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Polymyxins are used as a last-resort class of antibiotics against multidrug-resistant (MDR) 
Gram-negative Pseudomonas aeruginosa. As polymyxin monotherapy is associated 
with potential development of resistance, combination therapy is highly recommended. 
This study investigated the mechanism underlying the synergistic killing of polymyxin B 
and enrofloxacin against extensive drug-resistant (XDR) P. aeruginosa. An XDR isolate 
P. aeruginosa 12196 was treated with clinically relevant concentrations of polymyxin B 
(2 mg/L) and enrofloxacin (1 mg/L) alone or in combination. Metabolome profiles were 
investigated from bacterial samples collected at 1-and 4-h posttreatment using liquid 
chromatography with tandem mass spectrometry (LC-MS/MS), and data were analyzed 
using univariate and multivariate statistics. Significantly perturbed metabolites (q < 
0.05, fold change ≥ 2) were subjected to pathway analysis. The synergistic killing by 
polymyxin B–enrofloxacin combination was initially driven by polymyxin B as indicated 
by the perturbation of lipid metabolites at 1 h in particular. The killing was subsequently 
driven by enrofloxacin via the inhibition of DNA replication, resulting in the accumulation 
of nucleotides at 4 h. Furthermore, the combination uniquely altered levels of metabolites 
in energy metabolism and cell envelope biogenesis. Most importantly, the combination 
significantly minimized polymyxin resistance via the inhibition of lipid A modification 
pathway, which was most evident at 4 h. This is the first study to elucidate the synergistic 
mechanism of polymyxin B–enrofloxacin combination against XDR P. aeruginosa. 
The metabolomics approach taken in this study highlights its power to elucidate the 
mechanism of synergistic killing by antibiotic combinations at the systems level.
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INTRODUCTION

Extensive drug-resistant (XDR) Pseudomonas aeruginosa is 
a major burden to the global health-care system and has been 
highlighted by the World Health Organization as a priority 
pathogen with “Serious” threat to human health (Mcphee et al., 
2006; Gales et al., 2011; World Health Organization, 2014). Due 
to the dry discovery pipeline, few novel classes of antibiotics 
will become available in the near future (Boucher et al., 2013). 
“Old” polymyxins (i.e., polymyxin B and colistin, also known as 
polymyxin E) are a last-line therapy that are increasingly used 
for life-threatening infections caused by XDR P. aeruginosa 
(Falagas et al., 2005; Li et al., 2006; Nation and Li, 2009; Yahav 
et al., 2012; Nation et al., 2014; Cheah et al., 2016a). Although 
polymyxins remain effective against XDR P. aeruginosa, recent 
pharmacokinetic/pharmacodynamic (PK/PD) studies suggest 
that polymyxin monotherapy is potentially associated with 
increased emergence of resistance (Tam et al., 2005; Cheah 
et al., 2015; Cheah et al., 2016b). Moreover, reports of infections 
caused by XDR P. aeruginosa, including polymyxin-resistant 
XDR isolates, are on the rise (Hsueh et al., 1998; Adams et al., 
2009; Gales et al., 2012; Goli et al., 2016). In a recent in vitro PK/
PD study, we demonstrated that polymyxin B in combination 
with enrofloxacin is highly effective against XDR P. aeruginosa, 
which is resistant to both, and significantly minimizes the 
emergence of polymyxin resistance (Lin et al., 2018). However, 
the underlying mechanism of the synergistic killing by this novel 
drug combination remains unknown.

Metabolomics investigates dynamic global metabolite 
levels in biological systems in response to biological stimuli 
or perturbations (Chen et al., 2007; Kaddurah-Daouk and 
Weinshilboum, 2014; Mastrangelo et al., 2014; Vincent et al., 
2016). To date, metabolomics is increasingly employed in drug 
discovery and development to elucidate the mechanism of drug 
action (Peng et al., 2015). In the present study, we investigated the 
synergistic killing mechanism of polymyxin B and enrofloxacin 
combination against a clinical isolate of XDR P. aeruginosa using 
metabolomics. The mechanistic findings provide important 
pharmacological information for optimizing this promising 
combination in patients.

MATERIALS AND METHODS

Chemicals and Reagents
A solution of polymyxin B (sulfate, Sigma-Aldrich, Castle 
Hill, NSW, Australia; batch number BCBD1065V) was freshly 
prepared in sterile Milli-Q water (Millipore Australia, North 
Ryde, NSW, Australia). Enrofloxacin (Sigma-Aldrich) was first 
dissolved in dimethyl sulfoxide (DMSO; Sigma-Aldrich) and 
subsequently diluted in sterile Milli-Q water to obtain a final 
DMSO concentration of ≤10% (v/v) (Tran et al., 2016a).

Bacterial Strain and Culture
An XDR P. aeruginosa 12196 with a polymyxin MIC of 64 mg/L 
and enrofloxacin MIC of 4 mg/L was examined (Lin et al., 2018). 
P. aeruginosa 12196 was stored in tryptone soy broth with 20% 

glycerol at −80°C and sub-cultured onto nutrient agar plates 
before each experiment (Maifiah et al., 2016; Maifiah et al., 2017). 
Overnight culture was subsequently prepared in 10-ml cation-
adjusted Mueller-Hinton broth (CAMHB) and diluted 100-fold 
using fresh media to prepare 200 ml of mid-logarithmic culture 
with a starting inoculum of approximately 108 CFU/ml (Maifiah 
et al., 2016; Maifiah et al., 2017). To each bacterial culture, 
polymyxin B (2 mg/L), enrofloxacin (1 mg/L), or a combination 
was added. Bacterial culture without any antibiotics served as a 
control. Three biological replicates were prepared independently 
from different colonies of XDR P. aeruginosa 12196 on three 
consecutive days. Bacterial cultures were incubated at 37°C in a 
shaking incubator (180 rpm). Samples were collected at 0, 1, and 
4 h and immediately quenched in a dry ice–ethanol bath for 30 
s to halt the metabolism. Subsequently, the OD600 value of each 
sample was measured and normalized to 0.50 ± 0.02 with fresh 
CAMHB. Subsequently, 15 ml of each normalized sample culture 
was transferred to 15-ml Falcon tubes (Thermo Fisher Scientific, 
Melbourne, Australia) for metabolite extraction.

Sample Preparation for Metabolomics 
Experiments
Metabolite sample preparation was carried out as reported 
previously (Han et al., 2018). Briefly, 15 ml of each bacterial 
culture was centrifuged at 3,200 × g at 4 C. The supernatant was 
discarded, and cell pellets were resuspended in cold 0.9% sodium 
chloride solution. Samples were centrifuged at 3,200 × g for 5 
min to remove extracellular metabolites and media components. 
Following the washing step, bacterial pellets were resuspended 
in 0.5 ml of chloroform/methanol/water (1:3:1, v/v/v) containing 
1 µM internal standards (CHAPS, CAPS, PIPES, and TRIS). 
Subsequently, bacterial samples were frozen in liquid nitrogen 
and thawed on ice to release intracellular metabolites. The 
samples were then centrifuged at 14,000 × g for 10 min, and 
200 µL of supernatants was transferred into ultra-performance 
liquid chromatography (UPLC) vials for liquid chromatography 
with tandem mass spectrometry (LC-MS/MS) analysis. QC 
samples were prepared by mixing equal amounts of all tested 
samples and processed as a “real” sample outlined above.

LC-MS/MS Analysis for Metabolomics
Metabolite samples were analyzed on a Q-exactive Orbitrap mass 
spectrometer coupled with a Dionex U3000 high-performance 
LC (HPLC; Thermo Fisher) with a ZIC-pHILIC column 
(5  µm, polymeric, 150 × 4.6 mm; SeQuant, Merck). The MS 
system was operated at 35,000 resolution in both positive and 
negative electrospray ionization modes with a detection range of 
85–1,275 m/z. Column temperature was maintained at 25 C, and 
the mobile phase consisted of 20 mM of ammonium carbonate 
(solvent A) and acetonitrile (solvent B). Metabolites were eluted 
in a step gradient, starting with 80% solvent B at a flow rate of  
0.3 ml/min followed by a linear gradient to 50% solvent B over 15 
min (Maifiah et al., 2016; Maifiah et al., 2017). All samples were 
randomized and analyzed in a single LC-MS batch. Analytical 
reproducibility was monitored on the basis of pooled QC samples 
throughout the batch, which were periodically analyzed after 
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groups of six samples. Analyses of a mixture of pure standards 
containing >250 metabolites were performed to assist in the 
identification of metabolites.

Bioinformatics and Pathway Analyses
IDEOM (http://mzmatch.sourceforge.net/ideom.php) and 
mzMatch were employed for metabolomics analysis (Scheltema 
et al., 2011; Creek et al., 2012). Raw mass spectrometric data 
files were processed as described previously based on the intensity 
(>100,000 counts), shape (codadw > 0.8), and reproducibility  
(RSD < 0.5) of the LC-MS peaks. Elemental composition and 
exact mass were used for open-source database searching, 
including MassBank (http://www.massbank.jp). Putative 
metabolites were identified by accurate mass (±5 ppm) and 
retention time with authentic standards (<50%) as indicated 
by IDEOM confidence score of 9 or 10, or by accurate mass 
(±5 ppm) and predicted retention time to achieve an IDEOM 
confidence scores of ≥5 (Creek et al., 2012). Several different 
databases [e.g., PseudoCyc, Kyoto Encyclopedia of Genes and 
Genomes (KEGG), BioCyc HMDB, and LipidMaps] were used 
to map the metabolite, and global metabolomics profiles of 
samples were analyzed using univariate and multivariate analyses 
in MetaboAnalyst 4.0 (Xia et al., 2015). Data were filtered using 
interquartile range (IQR), normalized relative to the median, log2 
transformed, and auto-scaled. PCA was performed to identify 
and remove outliers that were defined as samples outside of ±2 
standard deviations (SDs) along the principal component 1 axis 
(PC1). Statistical significance of differences between metabolites 
was determined using one-way analysis of variance (ANOVA), 
Benjamini–Hochberg multiple testing correction (q < 0.05), 
Fisher’s least significant difference (LSD) test, and fold change 

(FC; log2FC ≥ 1). FC values were calculated using raw intensity 
and geometric mean of the biological replicates. BioCyc (Karp 
et al., 2005), iPath (Letunic et al., 2008), and the KEGG (Kanehisa 
and Goto, 2000) were employed for pathway analysis.

RESULTS

Metabolomics Profiles of Pseudomonas 
aeruginosa Treated With Polymyxin B, 
Enrofloxacin, and the Combination
The intra-experimental variability was assessed based on the 
median relative standard deviations (RSDs) of the samples, 
which ranged from 15% to 24% (Figure S1) and were well within 
the acceptable limits for metabolomics studies (Kirwan et al., 
2014). Furthermore, the principal component analysis (PCA) 
plots showed that all samples [including six quality control 
(QC) samples] were tightly clustered together, demonstrating 
an excellent reproducibility of our analytical methods (Figure 
S1). Univariate and multivariate analyses revealed that over 
500 putative metabolites were identified in the metabolome of 
XDR P. aeruginosa 12196 induced by polymyxin B (2 mg/L) and 
enrofloxacin (1 mg/L) alone or in combination at 1- and 4-h 
postdrug treatment. The nature of these metabolites indicated 
that a wide range of pathways were perturbed (Figures 1, 2 and 
S2; Supplementary Tables 1–2). Univariate analysis showed that 
polymyxin B alone induced 6.3% (36) and 5.3% (30) metabolic 
changes at 1 and 4 h, respectively. Likewise, the combination 
induced 11.4% (65) and 21.8% (124) metabolic changes at 1 and 
4 h, respectively. On the other hand, enrofloxacin alone induced 
minimal metabolic changes at 1 h (Figures 1, 2 and S2). PCA 

FIGURE 1 | Metabolomics analyses of XDR P. aeruginosa 12196 treated with polymyxin B (PMB) and enrofloxacin (ENRO) alone or in combination (PMB/ENRO). (A) 
Principal component analysis (PCA) score plots for the metabolites from bacterial cultures treated with polymyxin B, enrofloxacin, and the combination at 1 and 4 h. 
Green, light blue, purple, and red represent untreated control, polymyxin B alone (PMB), enrofloxacin alone (ENRO), and the combination (COMB), respectively. (B) Venn 
diagram for the comparison of the numbers of metabolites that were significantly altered by each treatment at each time point. Significant metabolites were selected 
based on log2 fold change (FC) ≥ 1 and q < 0.05. (C) Bipartite graph connected different treatment groups with significantly altered metabolites in major classes.
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demonstrated that polymyxin B alone and in combination with 
enrofloxacin induced significant global metabolic changes as 
early as 1 h (Figure 1A). Perturbations in the metabolome of 
XDR P. aeruginosa 12196 induced by polymyxin B (2 mg/L) and 
enrofloxacin (1 mg/L) alone or in combination were evident at 
1 and 4 h post drug treatment. Many metabolic features were 
shared between the two monotherapies and the combination 
with more significant changes at 4 h, demonstrating a time-
dependent antibacterial effect by the drug combination (Figure 
1B). At 1 h, the number of perturbed metabolites that were 
common between polymyxin B alone and the combination 
was much higher than that between enrofloxacin alone and 
the combination. Interestingly, at 4 h, the metabolic alterations 
were largely caused by the combination (Figure 1B). Overall, 
the combination of polymyxin B and enrofloxacin produced 
significantly greater perturbations in the metabolomes at 1 and 4 
h than either polymyxin B or enrofloxacin alone.

Pathway analyses revealed that multiple metabolic pathways 
were affected by antibiotic treatments. In details, at 1 and 4 h 
polymyxin B alone significantly perturbed phospholipid and 
fatty acid metabolisms, whereas enrofloxacin alone had minimal 
metabolic perturbations on both metabolic pathways (Figures 1, 
2 and S2). On the contrary, the combination therapy significantly 
perturbed a greater number of key metabolic pathways, including 

lipid, carbohydrate, nucleotide, and energy metabolism (Figures 
1, 2 and S2). The levels of perturbed metabolites are provided in 
Supplementary Tables 1–2.

Perturbations in Phospholipid 
and Fatty Acid Levels, and Lipid A 
Modification Pathway
Polymyxin B alone and its combination with enrofloxacin 
significantly perturbed phospholipid and fatty acid levels 
at 1- and 4-h posttreatment (Figures 2 and 3). More 
specifically, at 4 h, the drug combination significantly 
decreased the levels of phospholipids, phosphatidylserine (PS), 
phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) 
(Figure 3). Enrofloxacin alone did not have a significant impact 
on phospholipid levels. Interestingly, the decreased phospholipid 
levels were accompanied with an accumulation of a large number 
of fatty acids intracellularly at 4 h (Figure 3). Importantly, at 4 h, 
polymyxin B alone led to significantly increased levels of uridine 
5′-diphospho-beta-(4-deoxy-4-formamido-l-arabinose) (UDP-
l-Ara4FN) (log2FC  =  2.95), a key precursor of 4-amino-4-
deoxy-l-arabinose (l-Ara4N)-modified lipid A but not in the 
groups of enrofloxacin alone (log2FC = 0.11) or the combination 
(log2FC = 0.79) (Figure 2).

FIGURE 2 | Heatmap profiles of the relative abundance of putative metabolites in XDR P. aeruginosa 12196 following treatment with polymyxin B alone (PMB), 
enrofloxacin alone (ENRO), and its combination (PMB + ENRO) at 1 and 4 h. Metabolites were grouped into different classes: amino acids, carbohydrates, energy, 
lipids (lipid metabolism, fatty acids, and phospholipids), co-factors and vitamins, nucleotides, and peptides. Only the significantly perturbed metabolites in the major 
perturbed pathways are included. Data represent log2FC compared with the untreated control samples at respective time points.
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Polymyxin B and Enrofloxacin 
Combination Significantly Altered 
Nucleotide Metabolism and Decreased 
Energy Metabolism
Several intermediate metabolites in pyrimidine metabolism were 
significantly enriched at 4 h by the combination. In particular, 
the levels of deoxycytidine (log2FC = 2.04), deoxycytidine 
monophosphate (dCMP; log2FC = 1.10), deoxycytidine 
diphosphate (dCDP; log2FC = 1.78), thymine (log2FC = 1.95), 
thymidine (log2FC = 1.43), deoxythymidine monophosphate 
(dTMP; log2FC = 1.82), and uridine diphosphate (UDP; log2FC = 
1.27) were all significantly increased at 4 h by the combination 
(Figure 4). For each monotherapy, only UDP (log2FC = 2.48) 
was elevated following polymyxin B alone at 4 h, while levels 
of deoxycytidine (log2FC = 1.06), thymine (log2FC = 1.24), 
and thymidine (log2FC = 1.02) were significantly increased by 
enrofloxacin alone at 4 h (Figure 4).

In contrast, the combination significantly decreased the levels 
of the metabolites in purine metabolism at 1 or 4 h. In details, the 
levels of guanosine monophosphate (GMP; log2FC = −2.02) and 

guanosine diphosphate (GDP; log2FC = −1.32) were significantly 
decreased by the combination at 1 h, whereas at 4 h, adenosine 
monophosphate (AMP; log2FC = −1.37) was significantly 
decreased (Figure 4). Polymyxin B alone also significantly 
perturbed GMP (log2FC = −2.62) at 1 h but had a minimal 
effect on purine nucleotide metabolism at 4 h (Figures 4 and S2; 
Supplementary Tables 1–2). At the examined concentration, 
enrofloxacin alone had a minimal effect on purine metabolism 
at 1 and 4 h.

In addition to nucleotide metabolism, metabolites related 
to energy metabolism were significantly depleted by the 
combination but not the monotherapies (except for sedoheptulose 
1-phosphate). Specifically, at 1 and 4 h, two important redox 
co-factors, flavin mononucleotide (FMN; log2FC = −0.31  
and −1.37, respectively) and nicotinamide adenine dinucleotide 
phosphate (NADPH; log2FC = −1.63 and −5.57, respectively), 
were significantly depleted by the combination (Figure 5 
and Supplementary Tables 1–2). Neither polymyxin B nor 
enrofloxacin alone exhibited significant effects on the levels of 
redox co-factors at 1 and 4 h.

FIGURE 3 | Metabolic perturbations in the phospholipid and fatty acid pathway following treatments with polymyxin B, enrofloxacin, and the combination against 
XDR P. aeruginosa 12196. Data represent log2FC compared with the untreated control samples at respective time points.
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Polymyxin B and Enrofloxacin Combination 
Perturbed the Pentose Phosphate Pathway 
and Cell Envelop Biogenesis
The combination of polymyxin B and enrofloxacin significantly 
perturbed key intermediates in the pentose phosphate pathway 
(PPP) (Figure 6). Two key intermediate metabolites, d-ribose 
5-phosphate (log2FC = −1.02 and −0.72, respectively) and 
d-sedoheptulose 7-phosphate (log2FC = −1.29 and −1.52, 

respectively), were significantly decreased at 1 h by polymyxin B 
alone and the combination. Interestingly, d-ribose 5-phosphate 
(log2FC = 1.47) and d-sedoheptulose 7-phosphate (log2FC = 1.75) 
were significantly enriched by the combination at 4 h (log2FC ≥ 1, 
q < 0.05) (Figure 6). Notably, neither glycolysis nor citric acid 
cycle was significantly perturbed by each monotherapy or 
the combination at the tested concentrations (Figure S2 and 
Supplementary Tables 1–2).

FIGURE 4 | Metabolic perturbations in nucleotide metabolism at 1 and 4 h. Data represent log2FC relative to untreated control samples at respective time points.

FIGURE 5 | Depletion of key redox co-factors following treatments with polymyxin B, enrofloxacin, and the combination against XDR P. aeruginosa 12196. Bars 
labeled with an asterisk indicate significant changes in the abundance of metabolites (q < 0.05; ≥1 − log2FC). Data represent means of normalized intensity ± 
standard deviation (n = 3). Intensity was normalized relative to the median, log2 transformed, and auto-scaled.
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Cell envelope biogenesis was significantly perturbed 
following treatments with the polymyxin B–enrofloxacin 
combination (Figure  7). The level of UDP-N-acetyl-d-
glucosamine (log2FC = −2.07) was decreased at 1 h in response 
to polymyxin B alone but  increased at 4 h following treatment 
with the combination (log2FC = 2.45). Interestingly, a similar 
trend was also observed for UDP-N-acetylmuramoyl-l-
alanyl-d-glutamyl-6-carboxyl-lysyl-d-alanyl-d-alanine at 4 
h in response to the combination (log2FC   = 1.45), whereas 
enrofloxacin alone had minimal effects on the cell envelope 
biogenesis pathway at either time point (Figure 7).

DISCUSSION

Resistance to the last-resort polymyxins can emerge after 
monotherapy (Bergen et al., 2010; Abdul Rahim et al., 2015; 
Schneider et al., 2016; Tran et al., 2016b); therefore, rational 
polymyxin combinations with other antibiotics have been strongly 
recommended from the PK/PD perspective (Nation et al., 2015). 
The use of polymyxin B in combination with enrofloxacin, a 
fluoroquinolone, is highly effective against polymyxin- and 
enrofloxacin-resistant XDR Pseudomonas aeruginosa (Lin et al., 
2018). To our knowledge, the present study is the first to demonstrate 
that the synergistic killing of polymyxin B in combination with 
enrofloxacin was time dependent, which was initially facilitated by 
polymyxin B and subsequently driven by enrofloxacin.

Enrofloxacin is partially metabolized into ciprofloxacin 
in vivo by the cytochrome P450 enzymes (Küng et al., 1993; 
Kaartinen et al., 1995; Giguere et al., 1996; Mengozzi et al., 1996; 

Salvadori et al., 2015), and its PK profile in humans is currently 
undetermined; therefore, clinically achievable concentrations of 
ciprofloxacin were used for enrofloxacin (1 mg/L) in the present 
study (Sánchez Navarro et al., 2002). Polymyxin B was examined 
at 2 mg/L to ensure the clinical relevance of our findings (Sandri 
et al., 2013). With an inoculum of 108 CFU/ml, neither 2 mg/L of 
polymyxin B nor 1 mg/L of enrofloxacin had a significant killing 
effect on XDR P. aeruginosa 12196; surprisingly, the combination 
of polymyxin B and enrofloxacin exhibited synergistic killing at 
4 h. In order to understand the molecular basis of the dynamic 
extensive killing, bacterial metabolic profiles were examined at 1 
and 4 h following antibiotic treatment (Figure 1).

Consistent with the phenotypical synergistic killing observed 
in our previous PK/PD studies, our metabolomics results showed 
that the combination was clearly separated from each monotherapy 
alone at both time points (Figure 1). Metabolic pathway analyses 
revealed that the synergistic killing of polymyxin B–enrofloxacin 
combination was attributed to the perturbations of key metabolic 
pathways, including lipid, carbohydrate, nucleotide, and energy 
metabolism (Figures 1, 2 and S2; Supplementary Tables 1–2). A 
large number of metabolites associated with fatty acids and lipids 
were significantly perturbed following polymyxin B alone and the 
combination at 1 and 4 h (Figure 3). These findings are in agreement 
with the primary mode of action of polymyxins via the disruption of 
the bacterial outer membrane (Li et al., 2006). Notably, this finding 
is also consistent with previous results in Acinetobacter baumannii, 
in which colistin significantly perturbed the gene expression and 
metabolites in fatty acid and lipid metabolism (Henry et al., 2015; 
Maifiah et al., 2017). On the contrary, enrofloxacin alone did not 

FIGURE 6 | Metabolic perturbations in the pentose phosphate pathway in XDR P. aeruginosa 12196. Orange boxes indicate the metabolites that were significantly 
perturbed. Bar charts show the raw intensity at respective time points (1 and 4 h), and bars labelled with an asterisk indicate significant changes in the abundance 
of metabolites (q < 0.05; ≥1 − log2FC). Raw intensity was normalized relative to the median, log2 transformed, and auto-scaled. Data represent geometric means of 
normalized intensity ± standard deviation (n = 3).
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affect fatty acid and lipid metabolisms at 1 and 4 h (Figures 1, 3 and 
S2), which is consistent with its mode of action by the inhibition of 
topoisomerase II (DNA gyrase) and prevention of the replication of 
DNA (Küng et al., 1993; Kaartinen et al., 1995; Giguere et al., 1996; 
Mengozzi et al., 1996; Salvadori et al., 2015). DNA damage activates 
the SOS gene network that results in the production of DNA 
repair proteins (Power and Phillips, 1992) and the accumulation 
of nucleotides (Dörries et al., 2014). Furthermore, transcriptomic 
analysis of Staphylococcus aureus showed that fluoroquinolone 
treatment up-regulates the expression of ribonucleotide reductases 
and several genes involved in the DNA repair pathways (Cirz et al., 
2007). This finding is consistent with the metabolomics data obtained 
in the present study with P. aeruginosa. Our results showed that 
SOS responses induced by enrofloxacin alone and the combination 
resulted in the accumulation of pyrimidine metabolites to cope with 
the inhibition of DNA replication at 4 h (Figure 4). Consistently, the 
level of d-ribose 5-phosphate in PPP, a key precursor in nucleotide 
metabolism, was also significantly increased following the treatment 
with the combination at 4 h, but not at 1 h when polymyxin killing 
predominated (Figure 6). Overall, our metabolomics results highlight 
the dominant effect of enrofloxacin on the synergy observed with the  
combination at 4 h.

Despite the largely overlapping metabolic perturbations 
between polymyxin B or enrofloxacin alone and the combination, 
the present data revealed that the synergistic combination induced 
several unique metabolic alterations in energy metabolism 
(Figures 2 and 5) and cell envelope biogenesis (Figure 7). It 
is evident that the combination uniquely caused a significant 
depletion of key redox co-factors, including FMN and NADPH, at 
1- and 4-h posttreatment (Figure 5). It is likely that P. aeruginosa 

diverted the energy required to synthesize nucleotides toward DNA 
repair, as a result of the activation of the SOS gene network. The 
observed decrease in energy metabolism coupled with significant 
perturbations in PPP suggests an imbalanced redox state due 
to the treatment with this combination. Interestingly, at 4 h, the 
combination led to significant increase in fatty acids levels and 
decrease in phospholipid levels (Figure 3). These alterations might 
be attributed to the reduced utilization as an energy source and 
membrane remodelling. Overall, our findings indicate that the 
inhibition of energy metabolism plays a key role in the mechanism 
of synergistic bacterial killing by the combination at 4 h.

Moreover, the combination displayed significant and 
persistent effects on the cell envelope biogenesis in XDR P. 
aeruginosa (Figure 7). At 4 h, a significant increase in the 
levels of a peptidoglycan biosynthesis metabolite UDP-N-
acetylmuramoyl-l-alanyl-d-glutamyl-6-carboxy-l-lysyl-
d-alanyl-d-alanine was observed with the combination 
(Figure  7). In Streptococcus faecalis, the inhibition of DNA 
replication by a fluoroquinolone resulted in the formation of 
thicker cell wall (Higgins et al., 1974). It is very likely that the 
synergistic killing at 4 h by the combination is driven by the 
secondary antibiotic, enrofloxacin. In addition to the inhibition 
of cell wall biogenesis, the combination synergistically 
inhibited the lipopolysaccharide (LPS) modification pathway 
(Figure 2). Polymyxin B alone against P. aeruginosa leads to 
the development of resistance most commonly via lipid A 
modification with aminoarabinose (Miller et al., 2011). UDP-
l-Ara4FN, a key precursor of lipid A modification (Breazeale 
et al., 2005; Gatzeva-Topalova et al., 2005), was significantly 
enriched following the treatment with polymyxin B alone at 

FIGURE 7 | Metabolic perturbations in cell envelope biogenesis in XDR P. aeruginosa 12196. Orange boxes indicate the metabolites that were significantly 
increased. Bar charts show raw intensity at respective time points (1 and 4 h). Bars labelled with an asterisk indicate significant changes in the abundance of 
metabolites (q < 0.05; ≥1 − log2FC). Raw intensity was normalized relative to the median, log2 transformed, and auto-scaled. Data represent geometric means of 
normalized intensity ± standard deviation (n = 3).
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both 1 and 4 h; however, this effect was not observed with 
the combination (Figure 2). Our results clearly demonstrated 
that polymyxin resistance via the lipid A modification can 
emerge rapidly (e.g., as early as in 1 h) even in resistant 
isolates. Importantly, the inhibition of polymyxin resistance 
by enrofloxacin plays a key role in the synergistic antibacterial 
killing. From a PK/PD perspective, our metabolomics results 
are clinically significant and highlight the importance of 
a combination therapy in minimizing the development of 
resistance to the last-line polymyxins.

CONCLUSIONS

The development of effective polymyxin combination therapy 
is of utmost importance in response to the increasing incidence 
of infections caused by XDR Gram-negative “superbugs.” To the 
best of our knowledge, this is the first systems pharmacology 
study to investigate the synergistic effect of polymyxins with 
a fluoroquinolone antibiotic against XDR P. aeruginosa, 
which is resistant to all antibiotics, including polymyxins 
and fluoroquinolones. Importantly, co-administration of 
enrofloxacin reduced the emergence of polymyxin resistance by 
inhibiting lipid A modification. These results provide important 
mechanistic insights into optimizing the clinical use of this 
promising combination using PK/PD approaches.
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