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Platelet-Derived Extracellular 
Vesicles as Target of Antiplatelet 
Agents. What Is the Evidence?
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Platelet-derived large extracellular vesicles (often referred to as microparticles in the field of 
cardiovascular disease) have been identified as effector in the atherothrombotic process, 
therefore representing a target of pharmacological intervention of potential interest. 
Despite that, limited evidence is so far available concerning the effects of antiplatelet 
agents on the release of platelet-derived extracellular vesicles. In the present narrative 
review, the mechanisms leading to vesiculation in platelets and the pathophysiological 
processes implicated will be discussed. This will be followed by a summary of the present 
evidence concerning the effects of antiplatelet agents under experimental conditions and 
in clinical settings.
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BIOCHEMICAL CHARACTERIZATION OF PLATELET-DERIVED 
EXTRACELLULAR VESICLES
The first evidence of extracellular vesicles (EVs) derived from platelet dates back to 1967, thanks to 
Wolf (1967), who named them “platelet dusts” even if considered factors promoting clot formation 
(Nieuwland et al., 2012).

EVs from different cellular origin circulate or are detectable in biological fluids, endowed with 
different biological functions that are being investigated for their potential pharmacological and 
clinical relevance. In fact, correlation has been observed between the number of circulating EVs and 
the clinical expression of diseases such as diabetes mellitus, chronic kidney disease, preeclampsia, and 
severe hvypertension (Burger et al., 2013; Campello et al., 2015). Thus, platelet-derived extracellular 
vesicles (PEVs) may represent both useful biomarkers of platelet-mediated pathophysiological 
processes and mediators of intercellular communication.

Platelets release different types of extracellular products in response to activation and apoptosis. 
Generally, they are 30- to 800-nm-large vesicles, whose size and amount make them difficult to 
purify and characterize properly.

The International Society for Extracellular Vesicles (ISEV) proposed the MISEV2018 guidelines, 
which include suggestions about nomenclature, collection, separation, characterization, and 
concentrations of EVs (Théry et al., 2018).

ISEV defines EVs as particles released from the cell that are delimited by a lipid bilayer without 
a functional nucleus. EVs can be classified by physical characteristics such as size (<100-nm small 
EVs, 100- to 200-nm medium/large EVs, and >200-nm large EVs) or density (low, middle, high, 
with each range defined) (Théry et al., 2018). ISEV proposes to classify EVs also according to 
their biochemical characteristics (i.e., CD63+/CD81+- EVs, annexin A5–stained EVs, etc.) or by 
descriptions of conditions or cell of origin [podocyte EVs, hypoxic EVs, large oncosomes, apoptotic 
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bodies (ABs)]. Without further classification, the generic term 
EVs is considered as appropriate (Théry et al., 2018).

EVs, based on their size and supposed origin, can be further 
grouped into three specific classes: (i) ABs, having an average 
diameter of 800 to 5,000 nm, which are released by programmed 
cell death; (ii) large EVs, with a diameter of approximately 
50–1,000 nm, deriving from budding of the cell membrane; 
and (iii) small EVs, also named exosomes, the smallest vesicles 
of the three classes with a diameter of 40 to 100 nm, released 
through endocytic process (Kalra et al., 2012; Simpson and 
Mathivanan, 2012).

Large and small EVs display some specific features that can 
help to differentiate one from the other. Small EV generation 
involves tetraspanins (CD9, CD63), tumor susceptibility gene 
101 (TSG101), and programmed cell death 6–interacting 
protein (PDCD6IP or ALIX) (Théry et al., 2018). Furthermore, 
small and large EVs can be distinguished for their RNA content 
in terms of RNA types and RNA amount (Tao et al., 2017). Since 
both large and small EVs carry and deliver cellular signals, 
it is plausible to suggest a potential role in cell–cell signaling 
(Dovizio et al., 2015). An important difference between the two 
families of vesicles is their different biological activity such as 
the procoagulant activity of large EVs originated from platelets 
and the involvement of vesiculation in a variety of physiological 
and pathological processes including angiogenesis, cell 
proliferation, apoptosis, and inflammation (Heijnen et al., 1999; 
Tao et al., 2017).

Focus of the present review will be on large PEVs, often 
named microparticles in the field of cardiovascular medicine, 
representing 70% to 90% of circulating large EVs in healthy 
subjects (Horstman and Ahn, 1999; Diamant et al., 2004). Under 
pathological conditions including cancer, sepsis, diabetes, and 
acute coronary syndromes, increased number of circulation 
PEVs has been detected (Shantsila et al., 2010; Varon and Shai, 
2015). Deficiency in PEV release is associated with a bleeding 
disorder characterized by prolonged bleeding time (Castaman 
et al., 1997). Evidence exists that the number of released PEVs 
is reduced after pharmacological treatment in cardiovascular 
disorders (Morel et  al., 2006). This has been observed, for 
instance, in hyperlipidemic patients with type 2 diabetes after 
treatment with statins and eicosapentaenoic acid (Nomura et al., 
2009; Nomura et al., 2018). The effects of antiplatelet agents 
have so far been addressed only in a limited number of studies, 
not always as the main endpoint, although this may represent 
a rational pharmacological intervention aimed at reducing the 
release of PEVs. For instance, reduced number of circulating EVs 
from different cellular origin has been observed in patients with 
acute coronary syndrome treated with aspirin and P2Y12 receptor 
antagonists (Behan et al., 2005; Bulut et al., 2011). However, data 
are so far controversial, and this is the main topic of the present 
review that will be discussed in detail further on.

PEVs carry on their surface most of the proteins and 
receptors that are expressed on platelet plasma membrane. 
Large PEVs carry the prothrombinase complex and the alpha 
granule-derived factor V (Sims et al., 1989). Furthermore, large 
PEVs express receptors including the fibrinogen receptor αIIb/
β3, the von Willebrand factor receptor GPIb, and P-selectin 

(Mustard et al.,  2002). Along with cell-surface proteins, cytosolic 
content of PEVs includes RNA, miRNA, and perchance DNA 
that can be transferred to target cells (Burger et al., 2013).

The important role of PEVs in intercellular communication, 
hemostasis, angiogenesis, and several other physiological 
and pathological conditions, due to their procoagulant 
surface, the expression of several receptors, and the 
cytosolic content, is receiving increasing scientific interest as 
discussed in several reports (Morel et al., 2008; Vajen et al., 
2015; Todorova et al., 2017).

ISOLATION, DETECTION, AND 
CHARACTERIZATION OF PLATELET-
DERIVED EXTRACELLULAR VESICLES: 
METHODOLOGICAL ISSUES
Different methods are available for PEV isolation, 
characterization, and quantification, but when multiple 
parameters have to be considered, the use of different techniques 
in combination is required (Kailashiya, 2018). In fact, none of 
the techniques so far used in clinical studies and in vitro models 
allow simultaneous and accurate information on biochemical 
properties and quantity of PEVs; exhaustive information could 
only be obtained by combining methodological approaches 
(Momen-Heravi et al., 2013; Burnouf et al., 2014; van der Pol 
and Harrison, 2017).

In addition, many preanalytical and postanalytical factors 
affect PEV measurement and characterization, such as blood 
collection, handling, and storage (Jy et al., 2004). It is therefore 
necessary to use any possible precaution and to follow updated 
recommendations to minimize errors. All these factors have to 
be taken into account as source of potential bias and limitation in 
the reliability of experimental studies and clinical trials.

Isolation and Concentration of Platelet-
Derived Extracellular Vesicles
Collection and manipulation of platelets from blood samples 
require very rigorous handling and processing in order to avoid 
artifacts and to favor interlaboratory standardizations, first of all 
using a large needle size (size 21-gauge or larger), discarding the 
first milliliters of collected blood to prevent platelet activation 
or desensitization.

The choice of the anticoagulant is important for PEV 
characterization and quantification, being conditioned by the 
downstream analysis. The most used anticoagulant is sodium 
citrate (Robert et al., 2009; Mobarrez et al., 2010; Iversen et al., 
2013; Kailashiya, 2018; Zhang et al., 2018; Mitrugno et al., 2019), 
which minimizes in vitro platelet activation and consequent 
PEV release that is observed with ethylenediaminetetraacetic 
acid (EDTA) or heparin (Beutler et al., 1990; Gomes et al., 2018). 
However, EDTA (Chandler, 2016) is suitable when interest is 
in RNA analysis (Ostenfeld et al., 2016; van Eijndhoven et al., 
2016), although affecting EV quantification (Shah et al., 2008; 
Nelles and Chandler, 2014). Citrate-dextrose solution (ACD) 
plus EDTA is an alternative anticoagulant for the quantification 
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of circulating PEVs in plasma samples (Shirafuji et al., 2008; 
Nomura et al., 2009; Shirafuji et al., 2009). ACD alone is used 
when EVs derived from washed platelets are studied in vitro 
(Castaman et al., 1997; Conde et al., 2005; Pontiggia et  al., 
2006; Suades et al., 2012; Hsu et al., 2013; Aatonen et al., 2014; 
György et al., 2014; Vajen et al., 2015; Anene et al., 2018). 
CTAD (sodium citrate, citric acid, theophylline, adenosine, 
and dipyridamole) can be useful to prevent in vitro platelet 
activation but can alter intraplatelet signaling, since it increases 
cytosolic AMP concentration (Mody et al., 1999; Kim et al., 
2002). To avoid coagulation of blood or plasma samples, PPACK 
is used as inhibitor of thrombin-mediated platelet activation, 
not affecting extracellular calcium concentration (Gemmell 
et al., 1993; Chandler et al., 2011; Chandler, 2013; Giacomazzi 
et  al., 2016).

Concerning the techniques used in PEV separation and 
concentration, the MISEV 2018 guidelines define these 
procedures as follows: separation of EVs (purification or 
isolation) is generally referred to separation from non-EV 
component or separation of a specific population of EVs from 
the other ones. Concentration is the procedure that allows to 
increase the number of EVs per volume unit with or without 
separation (Théry et al., 2018).

The most used methods to isolate/concentrate PEVs are based 
on differential centrifugation (where PEVs can be obtained from 
supernatant or pellet) or density gradient centrifugation. Isolation 
depends on the size and mass density or mass density only, but 
does not separate PEVs from non-EV components such as 
lipoprotein particles (i.e., chylomicrons), cellular debris, protein 
aggregates, and very large proteins such as von Willebrand factor 
(Coumans et al., 2017).

Size exclusion chromatography enables size-based separation 
on a single column, thus separating EVs from non-EV soluble 
components (Xu et al., 2016). The choice of matrix determines 
the size cutoff (e.g., Sepharose 2B has a pore of about 60 nm). Size 
exclusion chromatography preserves structure and functionality 
of EVs better than ultracentrifugation (Nordin et al., 2015; 
Gámez-Valero et al., 2016; Hong et al., 2016). Size exclusion 
chromatography can be used in association with other techniques 
such as ultrafiltration in which EVs are retained (Grasso et al., 
2015; Nordin et al., 2015).

Immunocapture techniques with monoclonal antibodies and 
magnetic beads or surfaces are used to isolate subpopulations of 
EVs on the basis of their immunophenotype (Osumi et al., 2001; 
Shih et al., 2016; Obeid et al., 2017).

Detection and Identification of Platelet-
Derived Extracellular Vesicles
PEV detection methods can be classified into quantitative 
(count of EVs) and qualitative (size distribution, morphology, 
phenotyping, content of proteins o nucleic acid, and 
functional analysis).

Currently, a single method does not allow phenotyping, 
sizing, and enumerating PEVs. Standardization of the protocols 
is therefore recommended to reduce interlaboratory variability 
(Lacroix et al., 2010a; Lacroix et al., 2010b).

Referring to PEV count, conventional flow cytometry is the 
mostly used technique. Fluorescein isothiocyanate–phalloidin 
staining allows to distinguish PEVs from cell fragments in the 
samples, thus minimizing errors (Lacroix et al., 2010a; Mobarrez 
et al., 2010; Unsworth et al., 2017). Fluorescent-labeled 
monoclonal antibodies against CD41 (αIIb), CD62P (P-selectin), 
CD61 (β3), and the active fibrinogen receptor αIIb/β3 (using 
PAC-1 monoclonal antibody) specifically detect PEVs, besides 
that most PEVs are also positive for annexin V or lactadherin 
(Christersson et al., 2010; Connor et al., 2010; Mobarrez et al., 
2010; Ayers et al., 2011; Chandler, 2013; Giacomazzi et al., 2016). 
Annexin V and lactadherin are able to bind phosphatidylserine 
in a stereospecific manner that is calcium dependent for annexin 
V and calcium independent for lactadherin (Shi et  al., 2003). 
Unlike PEVs, megakaryocyte-derived large EVs do not express 
CD62P and LAMP-1 (Flaumenhaft et al., 2009; Italiano et al., 
2010; Boilard et al., 2015). Beads are used for the standardization 
of EV quantification across different cytofluorometric platforms 
(Robert et al., 2009; Cointe et al., 2016). Standardization is in 
fact fundamental when the clinical relevance of PEV count is 
evaluated, allowing multicenter studies.

For ex vivo and in vitro studies, electron microscopy gives the 
advantage of detecting very small size particles and is considered 
the gold standard as imaging technique for PEVs (Brisson et al., 
2017). The resolution is in the nanometer scale and allows 
evaluating structure and morphology of EVs.

Cryo-electron microscopy is useful to study size distribution, 
morphology, and structure of EVs (Tatischeff et al., 2012).

Atomic force microscopy can be used to count and 
characterize dimension and distribution of EVs in the nanometer 
size range (10- to 475-nm range), below the lower limit of 
detection of conventional flow cytometry. It has been shown 
that the number of PEVs detected by atomic force microscopy 
is approximately 1,000‐fold higher than the number detected by 
flow cytometry (Yuana et al., 2010). Atomic force microscopy can 
be used to study EVs immobilized on a functionalized surface 
avoiding interference from abundant proteins (fibrinogen, 
albumin, immunoglobulins, etc.) and can be coupled to 
other techniques such as surface plasmon resonance to detect 
different subpopulations of EVs over a wide concentration range  
(Gajos et al., 2017; Obeid et al., 2017).

New methodological approaches to the analysis of EVs should 
allow a more effective characterization of PEVs as summarized 
in Table 1.

PLATELET ACTIVATION AND THE RELEASE 
OF LARGE EXTRACELLULAR VESICLES
Platelet activation in response to soluble agonists (such as 
thrombin, ADP, and collagen), activators of second messengers 
(like calcium ionophores and phorbol esters), high shear 
stress, contact with exogenous surfaces, complement, or low 
temperatures gives rise to granule secretion and large EV 
release (Heijnen et al., 1999; Nieuwland et al., 2012). Large 
PEV formation is an event in which the inner cytoskeleton 
is disrupted, the symmetry of membrane phospholipids 
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is altered, and the outward plasma membrane undergoes 
blebbing fragmentation (Morel et al., 2011). Actin filaments, 
main component of the cytoskeletal, play a major role 
in PEV formation. The α-actin fibers are cleaved by the 
Ca++dependent protease, calpain, and its inhibition reduces 
blebbing of PEVs (Yano et al., 1993). Another essential event 
involved in the release of large PEVs is the externalization of 
phosphatidylserine, an amino-phospholipid mainly present 
on the inner leaflet of plasma membrane (Bevers et al., 1999). 
Flippases promote the translocation of phosphatidylserine and 
phosphatidylethanolamine toward the inner side of the plasma 
membrane of the platelet against their own electrochemical 
gradient through an ATP-dependent mechanism. Floppases, 
ABC transporter family members (ATP-binding cassette 
transporter), allow the transport of phosphatidylserine to 
the outer membrane. Lastly, in an ATP-independent manner, 
scramblase enzymes help the translocation of phospholipids, 
inside the two membrane leaflets (Suzuki et al., 2010). 
Alterations in the membrane phospholipids symmetry and, 

consequently, the exposure of phosphatidylserine on the 
plasma membrane turned out to be key mechanisms in PEV 
generation. It has been shown that lipid-rich microdomains, 
such as lipid rafts and caveolae, are involved in large EV 
formation (Biró et al., 2005).

To summarize, remodeling of the cytoskeleton is required 
for large PEV formation. The reorganization of the cytoskeleton 
leads to external blebbing of the plasma membrane within 
lipid-rich microdomains, highly dependent on actin fiber 
polymerization and their calpain-mediated cleavage (Burger 
et al., 2013).

Large PEV removal from the circulation has been found 
to be also caused by phosphatidylserine exposure on the 
outer membrane leaflet, which not only allows the binding of 
coagulation factors, but also promotes the elimination of PEVs 
(Lee et al., 1992; Lemke and Burstyn-Cohen, 2010). Part of PEV 
clearance takes place in the spleen, so that splenectomized mice 
show higher levels of CD42+ and phosphatidylserine-exposing 
circulating large PEVs (Dasgupta et al., 2009).

TABLE 1 | Innovative techniques potentially useful for the detection and quantification of platelet-derived extracellular vesicles (PEVs).

Detection tecniques Advantages References

Nanoscale flow cytometry 
(nFC)

NFC uses high sensitivity multiparametric scattered light and fluorescence measurements, 
but it needs improvements for intrainstrument and interinstrument standardization and 
reproducibility. It is used for EV enumeration.

(Gomes et al., 2018)

Imaging flow cytometry (IFCM) IFCM combines the speed and sample size of traditional flow cytometry with the resolution 
and sensitivity of microscopy. IFCM has a charge-couple device camera that records both 
fluorescent intensity and image of the particles, facilitating correct gating and distinguishing 
EVs from debris swarm detection and other interfering particles.

Erdbrügger et al., 2014; Headland 
et al., 2014; Erdbrügger and 
Lannigan, 2016.

Nanoparticle tracking analysis 
(NTA)

NTA is based on the fluctuation measurement of light scattered by EVs in liquid suspension 
such as plasma, urine, or washed platelets. NTA allows determination of EV concentration 
and phenotype when combined with fluorescence (F-NTA) using small sample volume.

Dragovic et al., 2011; Aatonen 
et al., 2014; van der Pol et al., 
2014; Enjeti et al.,2016; Mørk et al., 
2016; Rider et al., 2016; Parsons 
et al., 2017; Ambrose et al., 2018; 
Nielsen et al., 2019.

Dynamic light scattering (DLS) DLS is a highly sensitive technique useful for EV counting and size distribution. In this 
technique, monochromatic light from a laser is directed into a photometric cell containing 
particles in suspension. Particle sizes (between 1 nm and 6 µm) are determined from 
fluctuations in scattered light intensity due to the Brownian movement of the particles.

Lawrie et al., 2009; Onódi et al., 
2018.

Resistive pulse sensing (RPS) RPS determines the particle size distribution from resistance pulses caused by particles 
moving through a pore; this technique is independent of refractive index of the particles 
tested. The major concerns with RPS are pore clogging and pore stability

van der Pol et al., 2014; Yuana 
et al., 2015; Eichner et al., 2018

Tunable resistive pulse sensing 
(TRPS)

TRPS is an adaptation of resistive pulse sensing, in which the pore size can be elastically 
stretched allowing single particle sizing (until 90 nm) and enumeration in polydisperse sample. 
TRPS may not be able to discriminate between different types of particles.

Grasso et al., 2015; Maas et al., 
2014.

Raman spectroscopic 
techniques (laser-tweezers 
Raman spectroscopy, surface 
enhanced raman scattering)

Used for analysis of biochemical composition of EVs. It has the vantages of quick analysis 
and it does not require exogenous labeling. It can detect EVs less than 240 nm. The 
combination of Raman spectroscopy with RPS permits simultaneous information on 
size, concentration, and chemical composition of single vesicles in suspension without 
fluorescence antibody labeling.

Lvovich et al., 2010; Tatischeff 
et al., 2012; Kailashiya et al., 2015.

Time-of-flight secondary 
ion mass spectrometry 
(TOF-SIMS)

TOF-SIMS is a spectrometric technique able to examine the chemical detection and 
molecular compositions of PEVs.

Gajos et al., 2017

Biosensors Biosensors are new and relatively convenient tools for detection and counting of EVs. 
Kailashiya et al. developed a graphene oxide-based electrochemical biosensor for detection 
of pEVs. Graphene oxide-based biosensor seems quick, sensitive, cost-effective, and easy 
to operate and could be applied at a peripheral health care level as a screening method to 
identify individuals at high risk of developing coronary artery diseases, which include people 
having positive family history, history of hypertension, diabetes mellitus, and smoking habits 
or sedentary lifestyles.

Kailashiya et al., 2015; Obeid et al., 
2017
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PLATELET-DERIVED LARGE 
EXTRACELLULAR VESICLES AS 
MEDIATORS IN THROMBOSIS AND 
HEMOSTASIS WITH BROAD BIOACTIVITY
Several studies addressed the mechanism of large PEV 
generation and their potential bioactivity, with the aim of 
identifying their biological role and possibly new targets of 
pharmacological intervention.

PEV generation is dependent on the agonist involved in 
platelet stimulation (Shai et al., 2012; Milioli et al., 2015; Varon 
and Shai, 2015). Indeed, the modality of platelet activation is 
a determinant of size, content, and amount of released PEVs, 
therefore potentially exerting different effect and having different 
involvement in the development of diseases associated with 
platelet activation (Zaldivia et al., 2017).

Large PEVs are important mediators of intracellular 
communication, transferring their cargo (cytoplasmic or 
membrane protein, mRNAs, and noncoding RNAs) to target 
cells (Randriamboavonjy and Fleming, 2018). This explains 
part of the effects that large PEVs exert in inflammation, 
thrombosis, immunoregulation, and the transmission of 
biological information (Boilard et al., 2010). However, the precise 
mechanism by which PEVs selectively incorporate and release 
their biological cargo to influence the functionality of target cells 
needs to be determined (Zaldivia et al., 2017).

Intercellular exchanges of microRNAs mediated by PEVs may 
modulate gene expression in recipient cells and may determine 
vascular and tissue response in disease conditions associated 
with platelet activation (Laffont et al., 2013). Thrombin-activated 
platelets transfer their miR-223 content to PEVs, which is then 
delivered to endothelial cells. PEV-derived miR223 regulates the 
endothelial expression of two of its mRNA target, FBXW7 and 
EFNA1 (Bartel, 2009; Duchez et al., 2015). High levels of miR-
142-3p found in PEVs released by activated platelets, enhance 
the endothelial cell proliferation/dysfunction via Bcl-2 associated 
transcription factor (BCLAF)1 (Bao et al., 2018). These results 
provide a possible mechanism by which activated platelets regulate 
the function of endothelial cells in hypertension, suggesting a 
novel potential therapeutic approach based on circulating PEVs.

PEVs may also prove protective in some disease conditions 
(Berckmans et al., 2001; Owens and Mackman, 2011). PEVs may 
in fact be involved in remote protection against cardiac ischemia–
reperfusion injury (Giricz et al., 2014). Few reports focused on 
the anticoagulant properties of PEVs. The anticoagulant activity 
of large PEVs is associated with the binding of the anticoagulant 
protein S and the activation of protein C. Indeed, protein S 
specifically binds to PEVs, and the anticoagulant function of the 
protein C depends on negatively charged surface, therefore acting 
as potential regulator of the assembly of coagulation factors on 
PEVs (Dahlbaeck et al., 1992; Somajo et al., 2014). Given the 
potential procoagulantand anticoagulant effects of large PEVs, 
the tight regulation of PEV release is likely an important factor 
regulating the hemostatic process (Zaldivia et al., 2017). Drawing 
inspiration from structural and mechanistic aspects of the PEVs, 
Pawlowski et al. (2017) build a liposomal formulation that can be 

actively anchored to platelet-rich thrombi, releasing encapsulated 
thrombolytic drugs to generate a site-specific thrombolytic 
activity. Further molecular and cellular research is warranted to 
define of the actual effectors of PEVs bioactivity (Ma et al., 2015).

ANTIPLATELET AGENTS AND PLATELET-
DERIVED LARGE EXTRACELLULAR 
VESICLES: EXPERIMENTAL STUDIES
PEV formation can be induced in vitro by the activation of 
platelets with agonists, calcium ionophores, phorbol esters, or 
complement (Sims et al., 1988), but also by a variety of factors 
including high shear stress (Dachary-Prigent et al., 1995; Holme 
et al., 1997; Takano et al., 2004), contact with artificial surfaces 
(Gemmell et al., 1995), and low temperature (Bode and Knupp, 
1994). The results from different in vitro studies are consistent 
with a general model in which EVs are released from platelets 
activated by soluble agonists with the necessary contribution 
of integrin engagement and shear stress. All these factors are 
required to generate large PEVs in vitro (Giacomazzi et al., 
2016). Under these conditions, procoagulant activity is induced, 
as assessed by measuring the binding of annexin V, index of 
phosphatidylserine expression, which dramatically increases in 
PEVs (almost all PEVs become positive) after platelet stimulation 
(Fox et al., 1991; Barry et al., 1997; Perez-Pujol et al., 2007).

To assess the signaling pathways implicated in large PEV 
generation, an in vitro protocol was set up in our laboratory using 
antiplatelet agents to investigate the singling pathways implicated 
in large PEV generation and the potential of antiplatelet agents 
in reducing their release (Giacomazzi et al., 2016). Platelets 
generate large PEVs either when stimulated with strong agonists 
(thrombin, collagen and calcium ionophores), as shown in several 
independent studies (Fox et al., 1991; Barry et al., 1997; Perez-
Pujol et al., 2007), or by weak agonists, such as the thromboxane 
(TX)A2 analog U46619, ADP, and epinephrine (Judge et al., 
2010; Zhang et al., 2013). Under these experimental conditions, 
shear stress needs to be applied to obtain platelet vesiculation 
(Giacomazzi et al., 2016).

When platelets are activated by soluble agonists in the presence 
of aspirin or the TXA2 receptor (TP) antagonist SQ-29,548, a 
significant reduction in large PEV release is observed, except 
when ADP or epinephrine is the stimulus. The inhibitory effects 
of aspirin and SQ-29,548 indicate a role for endogenous TXA2 
on agonist-triggered PEV release (Giacomazzi et al., 2016). In 
the same study, the contribution of ADP secreted from delta 
granules of activated platelets was assessed using apyrase, an 
ADP-scavenger enzyme, and PSB-0739, a potent and selective 
P2Y12 receptor antagonist (Hoffmann et al., 2009). Under 
these conditions, a significant decrease in large PEV released 
from platelets stimulated with U46619 and low concentration 
of collagen is observed, not with high-concentration collagen 
(Giacomazzi et al., 2016). Since similar effects are observed 
using apyrase and the specific P2Y12 inhibitor PSB-0739, it can 
be inferred that P2Y12 is implicated in large PEV generation in 
response to a large number of agonists. It has also been observed 
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that incubation of normal platelets with aspirin inhibits platelet 
aggregation and large PEV formation only in response to 
arachidonic acid, while MeSAMP, a P2Y12 inhibitor, blunts platelet 
aggregation and PEV release induced by arachidonic acid, TRAP, 
a thrombin PAR-1 receptor agonist, as well as by ADP (Connor 
et al., 2016). Also, the active metabolite of prasugrel, a P2Y12 
inhibitor, was shown to strongly inhibit collagen- and TRAP-
induced large PEV formation, demonstrating the implication 
ADP and integrin in this process (Judge et al., 2010).

Therefore, both ADP and TXA2 contribute to large PEV 
release. However, other signaling pathways are implicated in 
vesiculation, as indicated by the platelet response to epinephrine 
(Giacomazzi et al., 2016). Large PEV generation does not 
require platelet secretion, since it has been shown that these two 
phenomena are dissociated (Delaney et al., 2014). However, large 
PEV release is entirely dependent on activation of the fibrinogen 
receptor or an integrin, since eptifibatide, a specific inhibitor of 
the fibrinogen receptor, prevents the release induced by soluble 
platelet agonists, except when high-concentration collagen is 
tested (Giacomazzi et al., 2016). There is evidence that also the 
engagement of the von Willebrand factor receptor triggers the 
generation of procoagulant EVs. In fact, the interaction between 
platelets and immobilized von Willebrand factor leads to the 
generation of large PEVs under high shear stress (Reininger 
et al., 2006).

The use of the antiplatelet agents aspirin and a P2Y12 in 
combination, blocking two different but interconnected signaling 
pathways involved in the amplification phase of platelet activation, 
determines a more profound inhibition of large PEV release 
(Judge et al., 2005). Inhibitory activity has been demonstrated also 
with ticagrelor, a P2Y12 antagonist that decreases the release of 
PEVs exposing P-selectin and procoagulant phosphatidylserine, 
likely decreasing the proinflammatory/procoagulant interaction 
between PEVs, monocytes, and coagulation factors (Gasecka 
et al., 2018). In fact, it has been shown that large PEVs bearing 
P-selectin, able to bind PSGL-1 on monocytes surface, lead to 
monocyte activation, responsible for cytokine release and the 
exposure of tissue factor on monocyte (Falati et al., 2003). Large 
PEVs exposing phosphatidylserine-bound coagulation factors 
also propagate thrombin generation (Swieringa et al., 2018).

Glycoprotein αIIb/β3 inhibitors and P2Y12 antagonists are 
additive to aspirin in preventing large PEV production. Both 
cangrelor, a P2Y12 antagonist, and abciximab, a fibrinogen 
receptor inhibitor, individually prevented the formation of large 
PEVs in response to collagen, and the combination of these 
two agents resulted in further inhibition, while TRAP-induced 
large PEV formation was insensitive to the effects of aspirin, was 
reduced by P2Y12 or fibrinogen receptor antagonists, and was 
further inhibited in the presence of both agents (Judge et al., 
2005;  Judge et al., 2008).

Additional evidence derives from animal models. For instance, 
the inhibition of circulating large PEVs by aspirin has been shown to 
prevent endothelial injury and the progression of early atherosclerotic 
lesions in experimental diabetes mellitus, suggesting that PEVs may 
represent a new target of pharmacological intervention in different 
clinical settings (Wang et al., 2019).

To summarize, in vitro studies indicate that the inhibitory 
effects of antiplatelet agents on PEVs may prove beneficial, beyond 
inhibition of thrombus formation. All these interactions may 
potentially contribute to the development and progression of 
atherosclerosis to atherothrombosis (Badimon et al., 2016). Indeed, 
PEVs, being involved in cell–cell interaction and transfer of proteins 
and RNAs to different cells, play a role in a variety of pathological 
processes including thrombosis and hemostasis, inflammation, 
atherosclerosis, angiogenesis, and tumor progression (Martinez 
and Andriantsitohaina, 2011; Owens and Mackman, 2011; Baron 
et al., 2012; Dovizio et al., 2018). This suggests a broad potential 
benefit of antiplatelet agents as inhibitors of PEV release.

ANTIPLATELET AGENTS AND PLATELET-
DERIVED LARGE EXTRACELLULAR 
VESICLES: CLINICAL STUDIES
Clinical studies on the impact of antiplatelet agents on PEV 
release are limited; most of the available data concern large PEVs 
and derive from nonrandomized clinical trials. In addition, 
little information is available concerning the relations between 
PEV generation and clinical outcomes or the relations between 
pharmacodynamics of antiplatelet agents and PEV release 
(Rosińska et al., 2017).

Studies concerning treatment with aspirin gave inconsistent 
results. The generation of procoagulant large PEVs measured in 
venous blood and in blood taken at the site of a vascular injury in 13 
healthy subjects, as assessed by flow cytometry and immunoassays, 
was not altered after a 7-day treatment with aspirin 100 mg/day in 
a randomized crossover study (Lubsczyk et al., 2010). It has been 
demonstrated that patients treated with aspirin undergoing elective 
coronary artery stenting have high levels of circulating large PEVs, 
suggesting that aspirin fails to inhibit the PEV formation in that 
setting (Kim and Kunapuli, 2011). A single study investigated the 
effects of aspirin given for 7 days to 24 healthy male and female 
subjects on the release of small PEVs from ex vivo–stimulated 
platelets. No effects of aspirin were observed as for small PEV 
count, but a significant suppression of their cargo protein levels 
(Goetzl et al., 2016). The concentration of circulating large PEVs, 
but not other platelet parameters, was found to be decreased after 
antiplatelet therapy with aspirin 100 mg/day plus cilostazol 200 mg/
day, given for 4 weeks to 112 patients with acute ischemic stroke in 
a nonrandomized clinical trial including 35 control subjects (Chen 
et al., 2015). In that study, circulating large PEVs were found to be 
an independent risk factor for the infarct size in a pooled analysis 
of patients with ischemic stroke after adjustments of other factors 
including hypertension and diabetes mellitus (Chen et al., 2015).

In comparison with healthy subjects, patients with stable angina 
show increased release of PEVs that decreases after administration 
of low-dose aspirin. When tested in vitro in rat thoracic aorta, 
PEVs collected from patients decreased the tissue expression of 
ERK1/2 and increased the expression of p38 mitogen-activated 
protein kinases (MAPKs), c-Jun N-terminal kinases (JNKs), 
nuclear factor kappa-light-chain-enhancer of activated B cells 
(NF-kB) and vascular cell adhesion molecule 1 (VCAM-1) and 
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the generation of superoxide anion while decreasing the release 
of NO. Treatment with aspirin significantly inhibited all these 
cellular responses, with efficacy similar to that of ERK1/2, p38 
MAPKs, and NF-κB inhibitors (Cheng et al., 2017).

Treatment with aspirin (100 mg/day) was shown to decrease 
the number of circulating endothelial- and platelet-derived 
large EVs in 15 male patients with coronary artery disease, but 
nonsignificant coronary artery stenosis, in a nonrandomized 
clinical study (Bulut et al., 2011).

Furthermore, in 160 male patients with stable coronary heart 
disease, elevated concentration in peripheral blood of large PEVs 
bearing tissue factor, together with coexistent hypertriglyceridemia, 
was among the factors supporting the resistance to the antiplatelet 
activity of clopidogrel (Jastrzebska et al., 2018).

The inhibitory effects of clopidogrel on large PEVs were found 
to be related to the maximum plasma concentration reached by 
clopidogrel active metabolite and the area under the curve observed 
in a pharmacokinetics/pharmacodynamics study including 26 
patients with stable coronary artery disease (França et al., 2012).

Using flow cytometry, the release of large EVs from platelets, 
monocytes, erythrocytes, and smooth muscle cells was found to 
be increased in patients with diabetes mellitus. Aspirin therapy 
reduces biomarkers of vascular wall cell activation and large EV 
shedding from smooth muscle cells and erythrocytes, but not from 
platelets, although decreases the number of tissue factor–bearing 
PEVs with similar effects in 43 patients with types 1 and 2 diabetes 
mellitus (Chiva-Blanch et al., 2016). Referring to a different clinical 
setting, recurrent increase in circulating large PEVs was observed 
after discontinuing aspirin in 17 of 46 patients with Kawasaki 
disease, a chronic inflammatory arterial disease (Kim et al., 2017).

The additive contribution of platelet P2Y12 receptors in 
the setting of acute vascular disease is well recognized. Dual 
antiplatelet therapy with aspirin and a P2Y12 inhibitor is commonly 
used in these patients to reduce their very high thrombotic risk 
(Hechler and Gachet, 2015, Nylander and Schulz, 2016), but the 
effect of this combination therapy on the release of PEVs has 
not yet been extensively investigated (Connor et al., 2016). In a 
randomized clinical trial comparing treatment with aspirin alone 
or in combination with clopidogrel in 70 patients with ischemic 
stroke, the addition of aspirin to clopidogrel was found to be 
associated with significant inhibition of collagen-induced platelet 
aggregation and diminished formation of platelet–monocyte large 

EVs (Serebruany et al., 2005). Extended-release dipyridamole plus 
aspirin, clopidogrel plus aspirin, or clopidogrel alone similarly 
reduced different markers of platelet activation, while only aspirin 
plus clopidogrel diminished the formation of platelet–monocyte 
large EVs in a randomized, single-blind clinical trial including 
patients with type 2 diabetes mellitus and history of transient 
ischemic attach (Serebruany et al., 2008).

In conclusion, the hypothesis that PEVs may have a 
pathogenetic role in atherothrombosis is strong. The secondary 
hypothesis that modulation of PEV generation may contribute 
to the antithrombotic activity of antiplatelet agents is so far 
supported by weak experimental evidence. In vitro studies indicate 
that activation of the arachidonic acid pathway and the release of 
ADP from delta granules are implicated in the release of large EVs 
from platelets. Therefore, both aspirin and P2Y12 inhibitors may 
be beneficial also in vivo by reducing the prothrombotic potential 
of activated platelets mediated by released PEVs. Since the release 
of PEVs is strongly dependent on integrin activation, inhibitors 
of the fibrinogen receptor, von Willebrand factor receptor, and 
collagen receptor may prove effective in vivo. None of these 
potential activities have so far been exhaustively demonstrated. A 
number of clinical trials describe variations in PEV concentration 
in blood collected from patients treated with antiplatelet agents. 
However, inconsistency in the study protocols, the small sample 
size, and differences in the methods used to quantify PEVs 
represent major limitations. Since PEVs may have a pathogenetic 
role not only in atherothombosis, but also in other clinical 
settings, including inflammatory diseases (Boilard et al., 2010) 
and cancer (Varon and Shai, 2015), broad beneficial effects of 
antiplatelet intervention may be expected. Further investigation 
on the efficacy of antiplatelet agents as inhibitors of PEVs with ad 
hoc–designed controlled clinical trials is warranted.
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