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Organs and tissues and their constituent cells are physiologically submitted to diverse 
types of mechanical forces or stress, one common sequence of which is release of 
intracellular ATP into extracellular space. Extracellular ATP is a well-established autocrine 
or paracrine signaling molecule that regulates multiple cell functions and mediates cell-to-
cell communications via activating the purinergic P2 receptors, more specifically, ligand-
gated ion channel P2X receptors and some of the G-protein-coupled P2Y receptors. 
The molecular mechanisms that sense mechanical and transduce forces to trigger 
ATP release are poorly understood. The Piezo1, a newly identified mechanosensing ion 
channel, shows widespread expression and confers mechanosensitivity in many different 
types of cells. In this mini-review, we briefly introduce the Piezo1 channel and discuss the 
evidence that supports its important role in the mechanoregulation of diverse cell functions 
and, more specifically, critical engagement of ATP release and subsequent P2 receptor 
activation in Piezo1 channel-dependent mechanoregulation. Such ATP release-mediated 
coupling of the Piezo1 channel and P2 receptors may serve a signaling mechanism that 
is more common than we currently understand in transducing mechanical information to 
regulation of the attendant cell functions in various organs and tissues.

Keywords: mechanical stimuli, mechanosensitive cells, Piezo1 channel, adenosine triphosphate release, 
P2 receptors

INTRODUCTION
Adenosine triphosphate (ATP), while it is best known for its intracellular role as the cellular energy 
source, gains increasing recognition as an extracellular signaling molecule when it is released 
into extracellular spaces. In mammalian cells, the ATP-based signaling system comprises of three 
principal components: release of intracellular ATP into the extracellular space, activation of the 
ligand-gated ion channel P2X receptors and/or G-protein-coupled P2Y receptors for extracellular 
ATP, and removal of extracellular ATP to terminate its action by a broad family of ATP-scavenging 
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ecto-nucleotidases that convert ATP to ADP, adenosine 
monophosphate, or adenosine (Figure 1) (Verkhratsky and 
Burnstock, 2014; Jiang et al., 2017a). This system represents 
one of the most common signaling mechanisms regulating cell 
functions and mediating cell-to-cell communications and plays 
a critical role in a wide range of physiological processes, such 
as hearing, tasting, nociception, immune responses, muscle 
contraction, learning, and memory. There exists a large volume 
of evidence that alterations in such an ATP-based signaling 
system contribute in the pathogenesis and progression of diverse 
conditions, ranging from hearing loss, pain, inflammatory 
diseases, hypertension, neurodegenerative diseases, and 
psychotic disorders to cancer metastasis (North, 2002; Fields 
and Burnstock, 2006; Khakh and North, 2006; Abbracchio 
et al., 2009; Surprenant and North, 2009; Zimmermann et al., 
2012; Caseley et al., 2014; Roger et al., 2015; Cekic and Linden, 
2016; Krugel, 2016; Alves et al., 2018; Di Virgilio et al., 2018; 
Wei et al., 2018).

It is conceivable that ATP easily leaks from damaged or dying 
cells as a danger signal alerting tissue damage and inflammation. 
However, decades of studies provide clear evidence to show that 
many types of cells can release ATP without compromise in cell 
viability and a variety of physical and chemical signals or stimuli 
can induce non-lytic release of ATP. Two general release pathways, 
namely, vesicular and diffusion, have been proposed for efflux of 
intracellular ATP (Verkhratsky and Burnstock, 2014). However, 
the molecular mechanisms mediating ATP release are still not 
fully elucidated, in part due to that such mechanisms appear to 
be diverse and cell-type specific. Furthermore, many types of cells 
are equipped with multiple ATP release mechanisms and deploy 
them according to the nature of the incoming stimuli. Vesicular 
release via exocytosis represents the major mechanism by which 
neurons release ATP into the synaptic cleft in the peripheral and 
central nervous systems (Pankratov et al., 2006; Abbracchio et al., 
2009; Masuda et al., 2016). Vesicular ATP release via exocytosis 
has been also described in astrocytes (Chen et al., 2013; Lalo 

et al., 2014), urothelial cells (Nakagomi et al., 2016), neutrophils 
(Harada et al., 2018), and pancreatic β-cells (Geisler et al., 2013; 
Sakamoto et al., 2014). In this regard, it is worth mentioning that 
the vesicular nucleotide transporter (VNUT) plays a critical role 
in mediating vesicular storage and thereby subsequent release of 
ATP (Sawada et al., 2008) (for more details, see Moriyama et al., 
2017; Miras-Portugal et al., 2019). On the other hand, several 
distinctive types of ion channels have been suggested to act as 
conduits permitting diffusion of ATP out of cells. The volume-
regulated anion channel (VRAC) has been identified to mediate 
non-synaptic release of ATP from axons in response to action 
potential-induced swelling (Fields and Ni, 2010). The pannexin 
hemi-channels, calcium homeostasis modulator 1 (CALHM1), 
cystic fibrosis transmembrane conductance regulator (CFTR), 
maxi-anion channel, and P2X7 receptor as well as the VRAC have 
been reported to mediate or regulate ATP efflux from a variety of 
non-neuronal cells. For detailed discussion of these ATP release 
mechanisms, the readers can consult recently published reviews 
(e.g., Verkhratsky and Burnstock, 2014; Taruno, 2018).

Cells are physiologically submitted to diverse types of 
mechanical forces or stress and virtually all types of cells exhibit 
a mechanosensitivity. They can sense external or “outside-in” 
mechanical forces, for example, fluid flow-induced shear stress, 
osmotic stress, and pressure-induced membrane stretch (Nourse 
and Pathak, 2017). Cells can also generate traction forces via 
actin-myosin interactions at the focal adhesion zones and apply 
such “inside-out” mechanical forces to survey the mechanical 
and geographical properties of extracellular matrix and cell-
supporting substrates (Nourse and Pathak, 2017; Ellefsen et al., 
2019). Importantly, cells are able to convert mechanical forces into 
intracellular signals and even integrate mechanical information 
into the genomic blueprint (Choi et al., 2019), indicating that 
mechanical stimulation can have long-term effects as well as 
short-term effects on cell functions. Mechanical stimuli are long 
known as a potent trigger for non-cytolytic release of ATP both 
in vivo and in vitro, and accumulating evidence supports that 

FIGURe 1 | Schematic illustration of the adenosine triphosphate (ATP)-based signaling system in mammalian cells. The ATP-based signaling system comprises of 
the following three principal components. (A) Release of intracellular ATP, which occurs via exocytosis (vesicular) and/or diffusion through many different types of 
ion channels. (B) Extracellular ATP as an autocrine or paracrine signal activating ligand-gated ion channel P2X receptors and/or G-protein-coupled P2Y receptors. 
ATP gates all P2X receptor ion channels, allowing extracellular Ca2+ influx. Alternatively, ATP activates the P2Y receptors, mainly P2Y1, P2Y2, and P2Y11, leading to 
sequential activation of Gα,q/11, phospholipase C (PLC), conversion of membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol triphosphate (IP3) and 
diacylglycerol (not depicted), activation of the IP3 receptor (IP3R), and Ca2+ release from the endoplasmic reticulum (ER). (C) Termination of the actions of ATP by 
converting to ADP, AMP, and adenosine (Ade) by ecto-nucleotidases, including ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-nucleotide 
pyrophosphatase/phosphodiesterase (E-NPP), and by ecto-5’-nucelotidase (E-NT).
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ATP release and subsequent activation of the P2 receptors act as a 
crucial signal transduction mechanism in the mechanoregulation 
of cell functions (Petruzzi et al., 1994; Riddle et al., 2007; Wan 
et al., 2008; Yu et al., 2010; Sun et al., 2013; Miyamoto et al., 2014; 
Weihs et al., 2014; Cinar et al., 2015; Wang et al., 2016; Iring et al., 
2019). However, the molecular identity of the mechanosensor 
that directly detects the mechanical forces and triggers ATP 
release remained elusive. The Piezo1 ion channel has emerged 
as an intrinsically mechanically activated Ca2+-permeable cation 
channel that confers cells with an ability of sensing diverse forms 
of mechanical stimuli (Murthy et al., 2017; Wu et al., 2017; Xiao, 
2019). Furthermore, a large number of recent studies have shown 
an important role of the Piezo1 channel in the mechanoregulation 
of a wide range of physiological and pathological functions 
(Murthy et al., 2017; Wu et al., 2017; Xiao, 2019). Of interest, 
accumulating evidence supports that ATP release and P2 receptor 
signaling are important in mediating Piezo1 channel-dependent 
mechanoregulation. The two separate domains of investigation 
thus need to join forces in order to develop a full and mechanistic 
understanding of mechanoregulation. The aim of this mini-
review is to introduce the Piezo1 channel and discuss the recent 
studies that provide evidence to support its crucial role in several 
types of mechanosensitive cells in the induction of ATP release 
and subsequent activation of the P2X or P2Y receptors and 
the mechanoregulation of the attendant cell functions. With 
increasing evidence to show their overlapping expression in many 
different types of mechanosensitive cells, the Piezo1 channel 
and P2 receptors, via coupling by ATP, may serve as a signaling 
mechanism that is more common than we currently understand in 
transducing the mechanical information to functional regulation.

A Brief Introduction to the Piezo1 Channel
The Piezo1 protein (also known as Fam38a) was identified to 
form the mechanically activated ion channel mediating pressure-
induced ionic currents in mouse neuroblastoma Neuro2A 
cells (Coste et al., 2010; Coste et al., 2012; Syeda et al., 2016). 
In the same seminal study, a homologue protein, Piezo2 (also 
known as Fam38b), was found to express in a subset of mouse 
dorsal root ganglia neurons and can also form a mechanically 
activated ion channel with comparatively faster inactivation 
kinetics. The Piezo proteins are large in size, being ~2,500–2,800 
amino acid residues long and with predicted molecular weights 
of ~290-320 kDa for the mouse and human proteins. They are 
predicted to have a unique membrane topology composed of 38 
transmembrane segments and intracellular N- and C-termini 
(Zhao et al., 2019). Several structures containing the core parts 
of the mouse Piezo1 channel have been recently determined by 
cryo-electron microscopy (Saotome et al., 2018; Zhao et al., 2018; 
Wang et al., 2019). These structures reveal a trimeric assembly 
and a three-bladed propeller-like architecture of the Piezo1 
channel. For further structural details, the readers can consult 
recently published reviews (e.g., Murthy et al., 2017; Xiao, 2019; 
Zhao et al., 2019).

Studies have demonstrated wide expression of the Piezo1 
channel that enables many different types of cells to sense a 
diversity of “outside-in” mechanical forces, including indentation, 

membrane stretch, shear stress, osmotic stress, ultrasound, and 
compression (Coste et al., 2010; Li et al., 2014; Miyamoto et al., 
2014; Pathak et al., 2014; Ranade et al., 2014; Jin et al., 2015; Lewis 
and Grandl, 2015; Syeda et al., 2016; Wang et al., 2016; Gao et al., 
2017; Wu et al., 2017). There is also compelling evidence to suggest 
that the Piezo1 channel can be activated by traction forces (Pathak 
et al., 2014; Murthy et al., 2017; Nourse and Pathak, 2017; Ellefsen 
et al., 2019). Thus, two different, so-called “force-from-lipids” 
and “force-from-filaments,” mechanisms have been proposed for 
mechanical activation of the Piezo1 channel (Murthy et al., 2017). 
In the “force-from-lipids” mechanism, mechanical forces introduce 
membrane tension that leads to reorganization of lipids within 
and surrounding the channel proteins. The resultant alterations 
in the membrane lipid-channel protein interactions induce the 
channel to open. This gating mechanism has gained support 
from a recent study (Lin et al., 2019). The “force-from-filaments” 
mechanism proposes that the interactions between the channel and 
extracellular matrix or intracellular cytoskeletal proteins provoke 
conformational changes leading to the channel opening.

The mechanically activated ion channels are less amenable 
to electrophysiological studies as compared to the ion channels 
activated by other modalities, such as changes in membrane 
potential, temperature, or chemical ligands. This is in part because 
of the unease of applying mechanical stimuli to cells under the 
experimental settings and the challenge of accurately determining 
the mechanical forces inducing the channel activation (Parpaite 
and Coste, 2017). Yoda1, a synthetic chemical, selectively activates 
the Piezo1 channel with an EC50 (the concentration evoking 50% 
of the maximal response) of 2.5–27 µM, determined by measuring 
Yoda1-induced Ca2+ responses in cells expressing the recombinant 
mouse and human Piezo1 channels (Syeda et  al., 2015; Evans 
et al., 2018). The discovery of Yoda1 has made it technically more 
approachable to the study of the Piezo1 channel under in vitro 
conditions. Grammostola spatulata mechanotoxin 4 (GsMTx4), a 
34-amino acid peptide isolated from the venom of a tarantula spider 
and known to block mechanically activated currents (Suchyna 
et al., 2000), has been shown to inhibit the Piezo1 channel in the 
low micromolar concentrations (Bae et al., 2011; Bagriantsev et 
al., 2014). Mechanistically, GsMTx4 acts on the extracellular side 
as a channel gating modifier to modulate the arrangements of 
membrane lipids in the surroundings of the channel protein and 
thereby decreases the efficiency of force transduction from the lipid 
bilayer to the channel (Suchyna et al., 2000; Gnanasambandam et 
al., 2017). Ruthenium red (RR), a polycationic ion, can also inhibit 
the Piezo1 channel-mediated mechanically activated currents with 
an IC50 (the concentration causing 50% inhibition of the response) 
of 5.4 µM, which was shown at the Drosophila Piezo channel, and 
RR is thought to be an open channel blocker (Coste et al., 2012). 
Gadolinium ion (Gd3+) in the micromolar concentrations is known 
to inhibit the Piezo1 channel (Cinar et al., 2015). These negative 
allosteric modulators or inhibitors are lack of the specificity 
towards the Piezo1 channel (Bowman et al., 2007). Nonetheless, 
they provide useful pharmacological tools, in combination with 
genetic means, to better understand the role of the Piezo1 channel 
in physiological and pathological processes.

The expression of the Piezo1 channel has been shown in an 
increasing number of cell types in various tissues and organs, 
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including neurons, astrocytes, smooth muscle cells, endothelial 
cells, epithelial cells, red blood cells, immune cells, periodontal 
ligament cells, neural progenitor cells, mesenchymal stem cells, 
and embryonic stem cells (e.g., Li et al., 2014; Pathak et al., 2014; Jin 
et al., 2015; Gudipaty et al., 2017; Murthy et al., 2017; Del Marmol 
et al., 2018; Friedrich et al., 2019; Mousawi et al., 2019; Solis et al., 
2019; Song et al., 2019; Velasco-Estevez et al., 2019). The Piezo1 
channel is mainly located in the plasma membrane (Coste et al., 
2010; Coste et al., 2012; Miyamoto et al., 2014; Hung et al., 2016). 
Some evidence suggests that the Piezo1 channel is also present in 
the membrane of endoplasmic reticulum (McHugh et al., 2010) 
and in the cytoplasmic compartments near the nucleus (Miyamoto 
et al., 2014) and nuclear envelope (Gudipaty et al., 2017). A large 
number of recent studies have disclosed a critical role for the cell 
surface Piezo1 channel or, more specifically, Piezo1-mediated Ca2+ 
influx, in the regulation of a multiple of cell functions (e.g., Li et 
al., 2014; Pathak et al., 2014; Cinar et al., 2015; Hung et al., 2016; 
Gudipaty et al., 2017; Del Marmol et al., 2018; Friedrich et al., 2019; 
Mousawi et al., 2019; Solis et al., 2019; Song et al., 2019; Velasco-
Estevez et al., 2019; see a recent review by Xiao, 2019). As discussed 
next, accumulating evidence supports that ATP release and 
subsequent activation of the P2X and/or P2Y receptors are critical 
in mediating Piezo1 channel-dependent mechanoregulation.

Stretch-Induced Piezo1-Dependent 
Adenosine Triphosphate Release From 
Urothelial Cells and Regulation of  
Bladder Function
It is known that as the urinary bladder distends, the urothelial 
cells become stretched and, as a result, release ATP, which in 
turn excites the innervating pelvic nerve afferents (Ferguson 
et al., 1997;Vlaskovska et al., 2001; Beckel et al., 2015). The P2X3 
receptor is expressed in the pelvic nerves, and the excitability 
of the pelvic nerve afferents induced by bladder distension was 
strongly attenuated in the P2X3-knockout mice, supporting 
a major role of the P2X3 receptor in transducing ATP release 

from urothelial cells to excitation of the pelvic nerve afferents 
(Vlaskovska et al., 2001). Both VNUT-dependent vesicular ATP 
release via exocytosis and ATP efflux through the CALHM1 and 
pannexin-1 hemi-channels have been shown to mediate ATP 
release from urothelial cells in response to mechanical forces 
(Beckel et al., 2015; Nakagomi et al., 2016; Sana-Ur-Rehman 
et al., 2017). Furthermore, transient receptor potential (TRP) 
channels, particularly the TRPV4 channel, were suggested to 
sense mechanical stretch to induce ATP release from urothelial 
cells (Mochizuki et al., 2009; Merrill et al., 2016). However, 
compelling evidence indicates that mechanical activation of the 
TRPV4 channel is indirect, depending on mechanical induction 
of phospholipase A2-mediated generation of arachidonic 
acid and/or P450 epoxygenase-mediated generation of 
5′,6′-epoxyeicosatrienoic acid from arachidonic acid (Vriens 
et al., 2004; Berna-Erro et al., 2017). Thus, the molecular 
mechanism that directly senses mechanical stimuli to trigger 
ATP release from urothelial cells remained elusive. A recent study 
has shown expression of the Piezo1 channel in urothelial cells 
from both human and mouse bladders (Miyamoto et al., 2014). 
In addition, membrane stretch induced a Ca2+ influx-dependent 
increase in the [Ca2+]i in mouse urothelial cells, and such Ca2+ 
response was strongly attenuated by treatment with GsMTx4 or 
small interference RNA (siRNA)-mediated knockdown of the 
Piezo1 expression. The same study has further found that stretch 
stimulated ATP release from mouse urothelial cells. Importantly, 
stretch-induced ATP release was dependent of extracellular Ca2+ 
and was suppressed by treatment with GsMTx4 or by siRNA-
mediated knockdown of the Piezo1 expression. This recent 
study, taken together with the previous study identifying the 
P2X3 receptor in coupling urothelial ATP release to pelvic nerve 
afferent activation (Vlaskovska et al., 2001), supports the notion 
that the Piezo1 channel in urothelial cells sense the bladder 
distension and triggers ATP release from urothelial cells and 
that ATP in turn acts as a paracrine signal excites the pelvic 
nerve afferents via activation of the P2X3 receptor (Figure 2A). 
In other words, the Piezo1 channel in urothelial cells and P2X3 

FIGURe 2 | Adenosine triphosphate (ATP) release and activation of P2 receptors in Piezo1 channel-dependent mechanoregulation. (A) The Piezo1 channel in 
urothelial cells senses mechanical forces resulting from bladder distension and induces urothelial cells to release ATP, which in turn acts as a paracrine signal to 
excite the pelvic nerve afferents by activating the P2X3 receptor. Such signaling mechanism is critical for maintaining the normal bladder function. (B) The Piezo1 
channel in endothelial cells mediates blood flow-induced release of ATP that serves an autocrine signal acting on the P2Y2 receptor to regulate vascular function 
and blood pressure. (C). The Piezo1 channel in red blood cells mediates shear stress-induced release of ATP as an autocrine signal to activate yet identified P2 
receptor(s) to regulate cell volume. See text for various molecular mechanisms that are known to mediate ATP release.
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receptor in sensory neurons are important duo players, linked 
by ATP release from urothelial cells, to maintain the normal 
bladder function.

Shear Stress-Induced Piezo1-Dependent 
Adenosine Triphosphate Release From 
endothelial Cells and Regulation of 
vascular Function
The vascular endothelium experiences dynamic blood flow-
induced shear stress. It is well recognized that the ability of 
endothelial cells to sense and respond to shear stress is vital for 
development, function, and disease of the vascular system (Hahn 
and Schwartz, 2009; Tarbell et al., 2014; Baeyens et al., 2016). ATP 
release from endothelial cells in response to shear stress has been 
well documented, and there is compelling evidence to support a 
critical role of the pannexin-1 hemi-channel in mediating shear 
stress-induced ATP release (Wang et al., 2015; Wang et al., 2016; 
Sathanoori et al., 2017). A recent study has shown that ATP released 
from endothelial cells upon exposure to shear stress serves as a 
paracrine signal that activates the P2Y2 receptor and downstream 
signaling pathways, including endothelial nitric oxide synthase to 
generate nitric oxide (NO), to induce vasodilation (Wang et al., 
2015). Consistently, endothelium-specific deletion of the P2Y2 
receptor expression in mice led to loss of blood flow-induced 
vasodilation, resulting in hypertension (Wang et al., 2015). A more 
recent study from the same group has examined the role of the 
Piezo1 channel in mediating shear stress-induced ATP release 
from endothelial cells (Wang et al., 2016). Exposing endothelial 
cells to shear stress or Yoda1 induced robust Ca2+ responses and 
ATP release, both of which were significantly attenuated by siRNA-
mediated knockdown of the Piezo1 expression. ATP release 
induced by shear stress or Yoda1 was also suppressed by siRNA-
mediated reduction in the expression of pannexin-1 or pannexin-2, 
indicating that shear stress-induced Piezo1-dependent ATP 
release is at least in part mediated by the pannexin hemi-channels 
(Wang et al., 2016). Perfusion of the mouse mesenteric arteries 
or exposure to Yoda1 induced vasodilation, which was impaired 
by endothelium-specific deletion of the Piezo1 expression. 
Furthermore, endothelium-specific and conditional knockout of 
the Piezo1 expression led to elevated blood pressure in mice (Wang 
et al., 2016), as observed for endothelium-specific and conditional 
knockout of the P2Y2 receptor (Wang et al., 2015). Collectively, 
these studies provide compelling evidence to support a vital role 
of the Piezo1 channel in mediating blood flow-induced release of 
ATP from endothelial cells as an autocrine signal to regulate the 
vascular function via activating the P2Y2 receptor (Figure 2B).

Shear Stress-Induced Piezo1-Dependent 
Adenosine Triphosphate Release From 
Red Blood Cells and Regulation of  
Cell volume
Like endothelial cells, red blood cells in circulation are 
exposed to considerable flow-induced shear stress. Hereditary 
stomatocytosis and hereditary xerocytosis are rare genetic 
disorders characterized by red blood cell dehydration. Several 

gain-of-function mutations in the Piezo1 channel have been 
shown to be causatively associated these conditions, highlighting 
a crucial role of the Piezo1 channel in maintaining the normal 
red blood cell homeostasis (Zarychanski et al., 2012; Albuisson 
et al., 2013; Bae et al., 2013; Glogowska et al., 2017; Andolfo et al., 
2018; Ma et al., 2018). Both human and mouse red blood cells 
are reported to express the Piezo1 channel on the cell surface. 
Interestingly, membrane stretch elicited strong Ca2+ influx-
dependent increase in the [Ca2+]i in red blood cells isolated from 
wild-type mice, but not from mice with conditional knockout of 
the Piezo1 expression (Cahalan et al., 2015). Similarly, exposure to 
Yoda1 induced Piezo1-dependent Ca2+ entry in mouse red blood 
cells (Cahalan et al., 2015). Fluid flow-induced shear stress also 
elicited robust Ca2+ influx in human red blood cells, which was 
significantly suppressed by treatment with GsMTx4, RR or Gd3+ 
(Cinar et al., 2015). Furthermore, genetic deletion of the Piezo1 
expression led to red blood cell over-hydration and increased 
mechanical fragility both in vitro and in vivo. Conversely, Yoda1-
induced activation of the Piezo1 channel caused red blood cell 
dehydration (Cahalan et al., 2015). These findings demonstrate 
an indispensable role of the Piezo1 channel in regulating red 
blood cell function and reveal the Piezo1 channel as a promising 
target for the development of therapeutics to treat hereditary 
stomatocytosis and hereditary xerocytosis.

It is long known that red blood cells release ATP in response to 
mechanical stimuli, such as osmotic stress (Petruzzi et al., 1994) and 
shear stress (Wan et al., 2008). A previous study showed that ATP 
release under in vitro conditions remained constant in response to 
shear stress below a certain threshold, but increased significantly above 
the threshold, which was accompanied with cellular deformation 
(Wan et al., 2008). A subsequent study provides evidence to suggest 
that the pannexin-1 hemi-channel is the main pathway mediating 
ATP release induced by shear stress both above and below the 
threshold, whereas the CFTR is engaged in deformation-dependent 
ATP release (Forsyth et al., 2011). A recent study shows that shear 
stress-induced ATP release was strongly correlated with extracellular 
Ca2+ concentration (Cinar et al., 2015). Shear stress-induced ATP 
release as well as Ca2+ influx in human red blood cells was attenuated 
by treatment with GsMTx4, RR or Gd3+ (Cinar et al., 2015). These 
results suggest that the Piezo1 channel is important in mediating 
induction by shear stress of ATP release from red blood cells (Figure 
2C). Several ATP-sensitive P2 receptors, including P2X1, P2X7, and 
P2Y1, P2Y11 are expressed in red blood cells, and evidence exists 
to support that activation of these P2 receptors in red blood cells 
stimulates a number of signaling pathways that is critical for cell 
functions, including cell volume regulation (Sluyter, 2015). However, 
it has not been ascertained which P2 receptor(s) participate(s) in 
Piezo1-dependent regulation of red blood cell functions.

Piezo1-Dependent Adenosine 
Triphosphate Release From Mesenchymal 
Stem Cells and Regulation of Cell 
Migration
Mesenchymal stem cells (MSCs), which have promising 
applications in tissue regeneration and cell-based therapies, 
are highly mechanosensitive (Engler et al., 2006; Riddle et al., 
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2007; Shih et al., 2011; Choi et al., 2012; Yang et al., 2012; Yuan 
et al., 2012; Suhr et al., 2013; Yuan et al., 2013; Chen et al., 2018; 
Goetzke et al., 2018; Li et al., 2018). It is well recognized that 
MSCs release ATP in response to mechanical stimulation both 
in vitro and in vivo (Riddle et al., 2007; Sun et al., 2013; Weihs 
et al., 2014). It is also known that several P2X and P2Y receptors 
are expressed in MSCs and mediate ATP-induced regulation 
of cell proliferation, migration, and differentiation (Coppi et 
al., 2007; Riddle et al., 2007; Sun et al., 2013; Peng et al., 2016; 
Jiang et al., 2017a; Jiang et al., 2017b). A previous study using 
bone marrow-derived MSCs suggests that fluid flow-induced 
ATP release via the pannexin hemi-channels and subsequent 
activation of the ATP-sensitive P2Y receptors increased cell 
proliferation (Riddle et al., 2007). A more recent study shows 
that shockwave-induced ATP release via undefined release 
mechanisms and subsequent activation of the P2X7 receptor 
stimulated osteogenic differentiation (Sun et al., 2013). The 
expression of the Piezo1 channel has been documented in several 
very recent studies using MSCs from different species and tissues 
(Gao et al., 2017; Sugimoto et al., 2017; Mousawi et al., 2019). 
Our recent study shows that Yoda1-induced activation of the 
Piezo1 channel in human dental pulp MSC promoted migration, 
which was suppressed by siRNA-mediated knockdown of the 
Piezo1 expression (Mousawi et al., 2019). More importantly, 
Yoda1-induced activation of the Piezo1 channel stimulated ATP 
release from human dental pulp MSCs (Mousawi et al., 2019). 
Yoda1-induced Piezo1-dependent increase in cell migration was 
inhibited by treatment with apyrase, a scavenger of extracellular 
ATP, and also with PPADS, a P2 receptor generic antagonist. 
Taken together, these results support the notion that activation of 
the Piezo1 channel enhances MSC migration via inducing release 
of ATP as an autocrine signal that activates the P2 receptors. Our 
previous study has identified P2X7, P2Y1, and P2Y11 as the 
major P2 receptors that participate in mediating ATP-induced 
stimulation of human dental pulp MSC migration (Peng et al., 
2016). It is highly interesting to examine the role of ATP release 
and the P2 receptors in Piezo1-dependent mechanoregulation of 
MSC functions such as differentiation and migration.

Adenosine Triphosphate Release and 
P2 Receptor as a Common Signaling 
Mechanism in Piezo1 Channel-Dependent 
Mechanoregulation?
As mentioned above, recent studies demonstrate expression of 
the Piezo1 channel in many different types of mechanosensitive 
cells with an important role in the mechanoregulation of 
attendant cell functions. The majority, if not all, of these cells, are 
known to express the P2X/P2Y receptors that are important in 
mediating ATP-induced regulation of their functions. This raises 
the perspective that ATP release integrates the Piezo1 channel 
and P2 receptor as a more common signaling mechanism in the 
mechanoregulation of cell functions.

The expression of the Piezo1 channel is required for alignment 
of endothelial cells in response to shear stress (Li et al., 2014; 
Ranade et al., 2014). Similarly, the P2Y2 receptor in endothelial 
cells plays an important role in mediating shear stress-induced 

cell alignment (Sathanoori et al., 2017). It is interesting to 
investigate whether shear stress-induced ATP release couples 
the Piezo1 and the P2Y2 receptor in the regulation of vascular 
development. Another recent study shows that shear stress 
induces ATP release from red blood cells, on one hand, and an 
increase in the [Ca2+]i and NO generation in endothelial cells 
and formation of inter-endothelial junctions, on the other. These 
shear stress-induced responses or effects both in red blood 
cells and endothelial cells were prevented by pharmacological 
inhibition and genetic depletion of the pannexin-1 channel on 
red blood cells (Xu et al., 2017). It is unknown whether shear 
stress-induced Piezo1-dependent ATP release from red blood 
cells acts as a paracrine signal to induce Ca2+ signaling in 
endothelial cells via activating the P2X/P2Y receptors.

As discussed above, ATP release coupling of the Piezo1 
channel in urothelial cells and the P2X3 receptor in the pelvic 
nerve afferents is important in maintaining the normal bladder 
function. Such a signaling mechanism may also play an important 
role in mediating dentinal pain. It is known that dentinal fluid-
induced odontoblast deformation can evoke dentinal pain. A 
recent electrophysiological study shows that pressure-induced 
odontoblast deformation elicited inward currents that caused 
membrane depolarization and induced action potentials in 
co-cultured isolectin IB4-negative medium-sized trigeminal 
ganglion neurons (Sato et al., 2018). Furthermore, such inward 
currents were significantly attenuated by treatment with NF110, 
a P2X3 receptor antagonist, or with GsMTx4 as well as with a 
cocktail of TRP channel inhibitors (Sato et al., 2018). It is thus 
hypothesized that Piezo1/TRP-dependent ATP release from 
odontoblasts in response to mechanical stimulation excites 
myelinated Aδ neurons via activating the P2X3 receptor, thereby 
forming a signaling mechanism generating dentinal pain.

Cancer cells in the metastasis process encounter mechanical 
forces such as compression from the surrounding extracellular 
matrix and cells in the primary site, invasion into neighboring 
tissues, intravasation and extravasation through endothelial 
cells, micro-metastasis at target tissues or organs. They also 
experience blood flow-induced shear stress during circulation 
in the blood stream. It is conceivable that mechanical forces 
influence cancer cell migration, invasiveness, and metastasis. 
Consistently, several recent studies provide increasing evidence 
to show that activation of the Piezo1 channel stimulates cell 
proliferation in gastric cancer cells (Zhang et al., 2018), and 
enhances cell migration in gastric cancer cells (Yang et al., 2014; 
Zhang et al., 2018) and malignant MCF-7 breast cancer cells (Li 
et al., 2015) but reduces non-small cell lung cancer progression 
and cell migration (Huang et al., 2019). Compelling evidence 
already exists to support that extracellular ATP can regulate 
cancer cell migration, invasiveness, and metastasis via activating 
the P2X7, P2Y2 or P2Y11 receptors (Jelassi et al., 2011; Jelassi 
et al., 2013; Schumacher et al., 2013; Chadet et al., 2014; Roger 
et al., 2015; Khalid et al., 2017). Particularly, it was shown that 
ATP released from platelets bound to the circulating cancer cells 
and consequently activates the P2Y2 receptor on endothelial cells 
to promote formation of inter-endothelial junctions for cancer 
cell migration (Schumacher et al., 2013). As discussed above, 
shear stress can induce ATP release from red blood cells. It is 
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attractive to speculate that shear stress-induced ATP release from 
red blood cells acts as a paracrine signal to induce formation of 
inter-endothelial junctions via activating the P2X/P2Y receptors 
in endothelial cells and thereby facilities intravasation and 
extravasation of cancer cells.

CONCLUDING ReMARKS
It is evident from the discussion above that accumulating evidence 
supports an important role of ATP release as an autocrine 
and/or paracrine signal and subsequent activation of the P2 
receptors in Piezo1 channel-dependent mechanoregulation of 
cell functions and associated physiological processes (Figure 
2). As illustrated by hereditary stomatocytosis and hereditary 
xerocytosis, alterations in such signaling mechanisms resulting 
from mutations in the Piezo1 channel in red blood cells can 
lead to cell dysfunction and severe human diseased conditions. 
Studies so far support the Piezo1 channel as an intrinsic 
mechanosensor to trigger ATP release in response to mechanical 
stimulation. However, it remains unknown how activation of the 

Piezo1 channel regulates the ATP release mechanisms. Finally, 
more investigations are required to determine whether the 
Piezo1 channel and P2 receptors coupled by ATP release form a 
common signaling mechanism in transducing mechanical force 
information to regulation of cell functions.

AUTHOR CONTRIBUTIONS
All authors contributed to the development of the concept. L-HJ 
wrote the manuscript. All the authors commented and approved 
the manuscript.

ACKNOwLeDGMeNTS
The research works from the authors’ laboratory were supported 
by the Disciplinary Group of Psychology and Neuroscience 
Xinxiang Medical University (2016PN-KFKT-06) and visiting 
professorship from University of Tours to LHJ, and a PhD 
studentship from Kuwait High Commission to FM.

ReFeReNCeS
Abbracchio, M. P., Burnstock, G., Verkhratsky, A., and Zimmermann, H. (2009). 

Purinergic signalling in the nervous system: an overview. Trends Neurosci. 32, 
19–29. doi: 10.1016/j.tins.2008.10.001

Albuisson, J., Murthy, S. E., Bandell, M., Coste, B., Louis-Dit-Picard, H., Mathur, J., 
et al. (2013). Dehydrated hereditary stomatocytosis linked to gain-of-function 
mutations in mechanically activated PIEZO1 ion channels. Nat. Commun. 4, 
1884. doi: 10.1038/ncomms2899

Alves, M., Beamer, E., and Engel, T. (2018). The metabotropic purinergic P2Y 
receptor family as novel drug target in epilepsy. Front. Pharmacol. 9, 193. doi: 
10.3389/fphar.2018.00193

Andolfo, I., Manna, F., De Rosa, G., Rosato, B. E., Gambale, A., Tomaiuolo, G., 
et al. (2018). PIEZO1-R1864H rare variant accounts for a genetic phenotype-
modifier role in dehydrated hereditary stomatocytosis. Haematologica 103, 
e94–e97. doi: 10.3324/haematol.2017.180687

Berna-Erro, A., Izquierdo-Serra, M., Sepúlveda, R. V., Rubio-Moscardo, F., 
Doñate-Macián, P., Serra, S. A., et al. (2017). Structural determinants of 
5’,6’-epoxyeicosatrienoic acid binding to and activation of TRPV4 channel. Sci. 
Rep 7, 10522. doi: 10.1038/s41598-017-11274-1

Bae, C., Sachs, F., and Gottlieb, P. A. (2011). The mechanosensitive ion channel 
Piezo1 is inhibited by the peptide GsMTx4. Biochemistry 50, 6295–6300. doi: 
10.1021/bi200770q

Bae, C., Gnanasambandam, R., Nicolai, C., Sachs, F., and Gottlieb, P. A. 
(2013). Xerocytosis is caused by mutations that alter the kinetics of the 
mechanosensitive channel PIEZO1. Proc. Natl. Acad. Sci. U. S. A. 110, E1162–
E1168. doi: 10.1073/pnas.1219777110

Baeyens, N., Bandyopadhyay, C., Coon, B. G., Yun, S., and Schwartz, M. A. (2016). 
Endothelial fluid shear stress sensing in vascular health and disease. J. Clin. 
Invest 126, 821–828. doi: 10.1172/JCI83083

Bagriantsev, S. N., Gracheva, E. O., and Gallagher, P. G. (2014). Piezo proteins: 
regulators of mechanosensation and other cellular processes. J Biol Chem 289, 
31673–31681. doi: 10.1074/jbc.R114.612697

Beckel, J. M., Daugherty, S. L., Tyagi, P., Wolf-Johnston, A. S., Birder, L. A., 
Mitchell, C. H., et al. (2015). Pannexin 1 channels mediate the release of ATP 
into the lumen of the rat urinary bladder. J. Physiol. 593, 1857–1871. doi: 
10.1113/jphysiol.2014.283119

Bowman, C. L., Gottlieb, P. A., Suchyna, T. M., Murphy, Y. K., and Sachs, F. 
(2007). Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: 
history, properties, mechanisms and pharmacology. Toxicon. 49, 249–270. doi: 
10.1016/j.toxicon.2006.09.030

Cahalan, S. M., Lukacs, V., Ranade, S. S., Chien, S., Bandell, M., and Patapoutian, A. 
(2015). Piezo1 links mechanical forces to red blood cell volume. Elife 4. doi: 
10.7554/eLife.07370

Caseley, E. A., Muench, S. P., Roger, S., Mao, H. J., Baldwin, S. A., and Jiang, L. H. 
(2014). Non-synonymous single nucleotide polymorphisms in the P2X receptor 
genes: association with diseases, impact on receptor functions and potential 
use as diagnosis biomarkers. Int. J. Mol. Sci. 15, 13344–13371. doi: 10.3390/
ijms150813344

Cekic, C., and Linden, J. (2016). Purinergic regulation of the immune system. Nat. 
Rev. Immunol. 16, 177–192. doi: 10.1038/nri.2016.4

Chadet, S., Jelassi, B., Wannous, R., Angoulvant, D., Chevalier, S., Besson, P., et al. 
(2014). The activation of P2Y2 receptors increases MCF-7 breast cancer cells 
migration through the MEK-ERK1/2 signalling pathway. Carcinogenesis 35, 
1238–1247. doi: 10.1093/carcin/bgt493

Chen, J., Tan, Z., Zeng, L., Zhang, X., He, Y., Gao, W., et al. (2013). Heterosynaptic 
long-term depression mediated by ATP released from astrocytes. Glia 61, 178–
191. doi: 10.1002/glia.22425

Chen, X., Liu, Y., Ding, W., Shi, J., Li, S., Liu, Y., et al. (2018). Mechanical stretch-
induced osteogenic differentiation of human jaw bone marrow mesenchymal 
stem cells (hJBMMSCs) via inhibition of the NF-kappaB pathway. Cell Death 
Dis. 9, 207. doi: 10.1038/s41419-018-0279-5

Choi, D., Park, E., Jung, E., Cha, B., Lee, S., Yu, J., et al. (2019). Piezo1 
incorporates mechanical force signals into the genetic program that governs 
lymphatic valve development and maintenance. JCI Insight 4. doi: 10.1172/
jci.insight.125068

Choi, Y. S., Vincent, L. G., Lee, A. R., Dobke, M. K., and Engler, A. J. (2012). 
Mechanical derivation of functional myotubes from adipose-derived stem 
cells. Biomaterials 33, 2482–2491. doi: 10.1016/j.biomaterials.2011.12.004

Cinar, E., Zhou, S., DeCourcey, J., Wang, Y., Waugh, R. E., and Wan, J. (2015). 
Piezo1 regulates mechanotransductive release of ATP from human RBCs. Proc. 
Natl. Acad. Sci. U. S. A. 112, 11783–11788. doi: 10.1073/pnas.1507309112

Coppi, E., Pugliese, A. M., Urbani, S., Melani, A., Cerbai, E., Mazzanti, B., 
et al. (2007). ATP modulates cell proliferation and elicits two different 
electrophysiological responses in human mesenchymal stem cells. Stem Cells 
25, 1840–1849. doi: 10.1634/stemcells.2006-0669

Coste, B., Mathur, J., Schmidt, M., Earley, T. J., Ranade, S., Petrus, M. J., et al. 
(2010). Piezo1 and Piezo2 are essential components of distinct mechanically 
activated cation channels. Science 330, 55–60. doi: 10.1126/science.1193270

Coste, B., Xiao, B., Santos, J. S., Syeda, R., Grandl, J., Spencer, K. S., et al. (2012). 
Piezo proteins are pore-forming subunits of mechanically activated channels. 
Nature 483, 176–181. doi: 10.1038/nature10812

Frontiers in Pharmacology | www.frontiersin.org November 2019 | Volume 10 | Article 1304

https://doi.org/10.1016/j.tins.2008.10.001
https://doi.org/10.1038/ncomms2899
https://doi.org/10.3389/fphar.2018.00193
https://doi.org/10.3324/haematol.2017.180687
https://doi.org/10.1038/s41598-017-11274-1
https://doi.org/10.1021/bi200770q
https://doi.org/10.1073/pnas.1219777110
https://doi.org/10.1172/JCI83083
https://doi.org/10.1074/jbc.R114.612697
https://doi.org/10.1113/jphysiol.2014.283119
https://doi.org/10.1016/j.toxicon.2006.09.030
https://doi.org/10.7554/eLife.07370
https://doi.org/10.3390/ijms150813344
https://doi.org/10.3390/ijms150813344
https://doi.org/10.1038/nri.2016.4
https://doi.org/10.1093/carcin/bgt493
https://doi.org/10.1002/glia.22425
https://doi.org/10.1038/s41419-018-0279-5
https://doi.org/10.1172/jci.insight.125068
https://doi.org/10.1172/jci.insight.125068
https://doi.org/10.1016/j.biomaterials.2011.12.004
https://doi.org/10.1073/pnas.1507309112
https://doi.org/10.1634/stemcells.2006-0669
https://doi.org/10.1126/science.1193270
https://doi.org/10.1038/nature10812
https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Piezo1-Dependent ATP Release in MechanoregulationWei et al.

8

Del Marmol, J. I., Touhara, K. K., Croft, G., and MacKinnon, R. (2018). Piezo1 
forms a slowly-inactivating mechanosensory channel in mouse embryonic 
stem cells. Elife 7. doi: 10.7554/eLife.33149

Di Virgilio, F., Sarti, A. C., Falzoni, S., De Marchi, E., and Adinolfi, E. (2018). 
Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. 
Nat. Rev. Cancer 18, 601–618. doi: 10.1038/s41568-018-0037-0

Ellefsen, K. L., Holt, J. R., Chang, A. C., Nourse, J. L., Arulmoli, J., 
Mekhdjian,  A.  H., et al. (2019). Myosin-II mediated traction forces evoke 
localized Piezo1-dependent Ca2+ flickers. Commun. Biol. 2, 298. doi: 10.1038/
s42003-019-0514-3

Engler, A. J., Sen, S., Sweeney, H. L., and Discher, D. E. (2006). Matrix elasticity 
directs stem cell lineage specification. Cell 126, 677–689. doi: 10.1016/j.
cell.2006.06.044

Evans, E. L., Cuthbertson, K., Endesh, N., Rode, B., Blythe, N. M., Hyman, A. J., 
et al. (2018). Yoda1 analogue (Dooku1) which antagonizes Yoda1-evoked 
activation of Piezo1 and aortic relaxation. Br. J. Pharmacol. 175, 1744–1759. 
doi: 10.1111/bph.14188

Ferguson, D. R., Kennedy, I., and Burton, T. J. (1997). ATP is released from 
rabbit urinary bladder epithelial cells by hydrostatic pressure changes–a 
possible sensory mechanism? J. Physiol. 505 (Pt 2), 503–511. doi: 
10.1111/j.1469-7793.1997.503bb.x

Fields, R. D., and Burnstock, G. (2006). Purinergic signalling in neuron-glia 
interactions. Nat. Rev. Neurosci. 7, 423–436. doi: 10.1038/nrn1928

Fields, R. D., and Ni, Y. (2010). Nonsynaptic communication through ATP release 
from volume-activated anion channels in axons. Sci. Signal. 3, ra73. doi: 
10.1126/scisignal.2001128

Forsyth, A. M., Wan, J., Owrutsky, P. D., Abkarian, M., and Stone, H. A. (2011). 
Multiscale approach to link red blood cell dynamics, shear viscosity, and 
ATP release. Proc. Natl. Acad. Sci. U. S. A. 108, 10986–10991. doi: 10.1073/
pnas.1101315108

Friedrich, E. E., Hong, Z., Xiong, S., Zhong, M., Di, A., Rehman, J., et al. 
(2019). Endothelial cell Piezo1 mediates pressure-induced lung vascular 
hyperpermeability via disruption of adherens junctions. Proc. Natl. Acad. Sci. 
U. S. A. 116, 12980–12985. doi: 10.1073/pnas.1902165116

Gao, Q., Cooper, P. R., Walmsley, A. D., and Scheven, B. A. (2017). Role of Piezo 
channels in ultrasound-stimulated dental stem cells. J. Endod. 43, 1130–1136. 
doi: 10.1016/j.joen.2017.02.022

Geisler, J. C., Corbin, K. L., Li, Q., Feranchak, A. P., Nunemaker, C. S., and Li, C. 
(2013). Vesicular nucleotide transporter-mediated ATP release regulates 
insulin secretion. Endocrinology 154, 675–684. doi: 10.1210/en.2012-1818

Glogowska, E., Schneider, E. R., Maksimova, Y., Schulz, V. P., Lezon-Geyda, K., 
Wu, J., et al. (2017). Novel mechanisms of PIEZO1 dysfunction in hereditary 
xerocytosis. Blood 130, 1845–1856. doi: 10.1182/blood-2017-05-786004

Gnanasambandam, R., Gottlieb, P. A., and Sachs, F. (2017). The kinetics and the 
permeation properties of Piezo channels. Curr. Top. Membr. 79, 275–307. doi: 
10.1016/bs.ctm.2016.11.004

Goetzke, R., Sechi, A., De Laporte, L., Neuss, S., and Wagner, W. (2018). Why the 
impact of mechanical stimuli on stem cells remains a challenge. Cell Mol. Life 
Sci. 75, 3297–3312. doi: 10.1007/s00018-018-2830-z

Gudipaty, S. A., Lindblom, J., Loftus, P. D., Redd, M. J., Edes, K., Davey, C. F., 
et al. (2017). Mechanical stretch triggers rapid epithelial cell division through 
Piezo1. Nature 543, 118–121. doi: 10.1038/nature21407

Hahn, C., and Schwartz, M. A. (2009). Mechanotransduction in vascular 
physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10, 53–62. doi: 10.1038/
nrm2596

Harada, Y., Kato, Y., Miyaji, T., Omote, H., Moriyama, Y., and Hiasa, M. (2018). 
Vesicular nucleotide transporter mediates ATP release and migration in 
neutrophils. J. Biol. Chem. 293, 3770–3779. doi: 10.1074/jbc.M117.810168

Huang, Z., Sun, Z., Zhang, X., Niu, K., Wang, Y., Zheng, J., et al. (2019). Loss of 
stretch-activated channels, PIEZOs, accelerates non-small cell lung cancer 
progression and cell migration. Biosci. Rep. 39. doi: 10.1042/BSR20181679

Hung, W. C., Yang, J. R., Yankaskas, C. L., Wong, B. S., Wu, P. H., Pardo-Pastor, C., 
et al. (2016). Confinement sensing and signal optimization via Piezo1/PKA and 
myosin II pathways. Cell Rep. 15, 1430–1441. doi: 10.1016/j.celrep.2016.04.035

Iring, A., Jin, Y. J., Albarran-Juarez, J., Siragusa, M., Wang, S., Dancs, P. T., et al. 
(2019). Shear stress-induced endothelial adrenomedullin signaling regulates 
vascular tone and blood pressure. J. Clin. Invest. 130, 2775–2791. doi: 10.1172/
JCI123825

Jelassi, B., Chantome, A., Alcaraz-Perez, F., Baroja-Mazo, A., Cayuela, M. L., 
Pelegrin, P., et al. (2011). P2X7 receptor activation enhances SK3 channels- and 
cystein cathepsin-dependent cancer cells invasiveness. Oncogene 30, 2108–
2122. doi: 10.1038/onc.2010.593

Jelassi, B., Anchelin, M., Chamouton, J., Cayuela, M. L., Clarysse, L., Li, J., et al. (2013). 
Anthraquinone emodin inhibits human cancer cell invasiveness by antagonizing 
P2X7 receptors. Carcinogenesis 34, 1487–1496. doi: 10.1093/carcin/bgt099

Jiang, L. H., Mousawi, F., Yang, X., and Roger, S. (2017a). ATP-induced Ca2+-
signalling mechanisms in the regulation of mesenchymal stem cell migration. 
Cell Mol. Life Sci. 74, 3697–3710. doi: 10.1007/s00018-017-2545-6

Jiang, L. H., Hao, Y., Mousawi, F., Peng, H., and Yang, X. (2017b). Expression of P2 
purinergic receptors in mesenchymal stem vells and their toles in extracellular 
nucleotide regulation of cell functions. J. Cell Physiol. 232, 287–297. doi: 
10.1002/jcp.25484

Jin, Y., Li, J., Wang, Y., Ye, R., Feng, X., Jing, Z., et al. (2015). Functional role of 
mechanosensitive ion channel Piezo1 in human periodontal ligament cells. 
Angle Orthod. 85, 87–94. doi: 10.2319/123113-955.1

Khakh, B. S., and North, R. A. (2006). P2X receptors as cell-surface ATP sensors in 
health and disease. Nature 442, 527–532. doi: 10.1038/nature04886

Khalid, M., Brisson, L., Tariq, M., Hao, Y., Guibon, R., Fromont, G., et al. (2017). 
Carcinoma-specific expression of P2Y11 receptor and its contribution in ATP-
induced purinergic signalling and cell migration in human hepatocellular 
carcinoma cells. Oncotarget 8, 37278–37290. doi: 10.18632/oncotarget.16191

Krugel, U. (2016). Purinergic receptors in psychiatric disorders. Neuropharmacology 
104, 212–225. doi: 10.1016/j.neuropharm.2015.10.032

Lalo, U., Palygin, O., Rasooli-Nejad, S., Andrew, J., Haydon, P. G., and Pankratov, Y. 
(2014). Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition 
in the neocortex. PLoS Biol. 12, e1001747. doi: 10.1371/journal.pbio.1001747

Lewis, A. H., and Grandl, J. (2015). Mechanical sensitivity of Piezo1 ion channels 
can be tuned by cellular membrane tension. Elife 4. doi: 10.7554/eLife.12088

Li, C., Rezania, S., Kammerer, S., Sokolowski, A., Devaney, T., Gorischek, A., et al. 
(2015). Piezo1 forms mechanosensitive ion channels in the human MCF-7 
breast cancer cell line. Sci. Rep. 5, 8364. doi: 10.1038/srep08364

Li, J., Hou, B., Tumova, S., Muraki, K., Bruns, A., Ludlow, M. J., et al. (2014). Piezo1 
integration of vascular architecture with physiological force. Nature 515, 279–
282. doi: 10.1038/nature13701

Li, S., Wang, J., Han, Y., Li, X., Liu, C., Lv, Z., et al. (2018). Carbenoxolone inhibits 
mechanical stress-induced osteogenic differentiation of mesenchymal stem 
cells by regulating p38 MAPK phosphorylation. Exp. Ther. Med. 15, 2798–2803. 
doi: 10.3892/etm.2018.5757

Lin, Y. C., Guo, Y. R., Miyagi, A., Levring, J., MacKinnon, R., and Scheuring, S. 
(2019). Force-induced conformational changes in PIEZO1. Nature 573, 230–
234. doi: 10.1038/s41586-019-1499-2

Ma, S., Cahalan, S., LaMonte, G., Grubaugh, N. D., Zeng, W., Murthy, S. E., 
et  al. (2018). Common PIEZO1 allele in African populations causes RBC 
dehydration and attenuates plasmodium infection. Cell 173, 443–455. doi: 
10.1016/j.cell.2018.02.047

Masuda, T., Ozono, Y., Mikuriya, S., Kohro, Y., Tozaki-Saitoh, H., Iwatsuki, K., 
et al. (2016). Dorsal horn neurons release extracellular ATP in a VNUT-
dependent manner that underlies neuropathic pain. Nat. Commun. 7, 12529. 
doi: 10.1038/ncomms12529

McHugh, B. J., Buttery, R., Lad, Y., Banks, S., Haslett, C., and Sethi, T. (2010). 
Integrin activation by Fam38A uses a novel mechanism of R-Ras targeting to 
the endoplasmic reticulum. J. Cell Sci. 123, 51–61. doi: 10.1242/jcs.056424

Merrill, L., Gonzalez, E. J., Girard, B. M., and Vizzard, M. A. (2016). Receptors, 
channels, and signalling in the urothelial sensory system in the bladder. Nat. 
Rev. Urol. 13, 193–204. doi: 10.1038/nrurol.2016.13

Miras-Portugal, M. T., Menéndez-Méndez, A., Gómez-Villafuertes, R., Ortega, F., 
Delicado, E. G., Pérez-Sen, R., et al. (2019). Physiopathological role of the 
vesicular nucleotide transporter (VNUT) in the central nervous system: 
relevance of the vesicular nucleotide release as a potential therapeutic target. 
Front. Cell Neurosci. 13, 224. doi: 10.3389/fncel.2019.00224

Miyamoto, T., Mochizuki, T., Nakagomi, H., Kira, S., Watanabe, M., Takayama, 
Y., et al. (2014). Functional role for Piezo1 in stretch-evoked Ca2+ influx and 
ATP release in urothelial cell cultures. J. Biol. Chem. 289, 16565–16575. doi: 
10.1074/jbc.M113.528638

Mochizuki, T., Sokabe, T., Araki, I., Fujishita, K., Shibasaki, K., Uchida, K., et al. 
(2009). The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and 

Frontiers in Pharmacology | www.frontiersin.org November 2019 | Volume 10 | Article 1304

https://doi.org/10.7554/eLife.33149
https://doi.org/10.1038/s41568-018-0037-0
https://doi.org/10.1038/s42003-019-0514-3
https://doi.org/10.1038/s42003-019-0514-3
https://doi.org/10.1016/j.cell.2006.06.044
https://doi.org/10.1016/j.cell.2006.06.044
https://doi.org/10.1111/bph.14188
https://doi.org/10.1111/j.1469-7793.1997.503bb.x
https://doi.org/10.1038/nrn1928
https://doi.org/10.1126/scisignal.2001128
https://doi.org/10.1073/pnas.1101315108
https://doi.org/10.1073/pnas.1101315108
https://doi.org/10.1073/pnas.1902165116
https://doi.org/10.1016/j.joen.2017.02.022
https://doi.org/10.1210/en.2012-1818
https://doi.org/10.1182/blood-2017-05-786004
https://doi.org/10.1016/bs.ctm.2016.11.004
https://doi.org/10.1007/s00018-018-2830-z
https://doi.org/10.1038/nature21407
https://doi.org/10.1038/nrm2596
https://doi.org/10.1038/nrm2596
https://doi.org/10.1074/jbc.M117.810168
https://doi.org/10.1042/BSR20181679
https://doi.org/10.1016/j.celrep.2016.04.035
https://doi.org/10.1172/JCI123825
https://doi.org/10.1172/JCI123825
https://doi.org/10.1038/onc.2010.593
https://doi.org/10.1093/carcin/bgt099
https://doi.org/10.1007/s00018-017-2545-6
https://doi.org/10.1002/jcp.25484
https://doi.org/10.2319/123113-955.1
https://doi.org/10.1038/nature04886
https://doi.org/10.18632/oncotarget.16191
https://doi.org/10.1016/j.neuropharm.2015.10.032
https://doi.org/10.1371/journal.pbio.1001747
https://doi.org/10.7554/eLife.12088
https://doi.org/10.1038/srep08364
https://doi.org/10.1038/nature13701
https://doi.org/10.3892/etm.2018.5757
https://doi.org/10.1038/s41586-019-1499-2
https://doi.org/10.1016/j.cell.2018.02.047
https://doi.org/10.1038/ncomms12529
https://doi.org/10.1242/jcs.056424
https://doi.org/10.1038/nrurol.2016.13
https://doi.org/10.3389/fncel.2019.00224
https://doi.org/10.1074/jbc.M113.528638
https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Piezo1-Dependent ATP Release in MechanoregulationWei et al.

9

ATP release in primary urothelial cell cultures. J. Biol. Chem. 284, 21257–
21264. doi: 10.1074/jbc.M109.020206

Moriyama, Y., Hiasa, M., Sakamoto, S., Omote, H., and Nomura, M. (2017). 
Vesicular nucleotide transporter (VNUT): appearance of an actress on the 
stage of purinergic signaling. Purinergic Signal 13, 387–404. doi: 10.1007/
s11302-017-9568-1

Mousawi, F., Peng, H., Li, J., Sreenivasan, P., Roger, S., Zhao, H., et al. (2019). 
Chemical activation of the Piezo1 channel drives mesenchymal stem cell 
migration via inducing ATP release and activation of P2 receptor purinergic 
signalling. Stem Cells. doi: 10.1002/stem.3114

Murthy, S. E., Dubin, A. E., and Patapoutian, A. (2017). Piezos thrive under 
pressure: mechanically activated ion channels in health and disease. Nat. Rev. 
Mol. Cell Biol. 18, 771–783. doi: 10.1038/nrm.2017.92

Nakagomi, H., Yoshiyama, M., Mochizuki, T., Miyamoto, T., Komatsu, R., Imura, Y., 
et al. (2016). Urothelial ATP exocytosis: regulation of bladder compliance in 
the urine storage phase. Sci. Rep. 6, 29761. doi: 10.1038/srep29761

North, R. A. (2002). Molecular physiology of P2X receptors. Physiol. Rev. 82, 
1013–1067. doi: 10.1152/physrev.00015.2002

Nourse, J. L., and Pathak, M. M. (2017). How cells channel their stress: Interplay 
between Piezo1 and the cytoskeleton. Semin. Cell Dev. Biol. 71, 3–12. doi: 
10.1016/j.semcdb.2017.06.018

Pankratov, Y., Lalo, U., Verkhratsky, A., and North, R. A. (2006). Vesicular 
release of ATP at central synapses. Pflugers Arch 452, 589–597. doi: 10.1007/
s00424-006-0061-x

Parpaite, T., and Coste, B. (2017). Piezo channels. Curr. Biol. 27, R250–R252. doi: 
10.1016/j.cub.2017.01.048

Pathak, M. M., Nourse, J. L., Tran, T., Hwe, J., Arulmoli, J., Le, D. T., et al. (2014). Stretch-
activated ion channel Piezo1 directs lineage choice in human neural stem cells. 
Proc. Natl. Acad. Sci. U. S. A. 111, 16148–16153. doi: 10.1073/pnas.1409802111

Peng, H., Hao, Y., Mousawi, F., Roger, S., Li, J., Sim, J. A., et al. (2016). Purinergic 
and store-operated Ca2+ signaling mechanisms in mesenchymal stem cells 
and their roles in ATP-induced stimulation of cell migration. Stem Cells 34, 
2102–2114. doi: 10.1002/stem.2370

Petruzzi, E., Orlando, C., Pinzani, P., Sestini, R., Del Rosso, A., Dini, G., et al. 
(1994). Adenosine triphosphate release by osmotic shock and hemoglobin 
A1C in diabetic subjects’ erythrocytes. Metabolism 43, 435–440. doi: 
10.1016/0026-0495(94)90072-8

Ranade, S. S., Qiu, Z., Woo, S. H., Hur, S. S., Murthy, S. E., Cahalan, S. M., et al. 
(2014). Piezo1, a mechanically activated ion channel, is required for vascular 
development in mice. Proc. Natl. Acad. Sci. U. S. A. 111, 10347–10352. doi: 
10.1073/pnas.1409233111

Riddle, R. C., Taylor, A. F., Rogers, J. R., and Donahue, H. J. (2007). ATP release 
mediates fluid flow-induced proliferation of human bone marrow stromal cells. 
J. Bone Miner Res. 22, 589–600. doi: 10.1359/jbmr.070113

Roger, S., Jelassi, B., Couillin, I., Pelegrin, P., Besson, P., and Jiang, L. H. (2015). 
Understanding the roles of the P2X7 receptor in solid tumour progression 
and therapeutic perspectives. Biochim. Biophys. Acta 1848, 2584–2602. doi: 
10.1016/j.bbamem.2014.10.029

Sakamoto, S., Miyaji, T., Hiasa, M., Ichikawa, R., Uematsu, A., Iwatsuki, K., et al. 
(2014). Impairment of vesicular ATP release affects glucose metabolism and 
increases insulin sensitivity. Sci. Rep. 4, 6689. doi: 10.1038/srep06689

Sana-Ur-Rehman, H., Markus, I., Moore, K. H., Mansfield, K. J., and Liu, L. (2017). 
Expression and localization of pannexin-1 and CALHM1 in porcine bladder 
and their involvement in modulating ATP release. Am. J. Physiol. Regul. Integr. 
Comp. Physiol. 312, R763–R772. doi: 10.1152/ajpregu.00039.2016

Saotome, K., Murthy, S. E., Kefauver, J. M., Whitwam, T., Patapoutian, A., and 
Ward, A. B. (2018). Structure of the mechanically activated ion channel Piezo1. 
Nature 554, 481–486. doi: 10.1038/nature25453

Sato, M., Ogura, K., Kimura, M., Nishi, K., Ando, M., Tazaki, M., et al. (2018). 
Activation of mechanosensitive transient receptor potential/Piezo channels in 
odontoblasts generates action potentials in cocultured isolectin B4-negative 
medium-sized trigeminal ganglion neurons. J. Endod. 44, 984–991. doi: 
10.1016/j.joen.2018.02.020

Sathanoori, R., Bryl-Gorecka, P., Muller, C. E., Erb, L., Weisman, G. A., Olde, B., 
et al. (2017). P2Y2 receptor modulates shear stress-induced cell alignment and 
actin stress fibers in human umbilical vein endothelial cells. Cell Mol. Life Sci. 
74, 731–746. doi: 10.1007/s00018-016-2365-0

Sawada, K., Echigo, N., Juge, N., Miyaji, T., Otsuka, M., Omote, H., et al. (2008). 
Identification of a vesicular nucleotide transporter. Proc. Natl. Acad. Sci. 
U. S. A.105, 5683–5686. doi: 10.1073/pnas.0800141105

Schumacher, D., Strilic, B., Sivaraj, K. K., Wettschureck, N., and Offermanns, S. 
(2013). Platelet-derived nucleotides promote tumor-cell transendothelial 
migration and metastasis via P2Y2 receptor. Cancer Cell 24, 130–137. doi: 
10.1016/j.ccr.2013.05.008

Shih, Y. R., Tseng, K. F., Lai, H. Y., Lin, C. H., and Lee, O. K. (2011). Matrix stiffness 
regulation of integrin-mediated mechanotransduction during osteogenic 
differentiation of human mesenchymal stem cells. J. Bone Miner. Res. 26, 730–
738. doi: 10.1002/jbmr.278

Sluyter, R. (2015). P2X and P2Y receptor signaling in red blood cells. Front. Mol. 
Biosci. 2, 60. doi: 10.3389/fmolb.2015.00060

Song, Y., Li, D., Farrelly, O., Miles, L., Li, F., Kim, S. E., et al. (2019). The 
mechanosensitive ion channel Piezo inhibits axon regeneration. Neuron 102, 
373–389. doi: 10.1016/j.neuron.2019.01.050

Solis, A. G., Bielecki, P., Steach, H. R., Sharma, L., Harman, C. C. D., Yun, S., et al. 
(2019). Mechanosensation of cyclical force by PIEZO1 is essential for innate 
immunity. Nature 573, 69–74. doi: 10.1038/s41586-019-1485-8

Suchyna, T. M., Johnson, J. H., Hamer, K., Leykam, J. F., Gage, D. A., Clemo, H. F., 
et al. (2000). Identification of a peptide toxin from Grammostola spatulata 
spider venom that blocks cation-selective stretch-activated channels. J. Gen. 
Physiol. 115, 583–598. doi: 10.1085/jgp.115.5.583

Sugimoto, A., Miyazaki, A., Kawarabayashi, K., Shono, M., Akazawa, Y., 
Hasegawa, T., et al. (2017). Piezo type mechanosensitive ion channel component 
1 functions as a regulator of the cell fate determination of mesenchymal stem 
cells. Sci. Rep. 7, 17696. doi: 10.1038/s41598-017-18089-0

Suhr, F., Delhasse, Y., Bungartz, G., Schmidt, A., Pfannkuche, K., and Bloch, W. 
(2013). Cell biological effects of mechanical stimulations generated by focused 
extracorporeal shock wave applications on cultured human bone marrow 
stromal cells. Stem Cell Res. 11, 951–964. doi: 10.1016/j.scr.2013.05.010

Sun, D., Junger, W. G., Yuan, C., Zhang, W., Bao, Y., Qin, D., et al. (2013). 
Shockwaves induce osteogenic differentiation of human mesenchymal stem 
cells through ATP release and activation of P2X7 receptors. Stem Cells 31, 
1170–1180. doi: 10.1002/stem.1356

Surprenant, A., and North, R. A. (2009). Signaling at purinergic P2X receptors. 
Annu. Rev. Physiol. 71, 333–359. doi: 10.1146/annurev.physiol.70.113006.100630

Syeda, R., Florendo, M. N., Cox, C. D., Kefauver, J. M., Santos, J. S., Martinac, B., 
et al. (2016). Piezo1 channels are inherently mechanosensitive. Cell Rep. 17, 
1739–1746. doi: 10.1016/j.celrep.2016.10.033

Syeda, R., Xu, J., Dubin, A. E., Coste, B., Mathur, J., Huynh, T., et al. (2015). 
Chemical activation of the mechanotransduction channel Piezo1. Elife 4. doi: 
10.7554/eLife.07369

Tarbell, J. M., Simon, S. I., and Curry, F. R. (2014). Mechanosensing at the 
vascular interface. Annu. Rev. Biomed. Eng. 16, 505–532. doi: 10.1146/
annurev-bioeng-071813-104908

Taruno, A. (2018). ATP release channels. Int. J. Mol. Sci. 19 (3), E808. doi: 10.3390/
ijms19030808

Velasco-Estevez, M., Rolle, S. O., Mampay, M., Dev, K. K., and Sheridan, G. K., 
(2019). Piezo1 regulates calcium oscillations and cytokine release from 
astrocytes. Glia. doi: 10.1002/glia.23709

Verkhratsky, A., and Burnstock, G. (2014). Biology of purinergic signalling: 
its ancient evolutionary roots, its omnipresence and its multiple functional 
significance. Bioessays 36, 697–705. doi: 10.1002/bies.201400024

Vlaskovska, M., Kasakov, L., Rong, W., Bodin, P., Bardini, M., Cockayne, D. A., et al. 
(2001). P2X3 knock-out mice reveal a major sensory role for urothelially released 
ATP. J Neurosci 21, 5670–5677. doi: 10.1523/JNEUROSCI.21-15-05670.2001

Vriens, J., Watanabe, H., Janssens, A., Droogmans, G., Voets, T., and Nilius, B. 
(2004). Cell swelling, heat, and chemical agonists use distinct pathways for the 
activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 101, 396–401. 
doi: 10.1073/pnas.0303329101

Wang, L., Zhou, H., Zhang, M., Liu, W., Deng, T., Zhao, Q., et al. (2019). Structure 
and mechanogating of the mammalian tactile channel PIEZO2. Nature 573, 
225–229. doi: 10.1038/s41586-019-1505-8

Wan, J., Ristenpart, W. D., and Stone, H. A. (2008). Dynamics of shear-induced 
ATP release from red blood cells. Proc. Natl. Acad. Sci. U. S. A. 105, 16432–
16437. doi: 10.1073/pnas.0805779105

Frontiers in Pharmacology | www.frontiersin.org November 2019 | Volume 10 | Article 1304

https://doi.org/10.1074/jbc.M109.020206
https://doi.org/10.1007/s11302-017-9568-1
https://doi.org/10.1007/s11302-017-9568-1
https://doi.org/10.1002/stem.3114
https://doi.org/10.1038/nrm.2017.92
https://doi.org/10.1038/srep29761
https://doi.org/10.1152/physrev.00015.2002
https://doi.org/10.1016/j.semcdb.2017.06.018
https://doi.org/10.1007/s00424-006-0061-x
https://doi.org/10.1007/s00424-006-0061-x
https://doi.org/10.1016/j.cub.2017.01.048
https://doi.org/10.1073/pnas.1409802111
https://doi.org/10.1002/stem.2370
https://doi.org/10.1016/0026-0495(94)90072-8
https://doi.org/10.1073/pnas.1409233111
https://doi.org/10.1359/jbmr.070113
https://doi.org/10.1016/j.bbamem.2014.10.029
https://doi.org/10.1038/srep06689
https://doi.org/10.1152/ajpregu.00039.2016
https://doi.org/10.1038/nature25453
https://doi.org/10.1016/j.joen.2018.02.020
https://doi.org/10.1007/s00018-016-2365-0
https://doi.org/10.1073/pnas.0800141105
https://doi.org/10.1016/j.ccr.2013.05.008
https://doi.org/10.1002/jbmr.278
https://doi.org/10.3389/fmolb.2015.00060
https://doi.org/10.1016/j.neuron.2019.01.050
https://doi.org/10.1038/s41586-019-1485-8
https://doi.org/10.1085/jgp.115.5.583
https://doi.org/10.1038/s41598-017-18089-0
https://doi.org/10.1016/j.scr.2013.05.010
https://doi.org/10.1002/stem.1356
https://doi.org/10.1146/annurev.physiol.70.113006.100630
https://doi.org/10.1016/j.celrep.2016.10.033
https://doi.org/10.7554/eLife.07369
https://doi.org/10.1146/annurev-bioeng-071813-104908
https://doi.org/10.1146/annurev-bioeng-071813-104908
https://doi.org/10.3390/ijms19030808
https://doi.org/10.3390/ijms19030808
https://doi.org/10.1002/glia.23709
https://doi.org/10.1002/bies.201400024
https://doi.org/10.1523/JNEUROSCI.21-15-05670.2001
https://doi.org/10.1073/pnas.0303329101
https://doi.org/10.1038/s41586-019-1505-8
https://doi.org/10.1073/pnas.0805779105
https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Piezo1-Dependent ATP Release in MechanoregulationWei et al.

10

Wang, S., Chennupati, R., Kaur, H., Iring, A., Wettschureck, N., and Offermanns, 
S. (2016). Endothelial cation channel PIEZO1 controls blood pressure by 
mediating flow-induced ATP release. J. Clin. Invest. 126, 4527–4536. doi: 
10.1172/JCI87343

Wang, S., Iring, A., Strilic, B., Albarran Juarez, J., Kaur, H., Troidl, K., et al. 
(2015). P2Y2 and Gq/11 control blood pressure by mediating endothelial 
mechanotransduction. J. Clin. Invest. 125, 3077–3086. doi: 10.1172/JCI81067

Wei, L., Syed Mortadza, S. A., Yan, J., Zhang, L., Wang, L., Yin, Y., et al. (2018). 
ATP-activated P2X7 receptor in the pathophysiology of mood disorders and as 
an emerging target for the development of novel antidepressant therapeutics. 
Neurosci. Biobehav. Rev. 87, 192–205. doi: 10.1016/j.neubiorev.2018.02.005

Weihs, A. M., Fuchs, C., Teuschl, A. H., Hartinger, J., Slezak, P., Mittermayr, R., et al. 
(2014). Shock wave treatment enhances cell proliferation and improves wound 
healing by ATP release-coupled extracellular signal-regulated kinase (ERK) 
activation. J. Biol. Chem. 289, 27090–27104. doi: 10.1074/jbc.M114.580936

Wu, J., Lewis, A. H., and Grandl, J. (2017). Touch, tension, and transduction - The 
function and regulation of Piezo ion channels. Trends. Biochem. Sci. 42, 57–71. 
doi: 10.1016/j.tibs.2016.09.004

Xiao, B. (2019). Levering mechanically activated Piezo channels for potential 
pharmacological intervention. Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/
annurev-pharmtox-010919-023703

Xu, S., Li, X., LaPenna, K. B., Yokota, S. D., Huke, S., and He, P. (2017). New insights 
into shear stress-induced endothelial signalling and barrier function: cell-free 
fluid versus blood flow. Cardiovasc. Res. 113, 508–518. doi: 10.1093/cvr/cvx021

Yang, X., Cai, X., Wang, J., Tang, H., Yuan, Q., Gong, P., et al. (2012). Mechanical 
stretch inhibits adipogenesis and stimulates osteogenesis of adipose stem cells. 
Cell Prolif. 45, 158–166. doi: 10.1111/j.1365-2184.2011.00802.x

Yang, X. N., Lu, Y. P., Liu, J. J., Huang, J. K., Liu, Y. P., Xiao, C. X., et al. (2014). 
Piezo1 is as a novel trefoil factor family 1 binding protein that promotes 
gastric cancer cell mobility in vitro. Dig. Dis. Sci 59, 1428–1435. doi: 10.1007/
s10620-014-3044-3

Yu, T., Junger, W. G., Yuan, C., Jin, A., Zhao, Y., Zheng, X., et al. (2010). Shockwaves 
increase T-cell proliferation and IL-2 expression through ATP release, P2X7 
receptors, and FAK activation. Am. J. Physiol. Cell. Physiol. 298, C457–C464. 
doi: 10.1152/ajpcell.00342.2009

Yuan, L., Sakamoto, N., Song, G., and Sato, M. (2012). Migration of human 
mesenchymal stem cells under low shear stress mediated by mitogen-activated 
protein kinase signaling. Stem Cells Dev. 21, 2520–2530. doi: 10.1089/
scd.2012.0010

Yuan, L., Sakamoto, N., Song, G., and Sato, M. (2013). Low-level shear stress 
induces human mesenchymal stem cell migration through the SDF-1/CXCR4 
axis via MAPK signaling pathways. Stem Cells Dev. 22, 2384–2393. doi: 
10.1089/scd.2012.0717

Zarychanski, R., Schulz, V. P., Houston, B. L., Maksimova, Y., Houston, D. S., 
Smith, B., et al. (2012). Mutations in the mechanotransduction protein PIEZO1 
are associated with hereditary xerocytosis. Blood 120, 1908–1915. doi: 10.1182/
blood-2012-04-422253

Zhang, J., Zhou, Y., Huang, T., Wu, F., Liu, L., Kwan, J. S. H., et al. (2018). PIEZO1 
functions as a potential oncogene by promoting cell proliferation and migration 
in gastric carcinogenesis. Mol. Carcinog. 57, 1144–1155. doi: 10.1002/mc.22831

Zhao, Q., Zhou, H., Li, X., and Xiao, B. (2019). The mechanosensitive Piezo1 
channel: a three-bladed propeller-like structure and a lever-like mechanogating 
mechanism. FEBS J. 286, 2461–2470. doi: 10.1111/febs.14711

Zhao, Q., Zhou, H., Chi, S., Wang, Y., Wang, J., Geng, J., et al. (2018). Structure and 
mechanogating mechanism of the Piezo1 channel. Nature 554, 487–492. doi: 
10.1038/nature25743

Zimmermann, H., Zebisch, M., and Strater, N. (2012). Cellular function and 
molecular structure of ecto-nucleotidases. Purinergic Signal 8, 437–502. doi: 
10.1007/s11302-012-9309-4

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Copyright © 2019 Wei, Mousawi, Li, Roger, Li, Yang and Jiang. This is an open-access 
article distributed under the terms of the Creative Commons Attribution License (CC 
BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org November 2019 | Volume 10 | Article 1304

https://doi.org/10.1172/JCI87343
https://doi.org/10.1172/JCI81067
https://doi.org/10.1016/j.neubiorev.2018.02.005
https://doi.org/10.1074/jbc.M114.580936
https://doi.org/10.1016/j.tibs.2016.09.004
https://doi.org/10.1146/annurev-pharmtox-010919-023703
https://doi.org/10.1146/annurev-pharmtox-010919-023703
https://doi.org/10.1093/cvr/cvx021
https://doi.org/10.1111/j.1365-2184.2011.00802.x
https://doi.org/10.1007/s10620-014-3044-3
https://doi.org/10.1007/s10620-014-3044-3
https://doi.org/10.1152/ajpcell.00342.2009
https://doi.org/10.1089/scd.2012.0010
https://doi.org/10.1089/scd.2012.0010
https://doi.org/10.1089/scd.2012.0717
https://doi.org/10.1182/blood-2012-04-422253
https://doi.org/10.1182/blood-2012-04-422253
https://doi.org/10.1002/mc.22831
https://doi.org/10.1111/febs.14711
https://doi.org/10.1038/nature25743
https://doi.org/10.1007/s11302-012-9309-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

	Adenosine Triphosphate Release and P2 Receptor Signaling in Piezo1 Channel-Dependent Mechanoregulation

	﻿Introduction

	﻿A Brief Introduction to the Piezo1 Channel

	﻿Stretch-Induced Piezo1-Dependent Adenosine Triphosphate Release From Urothelial Cells and Regulation of 
Bladder Function

	﻿Shear Stress-Induced Piezo1-Dependent Adenosine Triphosphate Release From Endothelial Cells and Regulation of Vascular Function

	﻿Shear Stress-Induced Piezo1-Dependent Adenosine Triphosphate Release From Red Blood Cells and Regulation of 
Cell Volume

	﻿Piezo1-Dependent Adenosine Triphosphate Release From Mesenchymal Stem Cells and Regulation of Cell Migration

	﻿Adenosine Triphosphate Release and P2 Receptor as a Common Signaling Mechanism in Piezo1 Channel-Dependent Mechanoregulation?


	﻿Concluding Remarks

	﻿Author Contributions

	﻿Acknowledgments

	References



