187 therapeutic uses were ultimately entered 
into the database (Supplementary Material).

Linking metabolites to proteins. Finally, affinity data (pKi, 
pKd, pIC50, pEC50) between chemical structures and proteins 
was extracted from various public sources (Roth et al., 2004; 
Bolton et al., 2008; Gaulton et al., 2012; Gilson et al., 2016; 
Southan et al., 2016). Up to 3,171 known interactions between 
705 phytoconstituents and 228 proteins were identified and 
collected into the database at this stage. In addition, since affinity 
data are well recognised to be suffering from completeness 
issues (Mestres et al., 2008; Cases and Mestres, 2009), known 
interactions between molecules and proteins were complemented 
with high-confidence predictions obtained using ligand-based 
computational models implemented in the CT-link software 
(Vidal et al., 2011; Garcia-Serna et al., 2015). Accordingly, 16,897 
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additional interactions predicted between 2,796 molecules, 
present in 297 plants, and 313 proteins were generated. However, 
the vast majority of the interactions predicted were assigned 
relatively low confidence scores (CScore). If only high confidence 
predictions (CScore ≥ 0.7) are considered, a total of 1,555 
predicted interactions remain. In the end, affinity data for a total 
of 4,726 interactions between 1,157 endogenous metabolites and 
320 therapeutically relevant proteins were assembled and stored 
in the database (Supplementary Material).

Predicting metabolite–protein interactions. All metabolite 
two-dimensional structures were processed with the CT-link 
software to obtain predicted affinities for a list of over 2,000 protein 
targets (Vidal et al., 2011; Garcia-Serna et al., 2015). Predictions 
are based on six independent ligand-based approaches that 
include similarity-based methods, pharmacophore clusters, 
quantitative structure–activity relationships, machine learning 
techniques, and cross-pharmacology relationships (Vidal et al., 
2011). Ligand-based target models were constructed from small 
molecules for which in vitro affinity data was publicly available 
(Bolton et al., 2008; Gaulton et al., 2012). Each prediction is 
assigned a confidence score (CScore) that depends on the 
number and type of methods as well as on the affinity range 
of the prediction (see Supplementary Material). In the last 
decade, predictions from CT-link have been validated both 
retrospectively (Vidal and Mestres, 2010; Flachner et al., 2012; 
Spitzmüller and Mestres, 2013) and prospectively (Areias et al., 
2010; Mestres et al., 2011; Antolin et al., 2012; Montolio et al., 
2012; Antolin and Mestres, 2015; van Voorhuis et al., 2016; Ellis 
et al., 2019) in a wide range of applications and therapeutic areas.

Experimental in vitro assays. For the prospective validation, 
two molecules and one herbal extract were selected for testing with 
in vitro assays at Cerep (CEREP Inc). Ribosylzeatin was tested in 
binding assays to confirm the predicted interactions with adenosine 
A1 and A3 receptors. Cellular assays were used to confirm the 
predicted interactions between isorhamnetin and the dopamine 
D4 receptor, as well as between a compound mixture (containing 
cyanidin, delphinidin, and malvidin) and 5-lipoxygenase.

For the binding assay, ribosylzeatin was tested twice at a test 
concentration of 10 µM. The reference agonist ligands used to 
calculate the compound activity were CPA for the adenosine A1 
receptor and IB-MECA for the adenosine A3 receptor, which have 
IC50 values of 0.75 nM and 0.31 nM, respectively. The adenosine A1 
receptor assay was performed in the presence of 1 nM of 3H.CCPA. 
After 60 min of incubation with shaking, bound radioactivity 
was separated from free by vacuum filtration and determined 
by scintillation counting. A similar procedure was followed for 
the adenosine A3 receptor assay. In this case, it was performed 
in the presence of 0.15 nM of 125I.AB-MECA. It was incubated 

with shaking during 120 min. After that, bound radioactivity 
was filtered and measured with scintillation counting. For these 
binding assays the results are expressed as a percent of measured 
specific binding relative to control specific binding.

For the dopamine D4 receptor assay, isorhamnetin was tested 
at a concentration of 10 µM. The reference agonist ligand was 
dopamine, with an EC50 value of 28 nM. D4.4 was incubated for 
10 min at 37ºC and, after that, cAMP was detected and measured 
with HTRF. Results are expressed as a percentage of measured 
response relative to control response.

Finally, for the testing of the compound mixture of cyanidin, 
delphinidin, and malvidin in the 5-lipoxygenase enzyme assay, the 
reference compound used was NDGA, which has an IC50 of 910 
nM. 5-Lipoxygenase was incubated 20 min with shaking and 25 
µM arachidonic acid as substrate. Thereafter, rhodamine 123 was 
measured using fluorimetry. Results are expressed as a percentage 
of measured specific binding relative to control specific binding.

Compounds showing an inhibition or stimulation higher than 
50% were considered to be active for the proteins tested, whereas 
interactions showing activity values between 25% and 50% were 
considered to be indicative of at least weak to moderate effects.
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