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In synergy studies, one focuses on compound combinations that promise a synergistic 
or antagonistic effect. With the help of high-throughput techniques, a huge amount 
of compound combinations can be screened and filtered for suitable candidates for a 
more detailed analysis. Those promising candidates are chosen based on the deviance 
between a measured response and an expected non-interactive response. A non-
interactive response is based on a principle of no interaction, such as Loewe Additivity 
or Bliss Independence. In a previous study, we introduced, an explicit formulation of the 
hitherto implicitly defined Loewe Additivity, the so-called Explicit Mean Equation. In the 
current study we show that this Explicit Mean Equation outperforms the original implicit 
formulation of Loewe Additivity and Bliss Independence when measuring synergy in terms 
of the deviance between measured and expected response, called the lack-of-fit. Further, 
we show that computing synergy as lack-of-fit outperforms a parametric approach. 
We show this on two datasets of compound combinations that are categorized into 
synergistic, non-interactive, and antagonistic.

Keywords: synergy, Loewe Additivity, Bliss Independence, dose equivalence, General Isobole Equation, Explicit 
Mean Equation, Hill curve, lack-of-fit

INTRODUCTION
When combining a substance with other substances, one is generally interested in interaction 
effects. Those interaction effects are usually described as synergistic or antagonistic, dependent 
on whether the interaction is positive, resulting in greater effects than expected, or negative, 
resulting in smaller effects than expected. From data generated with high-throughput 
techniques, one is confronted with massive compound interaction screens. From those screens, 
one needs to filter for interesting candidates that exhibit an interaction effect. To quickly 
scan all interactions, a simple measure is needed. Based on that preprocessing scan, those 
filtered combination candidates can then be examined in greater detail. In such a quick scan, 
one focuses uniquely on the measured response and not on possible mechanisms of action of 
each compound.

To determine whether a combination of substances exhibits an interaction effect, it is crucial 
to determine a non-interactive effect. Only when deviance from that so-called null reference is 
observed, can one speak of an interactive effect (Lederer et al., 2018b). Over the last century, many 
principles of non-interaction have been introduced. For an extensive overview, refer to Greco et al. 
(1995) and Geary (2012). Two main principles for non-interactivity have survived the critics: Loewe 
Additivity (Loewe, 1928) and Bliss Independence (Bliss, 1939). The popularity of Loewe Additivity 
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is based on its principle of sham combination which assumes no 
interaction when a compound is combined with itself. Other null 
reference models do not hold that assumption. An alternative is 
Bliss Independence, which assumes (statistical) independence 
between the combined compounds.

Independent of the indecisive opinions about the null 
reference, there are multiple proposals regarding how synergy 
can be measured given a null reference model. Many models 
are based on the concept of isoboles (Chou and Talalay, 1984; 
Gennings and Carter, 1995; Dawson et al., 2000 Minto et al., 
2000). An isobole is the set of all dose combinations of the 
compounds that reach the same fixed effect, such as 50% of 
the maximal effect. Some suggest to measure synergy as the 
difference between an observed isobole and a reference isobole 
calculated from a null-reference model. Another way to quantify 
synergy on the basis of the isobole is to look at the curvature 
and arc-length of the longest isobole spanned over the measured 
response (Cokol et   al., 2011). The general problem with the 
isobole approaches lies in the use of isoboles at fixed effect or 
dose ratios. The deviations measured from the isoboles (and 
hence synergy) are therefore only measured locally for that fixed 
effects or dose ratios. In order to measure all interaction effects, 
this method has to be applied to many fixed effects or dose ratios.

In this paper we measure synergy as the deviation over the entire 
response surface. One way to do so is the Combenefit method by 
measuring synergy in terms of volume between the expected and 
measured effect (Di Veroli et al., 2016). We will refer to it as a 
lack-of-fit method as it quantifies the lack of fit from the measured 
data to the null reference model. Another way of capturing the 
global variation is by introducing a synergy parameter α into the 
mathematical formulation of the response surface. This parameter 
α is fitted by minimizing the error between the measured effect 
and the α-dependent response surface. Such statistical definition 
of synergy allows for statistical testing of significance of the 
synergy parameter. Fitting a synergy parameter to the data as 
in the parametric approaches tends to be computationally more 
complex than computing the difference between the raw data and 
the null model as in the lack-of-fit approaches.

There is an increase in theoretical approaches to synergy, 
such as the recently re-discovered Hand model (Hand, 2000; 
Sinzger et al., 2019), which is a formulation of Loewe Additivity 
in form of a differential expression, or new ways of defining and 
measuring synergy, such as the ZIP model (Yadav et al., 2015), 
SynergyFinder (He and Tang, 2016), MuSyC (Meyer et al., 2019), 
and the copula model (Lambert and Dawson, 2019). It would be 
a large effort to compare these recent approaches with ours. An 
extensive comparison of the models has recently been made in 
Meyer et al. (2019). Hence we focus on the two main principles, 
Loewe Additivity and Bliss Independence.

As the research area of synergy evolved from different 
disciplines, different terminologies are in common use. While 
in pharmacology, one refers to the Loewe model, in toxicology, 
the same principle is called concentration addition. The response 
can be measured among others in growth rate, survival, or death. 
It is usually referred to as the measured or phenotype effect or 
as cell survival. In this study we interchange the terms response  
and effect.

When measuring a compound combination, one also 
measures each agent individually. The dose or concentration is 
typically some biological compound per unit of weight when 
using animal or plant models or per unit of volume when using a 
cell-based assay. However, it can also be an agent of a different type 
for example a dose of radiation as used in modern combination 
therapies for cancer (Nature Biomedical Engineering, 2018). This 
individual response is called mono-therapeutic response (Di 
Veroli et al., 2016) or single compound effect. We prefer a more 
statistical terminology and refer to it as conditional response or 
conditional effect. We speak of synergy when referring to a general 
interaction effect, be it synergistic or antagonistic. In the detailed 
analysis where the direction of interaction is of importance, we 
clearly differentiate between a synergistic or antagonistic effect. 
With “record” we refer to all measurements taken of one cell 
line or organism which is exposed to all combinations of two 
compounds. In other literature, this is referred to as response 
matrix (Lehar et al., 2007; Yadav et al., 2015).

In Theory, we give a short introduction to the two null 
response principles, Loewe Additivity and Bliss Independence. 
We explain in detail several null reference models that build 
on those principles. We introduce synergy as any effect 
different from an interaction free model in Methods. There, 
we also introduce the parametrized and lack-of-fit synergy 
approaches. In Material, we introduce two datasets that 
come with a categorization into synergistic, non-interactive, 
and antagonistic. We use these two datasets to compute a 
synergy score for each record per model and method, that we 
introduced in Theory and Methods. Based on the comparison 
of the computed and provided synergy scores, we evaluate the 
models and methods in Results.

MATERIALS AND METHODS

Theory
Before one can decide whether a compound combination 
exhibits a synergistic effect, one needs to decide on the expected 
effect assuming no interaction between the compounds. Such 
so-called null reference models are constructed from the 
conditional (mono-therapeutic) dose–response curves of each of 
the compounds, which we denote by fj (xj) for every compound 
j ∈ {1,2}. Null reference models extend the conditional dose–
response curves to a (null-reference) surface spanned between 
the two conditional responses. We denote the surface as f (x1, x2) 
such that

 f x f x( , ) ( )1 1 10 =  (1)

and

 f x f x( , ) ( ).0 2 2 2=  (2)

Thus, the conditional response curves are the boundary 
conditions of the null reference surface. For this study, we focus 
on Hill curves to model the conditional dose–responses. More 
detailed information can be found in Supplementary Material.
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Loewe Additivity
Loewe Additivity builds on the concepts of sham combination and 
dose equivalence. The first concept is the idea that a compound 
does not interact with itself. The latter concept assumes that 
both compounds that reach the same effect can be interchanged. 
Therefore, any linear combination of fractions of those doses 
which reach the effect individually and, summed up, are equal 
to one, yields that exact same effect. Mathematically speaking, if 
dose x1

*  from the first compound reaches the same effect as dose 
x2

*  from the second compound, then any dose combination (x1, 
x2), for which

 

x
x

x
x

1

1

2

2
1* *+ =

 
(3)

holds, should yield the same effect as x2
*  and x1

* . As this idea 
can be generalized to any effect y, one gets

 

x
f y

x
f y

1

1
1

2

2
1 1− −+ =

( ) ( )
,

 
(4)

where x1
*  and x2

*  are replaced with f1
1− (y)  and f2

1− (y), the 
inverse functions of Hill curves, respectively. For a fixed effect 
y, Eq. 4 defines an isobole, which is in mathematical terms a 
contour line. Hence the name of this model: the General Isobole 
Equation. It is an implicit formulation as the effect y of a dose 
combination (x1, x2) is implicitly given in Eq. 4. In the following 
we use the mathematical notation for the General Isobole 
Equation fGI (x1, x2) = y with y being the solution to Eq. 4.

It was shown by Lederer et al. (2018b) that the principle 
of Loewe Additivity is based on a so-called Loewe Additivity 
Consistency Condition (LACC). This condition is that it 
should not matter whether equivalent doses of two compounds 
are expressed in terms of the first or the second. Under the 
assumption of the LACC being valid, Lederer et al. (2018b) 
have shown, that a null reference model can be formulated 
explicitly, by expressing the doses of one compound in terms of 
the other compound:

 f x x f x f f x2 1 1 2 1 1 1
1

2 2→
−= +( )( , ) ( ( ))  (5)

 f x x f f f x x1 2 1 2 2
1

1 1 22→
−= +( )( , ) ( ( )) ,  (6)

where f x1
1

2 2
− ( ( ))f  is the dose x1 of compound one to reach the 

same effect of compound two with dose x2 (see Figure S1 in 
Supplementary Material). For a detailed explanation, refer to 
Lederer et al. (2018b). Summing up this dose equivalent of the 
first compound with the dose of the first compound allows for the 
computation of the expected effect of the compound combination. 
With the two formulations above, the effect y of the dose combination 
(x1, x2) is expressed as the effect of either one compound to reach 
that same effect. Under the LACC, all three models, Eq. 4, Eq. 5, and 

Eq. 6 are equivalent. It was further shown, that, in order for the LACC 
to hold, conditional dose–response curves must be proportional to 
each other, i.e. being parallel shifted on the x-axis in log-space. It 
has been commented by Geary (2012) and shown in (Lederer et al., 
2018b), that this consistency condition is often violated. Geary 
(2012) himself comments that it cannot be determined whether 
a response that lies between the two surfaces f2→1 (x1, x2) and f1→2 
(x1, x2) is synergistic or antagonistic and hence should be treated as 
non-interactive. We refer to the envelope spanned between the two 
explicit surfaces f2→1 (x1, x2) and f1→2 (x1, x2) in Eq. 5 and Eq. 6 as 
fgeary. In contrast to that, in an effort to take advantage of the explicit 
formulation and to counteract the different behavior of Eq. 5 and 
Eq. 6 in case of a violated LACC, Lederer et al. (2018b) introduced 
the so-called Explicit Mean Equation as mean of the two explicit 
formulations of Eq. 5 and Eq. 6:

 f x x f x x f x xmean( , ) / ( , ) ( , ) .1 2 2 1 1 2 1 2 1 21 2= +( )→ →  (7)

A more extensive overview of Loewe Additivity and definition 
of null reference models together with visualizations can be 
found in Lederer et al. (2018b).

Bliss Independence
Bliss Independence assumes independent sites of action of 
the two compounds and was introduced a decade later than 
Loewe Additivity in (Bliss, 1939). Note that the formulation 
of Bliss Independence depends on the measurement of the 
effect. The best known formulation of Bliss Independence 
is based on monotonically increasing responses for  
increasing doses:

 g x x g x g x g x g xbliss( , ) ( ) ( ) ( ) ( ),1 2 1 1 2 2 1 1 2 2= + −  (8)

where g1 (xi) = 1− fi (xi) is a conditional response curve 
with increasing effect for increasing doses. In case the effect is 
measured in percent, i.e. y∈[0, 100], the interaction term needs 
to be divided by 100 to ensure the right dimensionality of the 
term.

Here, we measure the effect in terms of cell survival or 
growth inhibition. Therefore the conditional response curves 
are monotonically decreasing for increasing concentrations 
or doses.

 f x x f x f xbliss( , ) ( ) ( ).1 2 1 1 2 2=  (9)

The records are normalized to the response at x1 = 0, x2 = 0, 
thus f1(0) = f2(0) = 1. To arrive from Eq. 8 to Eq. 9, one replaces any 
g by 1 − f. Chou and Talalay (1984) derive the Bliss Independence 
from a first order Michaelis–Menten kinetic system with mutually 
non-exclusive inhibitors.

While there are many mathematical variations to the general 
concept of Loewe Additivity (here we introduced five null-
reference models based on this methodology), there is generally 
only one way to compute Bliss Independence.
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Methods
The six models introduced in the previous section are null 
reference models in that they predict a response surface in 
the absence of compound interaction. We capture synergy 
in a single parameter to facilitate the screening process. 
This is different from other approaches, such as Chou and 
Talalay (1977), who measure synergy as deviation from a 
null-reference isobole without summarizing the deviation 
in a single parameter. The single parameter value is typically 
referred to as synergy- or α-score (Berenbaum, 1977). As we 
investigate two methods to quantify synergy, we introduce 
two synergy parameters α and γ, which measure the extent 
of synergy and are calculated with different methods (more 
details below). Both synergy scores α and γ are parametrized 
such that α = 0 or γ = 0 denote absence of an interaction effect. 
In case α or γ take a value different from zero, we speak of a 
non-additive, or interactive effect. A compound combination 
is, dependent on the sign of synergy parameter, one of the 
three following:

 

α γ,
>
=
<

 0
0
0

synergistic
additive or non-interactive
antagonistic







 

(10)

Here, we measure synergy in two different ways, namely 
in fitting parametrized models or computing the lack-of-fit. 
The first method fits null reference models that are extended 
with a synergy parameter α. For these parametrized models 
α is computed by minimizing the square deviation between 
the measured response and the response spanned by the 
α-dependent model. For the second method the difference 
between a null reference model and the data is computed. For 
this method, which we refer to as lack-of-fit, the synergy score 
γ is defined as the volume that is spanned between the null 
reference model and the measured response.

Just as the conditional responses form the boundary 
condition for the null-reference surface (Eq. 1, Eq. 2), we want 
the conditional responses to be the boundary condition for all 
values of α. Explicitly, assuming a synergy model dependent on α 
is denoted by f (x1, x2ǀ α), then

 

f
f

(x , | ) f (x )
( ,x | ) f (x )

,1 1 1

2 2 2

0
0

α
α

α
=
=






∀

 
(11)

with fi denoting the conditional response of compound i. We 
refer to Eq. 11 as the Synergy Desideratum. As we will see below, 
not all synergy models fulfill this property.

Parametrized Synergy
We extend the six null reference models introduced in Theory in 
Eq. 4–Eq. 9, including the Geary model, to parametrized synergy 
models. The extension of the General Isobole Equation is the 
popular Combination Index introduced by Berenbaum (1977) 
and Chou and Talalay (1984):

 

x
f y

x
f y

1

1
1

2

2
1 1− −+ = −

( ) ( )
.α
 

(12)

Berenbaum originally equated the left-hand side of Eq. 4 to 
the so-called Combination Index I. Depending on I smaller, 
larger, or equal to 1, synergy, antagonism or non-interaction is 
indicated. For consistency with the other synergy models, we set 
I = 1 − α such that α matches the outcomes as listed in Eq. 10. In 
Results we will refer to this implicit model as fCI (x1,x2ǀ α), where 
α is the parameter that minimizes the squared error between 
measured data and Eq. 12.

Note that this model violates the Synergy Desideratum in 
Eq. 11 as α not zero leads to deviations from the conditional 
responses. Explicitly, fCI (x1, 0ǀα) = f1((1 − α) x1) ≠ f1(x1). Although 
the Combination Index model violates the Synergy Desideratum, 
in practice it performs quite well and is in widespread use.

The explicit formulations in Eq. 5 and Eq. 6 are equivalent to 
the General Isobole Equation, fGI (x1, x2), given in Eq. 4, under 
the LACC (Lederer et al., 2018b), but different if the conditional 
responses are not proportional. The two explicit equations are in 
fact an extension of the 'cooperative effect synergy' proposed by 
Geary (2012) for compounds with qualitatively similar effects. 
For these explicit formulations in Eq. 5 and Eq. 6 we propose 
a model that captures the interaction based on the explicit 
formulations:

 f x x f x f f x2 1 1 2 1 1 1
1

2 21→
−= + +( )( , | ) ( ) ( ( ))α α  (13)

 f x x f f f x x1 2 1 2 2 2
1

1 1 21→
−= + +( )( , | ) ( ) ( ( )) .α α  (14)

With this, we can extend the Explicit Mean Equation model fmean 
(x1, x2) in Eq. 7 to a parametrized synergy model:

 f x x f x x f x xmean( , | ) / ( , | ) ( , | ) ,1 2 2 1 1 2 1 2 1 21 2α α α= +( )→ →  (15)

which we refer to as fmean (x1, x2ǀ α). As f2→1 (x1, x2ǀ α) and f1→2 
(x1, x2ǀ α) do not fulfill the Synergy Desideratum, fmean (x1, x2ǀ α) 
also does not fulfill it.

To investigate the difference between the two models f2→1 (x1, 
x2) (Eq. 5) and f1→2 (x1, x2) (Eq. 6) we treat compound one and 
two based on the difference in slopes in the conditional responses 
(for more detailed information on the different parameters in Hill 
curves, refer to Supplementary Material). Instead of speaking 
of the first and second compound, we speak of the smaller and 
larger one, referring to the order of steepness. Therefore, we use 
models Eq. 13 and Eq. 14, but categorize the compounds based 
on the slope parameter of their conditional response curves. This 
results in flarge→small (x1, x2ǀ α) and fsmall→large (x1, x2ǀ α).

Analogously, we extend the Geary model fgeary (x1, x2) to 
a synergy model and refer to it as fgeary (x1, x2ǀ α). Based on a 
comment of Geary (2012), the two explicit models f2→1 (x1, x2) 
and f1→2 (x1, x2) yield the same surface under the LACC but do 
rarely in practice. Therefore, it cannot be determined whether 
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a response that lies between the two surfaces is synergistic or 
antagonistic and hence should be treated as non-interactive. 
Thus, if α from f1→2 (x1, x2ǀ α) and α from f2→1 (x1, x2ǀ α) are of equal 
sign, the synergy score of that model is computed as the mean of 
those two parameters. In case the two synergy parameters are of 
opposite sign, the synergy score is set to 0:

 

α
α α α α

geary

else
=

+ =





→ → → →
1
2
0

1 2 2 1 1 2 2 1( ) if sign( ) sign( )
.

 (16)

Next, to extend the null reference model following the 
principle of Bliss Independence, we extend Eq. 8 to

 g x x g x g x g x g xbliss( , | ) ( ) ( ) ( ) ( ) ( )1 2 1 1 2 2 1 1 2 21α α= + − + ..  (17)

The motivation for this model is that any interaction 
between the two compounds is caught in the interaction term 
of the two conditional responses. In case of no interaction, the 
synergy parameter α = 0, which leads to (1 + α) = 1, and results 
in no deviance from the null reference model. As we use the 
formulation of Eq. 9 due to measuring the effect as survival, we 
reformulate Eq. 17 analogously as we did to get from Eq. 8 to Eq. 
9: by replacing gi (xi) with 1 – fi (xi) Hence, Eq. 17 takes the form:

 f x x f x f x f x f xbliss( , | ) ( ) ( ) ( ) ( )1 2 1 1 2 2 1 1 2 21 1α α= + −( ) −( )  (18)

This model does satisfy the requirement of no influence of 
the synergy parameter on conditional doses: fbliss (x1, 0ǀ α) = f1 
(x1) and fbliss (0, x2ǀ α) = f2 (x2) as fi (0) = 1. In case of synergy, 
the interactive effect is expected to be larger, therefore, α being 
positive. If the compound combination has an antagonistic effect, 
the interaction term is expected to be negative. For extreme α, 
the parametric approach leads to responses outside of the range 
0 ≤ y ≤ 1, e.g. fbliss (x1, x2)→ − ∞ if α→−∞. The same holds for 
the formulations of Loewe Additivity. The implicit formulation 
becomes impossible to match and for the explicit formulations, 
the dose expression within brackets of f2→1 (x1, x2ǀ α) becomes 
negative. Additionally, α > 1 is not possible for fCI (x1, x2ǀ α), as 
the left-hand side of Eq. 12 can not be negative. Such behavior is 
also known from other models, e.g. for the Greco flagship model 
for negative synergy scores (Greco et al., 1995, p. 365–366, and 
Figure 26). Hence, we will limit α to the range of −1 to 1.

Despite of the Synergy Desideratum being violated for the 
models that build up on the Loewe Additivity principle, there is 
no further effect on the model comparison presented in Results 
as conditional doses are excluded when computing the synergy 
score (see Lack-of-Fit Synergy and Fitting the Synergy Parameter).

Lack-of-Fit Synergy
The second method to measure synergy investigated here 
is to compute the lack-of-fit of the measured response of a 
combination of compounds to the response of a null reference 
model derived from the conditional responses. We refer to this 
synergy value as γ:

 γ = −( )ˆ( , | ) ( , ) log( ) log( ),
min(

y x x y x x d x d x
x

1 2 1 2 1 2

1

Θ
>>>

∫∫
00

1

2

2

)

max( )

min( )

max( ) x

x

x

 (19)

with ŷ (x1, x2 ǀ Θ) the estimated effect with parameters Θ of 
the fitted conditional responses following any non-interactive 
model and y the measured effect. Note that ŷ (Θ) and y are 
dependent on the concentration combination (x1, x2). This 
method was used in the AstraZeneca DREAM challenge 
(Menden et al., 2019) with the General Isobole Equation as 
null reference model and can be found in (Di Veroli et al., 
2016). Computing the volume has the advantage of taking the 
experimental design into account in contrast to simply taking 
the mean deviance over all measurement points, which is 
independent of the relative positions of the measurements. We 
also used a synergy value calculated from the mean deviance 
and it clearly performed worse (data not shown). The synergy 
value varies for different dose transformations. For example, the 
computed null-reference surface (and hence the synergy value) 
will be different for the same experiment if a log-transformation 
is applied to the doses or not.

In all, we have introduced six null reference models, five 
of them building up on the concept of Loewe Additivity and 
one on Bliss Independence. We further have introduced two 
methods to compute synergy, the parametric one and the lack-
of-fit method, where both synergy parameters α and γ are 
positive if the record is synergistic, negative, if antagonistic. 
This results in 12 synergy model–method combinations: the 
parametric ones, fCI (x1, x2ǀ α) (Eq. 12), flarge→small (x1, x2ǀα), and 
fsmall→large (x1, x2ǀα) (Eq. 13, Eq. 14, dependent on the slope 
parameters) together with their mean, fmean (x1, x2ǀ α) (Eq. 15), 
fgeary (x1, x2ǀ α) (computation of αgeary explained in Eq. 16) and 
fbliss (x1, x2ǀ α) (Eq. 17). For the lack-of-fit method, we take 
as the null reference: fGI (x1, x2) (Eq. 4), flarge→small (x1, x2) and  
fsmall→large (x1, x2) (Eq. 5, Eq. 6), with the Explicit Mean Equation, 
fmean(x1, x2) (Eq. 7), fgeary (x1, x2) (analogously to Eq. 16) and fbliss 
(x1x2) (Eq. 9).

Fitting the Synergy Parameter
Before applying the two methods presented in Parametrized Synergy 
and Lack-of-Fit Synergy, we normalize and clean the data from 
outliers. In a first step we normalize all records to the same value, 
y0, the measured response at zero dose concentration from both 
compounds. Second, we discard outliers using the deviation from 
a spline approximation. Third, we fit both conditional responses of 
each record, namely the responses of each compound individually, 
to a pair of Hill curves (Eq. S1, Supplementary Material). We fit 
the response at zero dose concentration for both Hill curves. This 
gives the parameter set Θ = ∞ ∞{ , , , , , , ,}, ,y y y e e s0 1 2 1 2 1 2s  for 
each record. More details are given in Supplementary Material.

We apply the two different methods to calculate the synergy 
parameters α and γ to each record. First, for the parametrized 
synergy models, we apply a grid search for α, for α ∈ −[ , ]1 1  with 
a step size of 0.01, minimizing the sum of squared errors. This 
gives the value of α for which the squared error between the 
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Note that we exclude the conditional responses that we 
used to fit Θ from the minimization. Second, we apply the 
lack-of-fit method from Di Veroli et al. (2016), where synergy 
is measured in terms of the integral difference in log space of 
measured response and surface spanned by the non-interactive 
models in Theory, as given in Eq. 19. For the calculation of 
the integrals, we apply the trapezoidal rule Press et al. (1989). 
To compute the synergy score γ for the fgeary (x1, x2) model, 
we compute the integral over all data points for which the 
difference between expected effect or f2→1 (x1,  x2) or f1→2 
(x1, x2) and the measured effect are of the same sign. If they 
are of opposite sign, the difference is set to zero. In Figure 1 
we summarize the most important steps of the analysis for a 
synergistic example. In Supplementary Material, Figure S5, 
the same is shown for an antagonistic record.

Material
To evaluate the two methods introduced in Parametrized 
Synergy and Lack-of-Fit Synergy, we apply them to two datasets 
of compound combination screening for which a categorization 
into the three synergy cases is provided.

The Mathews Griner dataset is a cancer compound 
synergy study by Mathews Griner et al. (2014). In a one-to-all 
experimental design, the compound ibrutinib was combined 
with 463 other compounds and administered to the cancer cell 
line TMD8 of which cell viability was measured. The dataset 
is published at https://tripod.nih.gov/matrix-client/. Each 
compound combination was measured for five different doses, 
decreasing from 125 to 2.5 μM in a four-fold dilution for each 
compound alongside their conditional effects, resulting in 36 
different dose combinations. The categorization of this dataset 
comes from a study by Yadav et al. (2015), in which every record 
was categorized based on a visual inspection.

The Cokol dataset comes from a study about fungal cell 
growth of the yeast Saccharomyces cerevisiae (strain By4741), 
where Cokol et al. (2011) categorized the dataset. In this study 
the influence on cell growth was measured when exposed to 33 
different compounds that were combined with one another based 

FIGURE 1 | Description of the analysis steps of the lack-of-fit method for the compound pair TER and STA from the Cokol dataset. This compound pair is 
categorized as synergistic according to Cokol et al. (2011). The raw response data of the record is depicted in panel (B). The response data normalized by the read 
at zero dose concentration (lower left). The degree of relative cell growth is colored from high to low values in red to blue. Step 1: compute Hill curves for conditional 
responses: Fit a Hill curve to the conditional responses, based on the raw reads of the single dose responses (lower and left outer edges). The fitted Hill curves 
are shown with the original raw data as points in panel (A), which is rotated by 90 degrees, such that the vertical x-axis is parallel to the y-axis of panel (B), since 
both axes denote the same doses of the same compound, and in panel (D), which is flipped along the horizontal x-axis. Step 2: compute expected non-interactive 
response for all six models: not shown. Step 3: compute difference between measured data (C) and expected data from all six null reference models: shown in 
panel (C). The direction of difference is shown by color (red for negative and blue for positive, green for zero). The larger the degree of difference, the larger the 
bullet, and vice versa. Step 4: compute integral γ over the differences: For every model, the synergy score γ is depicted in the title of each matrix in panel (C).
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on promising combinations chosen by the authors, resulting in 
200 different drug–drug–cell combinations. With an individually 
measured maximal effect dose for every compound, the doses 
administered decrease linearly in seven steps with the eight dose 
set to zero, resulting in an 8 × 8 factorial design.

Based on the longest arc length of an isobole that is compared 
to the expected longest linear isobole in a non-interactive 
scenario, where Loewe Additivity serves as null reference model, 
each record was given a score. In more detail, from the estimated 
surface of a record assuming no interaction, the longest contour 
line is measured in terms of its length and direction (convex or 
concave). A convex contour line leads to the categorization of a 
record as synergistic and the arc length of the longest contour 
line determines the strength of synergy. A concave contour line 
results in an antagonistic categorization with its extent being 
measured again as the length of the longest isobole. Thus the 
Cokol dataset not only comes with a classification but also with a 
synergy score similar to α or γ.

To our knowledge, these two datasets are the only high-
throughput ones with a classification into the three synergy 
classes: antagonistic, non-interactive and synergistic. Both 
datasets are somewhat imbalanced because interactions are 
rare (Borisy et al., 2003; Zhang et al., 2007; Farha and Brown, 
2010). The distribution of the classification is listed in Table 1. 
We obtained both categorizations after personal communication 
with the authors Yadav et al. (2015) and Cokol et al. (2011). For 
the purpose of comparing the synergy models, we consider these 
two classifications as ground truth.

RESULTS
Using the two methods of computing the synergy score, the 
parametric one (Parametrized Synergy) and the lack-of-fit one 
(Lack-of-Fit Synergy), we compute synergy scores for all records 
of the two datasets introduced in Material.

Kendall Rank Correlation Coefficient
Having computed the synergy scores α and γ from the two different 
methods as described in Fitting the Synergy Parameter, we compute 
the Kendall rank correlation coefficient, which is also known as 
Kendall's tau coefficient and was originally proposed by Kendall 
(1938). This coefficient computes the rank correlation between 
the data as originally categorized by Yadav et al. (2015) and Cokol 
et al. (2011) and the computed synergy scores resulting from the 
two methods introduced in Parametrized Synergy and Lack-of-
Fit Synergy. For the analysis, we rank synergistic records highest 
at rank 3, followed by non-interactive at rank 2 and antagonistic 

lowest at rank 1. Due to the many ties in rank, the Kendall rank 
correlation coefficient cannot take a value higher than 0.75 for 
Mathews Griner and 0.8 for Cokol, even if a perfect ranking was 
given. An overview of the Kendall rank correlation coefficients is 
given in Tables S2 and S3 in Supplementary Material.

To compare the parametric and lack-of-fit methods, we plot 
the correlation values as a scatter plot per method (see Figure 2) 
with the values from the parametric method plotted on the 
x-axis and those from the lack-of-fit method on the y-axis. Most 
of the points scatter in the upper left triangle, above the diagonal 
line. This shows that the lack-of-fit method outperforms the 
parametric method. This holds for all models applied to the 
Mathews Griner dataset and also for all models but fgeary (x1, 
x2|α) and fsmall→large (x1x2|α) applied to the Cokol dataset. For 
both datasets, the highest correlation scores result from those 
null reference models that are based on the Loewe Additivity 
principle. The Bliss null reference model performs worst for 
the Mathews Griner set for both methods. For the Cokol data 
it is the second worst model. To a certain extent this can be 
explained due to the classification of the Cokol dataset being 
based on the isobole length relative to non-interactive isoboles, 
which is a Loewe Additivity type analysis. As the categorization 
of the Mathews Griner dataset is based on visual inspection, 
we cannot explain the bad performance of fbliss (x1, x2) for that 
dataset. On both datasets, fGI (x1, x2), flarge→small (x1, x2) and fmean 
(x1, x2) perform best for the lack-of-fit method. For the Mathews 
Griner dataset, flarge→small (x1, x2) dominates marginally over the 
General Isobole Equation and Explicit Mean Equation model. 
For the Cokol dataset, the Explicit Mean Equation dominates 
for both methods.

Scattering of Synergy Scores
To further investigate the performance of the methods and null 
reference models, we plot the synergy scores of the best performing 
models based on the Kendall rank correlation coefficient analysis 
(Kendall Rank Correlation Coefficient, and an receiver operating 
characteristic (ROC) analysis, which we describe in detail in 
Supplementary Material) for both datasets in Figures 3–5. In all 
figures, the overall correlation of the compared data is depicted 
together with the correlation per categorization. The coloring of 
the scores is based on the original categorization as antagonistic, 
non-interactive or synergistic as provided by Yadav et al. (2015) 
and Cokol et al. (2011).

In Figure 3 the synergy scores computed with the lack-of-
fit method are plotted against the original synergy scores from 
Cokol et al. (2011). Applying the lack-of-fit method to the Bliss 
Independence model (Eq. 9) results in scores which are mainly 
above zero (Figure 3, upper left). Further, it can be seen in the 
density plots along the y-axis in Figure 3, upper left panel, 
and on the x-axis of Figure 4, both panels in the first row and 
left panel in the middle row, that the synergy scores that are 
computed based on the principle of Bliss Independence cannot 
be easily separated by categorization, making it difficult to come 
up with a threshold to categorize a record into one of the three 
synergy categories (synergy, antagonism, non-interaction) given 
a synergy score.

TABLE 1 | Number of cases categorized as synergistic, antagonistic or non-
interactive in the two datasets Mathews Griner and Cokol.

Synergistic Antagonistic Non-interactive

Mathews Griner 121 90 252
Cokol 50 68 82
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For the other three models depicted in Figure 3, that 
are based on the principle of Loewe Additivity, the synergy 
scores are more clearly separated. The computed scores of the 
synergistic records distribute nicely above zero in the upper 
right corner (categorized as synergistic and computed synergy 
scores above zero) as well as they scatter in the lower left corner 
for antagonistic cases. In all those three panels in Figure 3 we 
see for the non-interactive records that the computed scores 
of those three models are both positive and negative ranging 
roughly between −0.1 and 0.1 symmetrically. Barely any of the 
computed synergy scores for antagonistic cases are positive. 
Therefore, the chances of a record being antagonistic if the 
synergy score is above zero are quite low as well as the risk of 
categorizing a record as antagonistic if it is synergistic.

We further looked in detail into dose combinations for 
which both the fGI (x1, x2) and fmean (x1, x2) yield positive synergy 
values for antagonistic cases and into dose combinations for 
which the fmean (x1, x2) model results in negative synergy values 
for records which are labeled as synergistic. In total we found 
four dose combinations. A visualization of the observed and 
expected responses based on the Explicit Mean Equation model 
is shown in Supplementary Material, Figure S6. One of them is 
a compound combined with itself. Hence, per definition of the 
Loewe Additivity, no interaction is expected. From Figure S6, 
one can see why this record was mis-categorized: for high dose 
combinations, a greater effect is found, which is not found for the 
conditional runs. Probably, the dose ranges are too small to show 
such effects. We looked at the conditional responses of the other 

three dose combinations and observed that for the originally 
antagonistic records (three out of four) one of the conditional 
responses exhibits small effects with the maximal response y∞ 
being above 0.65 (comp. right panel of Figure 6). That leads 
to the computed null-reference surface to be quite high and 
hence causes synergistic scores if any effects are measured 
that are smaller than max ( , )( ) ( )y y∞ ∞

1 2 . We suspect that the dose 
concentrations are not well-sampled and larger maximal doses 
should have been administered.

We looked up the three dose combinations (excluding the one 
where the compound is combined with itself) in the Connectivity 
Map (Lamb et al., 2006; Subramanian et al., 2017), which is one 
of the largest repositories of drug response studies. Of those, 
we could find three in the Connectivity Map. All of these dose 
combinations showed non-interactive effects on all cell lines they 
were tested on. The assays found in the Connectivity Map are 
run on cancer cell lines. The dose combinations investigated here 
are run on yeast. Hence, a full comparison cannot be made, but 
results are certainly suggestive that the compound combinations 
are non-interactive.

In Figures 4 and 5, the computed scores from different null 
reference models are plotted against each other. We compare 
the implicit formulation (General Isobole Equation) to the Bliss 
Independence model and the two best performing models that 
are based on the explicit formulation of Loewe Additivity, fmean 
(x1, x2) and flarge→small (x1, x2). The coloring of the scores is based 
on the original categorization as antagonistic, non-interactive or 
synergistic as provided by Yadav et al. (2015) and Cokol et al. (2011).

FIGURE 2 | Scatter plot of Kendall rank correlation coefficient for both datasets, Mathews Griner (left) and Cokol (right). The Kendall correlation measures the rank 
correlation of the original categorization and the computed synergy scores. The higher the correlation, the more similar the score ranking. The correlation values 
from the synergy scores α, computed with the parametric approach, are plotted on the x-axis and those from the lack-of-fit approach are plotted on the y-axis. Each 
model is depicted in a different color. To guide the eye, the diagonal is plotted. If a data point is above the diagonal, the Kendall rank correlation coefficient from the 
lack-of-fit method is higher than that from the parametric method, and vice versa. Without exception, the Kendall rank correlation coefficients are all higher for the 
synergy scores γ, which are computed with the lack-of-fit method, than those based on the α scores computed with the parametric method.
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In Figure 4 the scores from the Mathews Griner dataset are 
plotted. In the two panels in the upper row and the left panel in 
the middle row Bliss Independence is compared to the other three 
null models that build up on the principles of Loewe Additivity. It 
is obvious, that the scores based on Bliss Independence are larger 
than those of Loewe Additivity and mainly above zero. This is 
due to the more conservative null reference surface as derived 

from Bliss Independence [see Sinzger et al. (2019), Figure 6]. The 
scores from models that are based on Loewe Additivity are very 
similar to each other, as they scatter along the diagonal (panels 
in middle right and lower row). It is difficult, though, to tell apart 
whether a record is synergistic or antagonistic, as non-interactive 
records scatter largely between −0.5 and 0.5. Only records with 
a computed score outside that range can be categorized as 

FIGURE 3 | Computed synergy scores γ of the Cokol data of the best models according to the Kendall in rank correlation coefficient and the receiver operating 
characteristic (ROC) analysis in Supplementary Material in comparison to the original scores from Cokol et al. (2011). The data points are colored based on 
the original categorization. For all three categories, synergistic, non-interactive, and antagonistic, the Pearson correlation is depicted between the original scores 
in that category and the computed synergy scores in the respective color. Additionally, we depict the local polynomial regression fitting of all scores (in gray). The 
histograms of the scores are plotted on the axis, separated by color based on the original categorization. Synergy scores γ based on the Explicit Mean Equation 
model show the highest correlation with the original scores.
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FIGURE 4 | Scatter plot of synergy scores γ of the Mathews Griner dataset. The scores are computed with the lack-of-fit method. Displayed are the four best models 
according to the Kendall rank correlation coefficient and ROC analysis in Kendall Rank Correlation Coefficient and Supplementary Material. The scores of one 
model are depicted on the x-axis and the other on the y-axis. The original categorization is highlighted in different colors. The Pearson correlation score between the 
synergy scores are depicted by color for every categorization and the overall Pearson correlation is depicted in black. To guide the eye, the axis at 0, the diagonal and 
local polynomial regression fitting are depicted in grey. The histograms of the scores are plotted on the axis, separated by color based on the original categorization. 
The three models based on the Loewe Additivity principle show highest correlation (center right and lower row). All comparison with fbliss(x1, x2) show lowest correlation 
(first three cases). There is a large difference between the correlation between the additive models and the comparison of Bliss Independence by roughly 0.3.
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FIGURE 5 | Scatter plot of synergy scores γ of the Cokol dataset. The scores are computed with the lack-of-fit method. Displayed are the four best models 
according to the Kendall rank correlation coefficient and ROC analysis in Kendall Rank Correlation Coefficient and Supplementary Material. The scores of one 
model are depicted on the x-axis and the other on the y-axis. The original categorization is given based on colour. The Pearson correlation score between the 
synergy scores are depicted by color for every categorization and the overall Pearson correlation is depicted in black. To guide the eye, the axis at 0, the diagonal 
and the local polynomial regression fitting are depicted in grey. The histograms of the scores are plotted on the axis, separated by color based on the original 
categorization. fmean(x1, x2) and fGI(x1, x2) show highest correlation (center right), fbliss(x1, x2) shows lowest (first three comparison cases).
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interactive. For the Cokol dataset, which serves as basis for Figure 
5, the scores can be better separated. Despite the scores being 
generally smaller than those from the Mathews Griner data, the 
records can be easier separated, when using a Loewe Additivity 
based model. Additionally, we see here the similarity between 
these additive models given their strong correlation (right 
panels in middle row and both panels in lower row). Further, 
the scores based on flarge→small (x1, x2) achieve higher values than 
those from the other two Loewe Additivity based models. This 
becomes obvious when comparing the null-reference surfaces 
of those three models, as depicted in Lederer et al. (2018b). The 
surface spanned by flarge→small (x1, x2) spans a surface above those 
surfaces spanned by Explicit Mean Equation or General Isobole 
Equation. Therefore, in synergistic cases where the measured 
effect is greater, and hence the response in cell survival smaller, 
the difference from the null-reference surface to flarge→small (x1, x2) 
is greater than to the other two models. We suspect the synergy 
models from the Cokol dataset to be better separable due to the 
experimental design of the dataset. All compounds were applied 
up to their known maximal effect dose. This was not the case for 
the Mathews Griner dataset, where all compounds were applied 
at the same fixed dose range.

All in all, the lack-of-fit method performs better for any 
model when applied to the Mathews Griner dataset and mostly 
better for the Cokol dataset, with the exception of the fsmall→large 
(x1, x2) and Geary model. We suggest, that the lack-of-fit 
should be preferred over the parametric method, due to the 
overall performance on both datasets. When using the lack-of-
fit method, the Explicit Mean Equation model performs either 

second best (Mathews Griner dataset), or best (Cokol dataset). 
The other two well performing models, the explicit flarge→small (x1, 
x2) or the original implicit formulation of Loewe Additivity, the 
General Isobole Equation, do not perform equally well on both 
datasets. To exclude any bias from these models for different 
datasets, the Explicit Mean Equation should be preferred.

DISCUSSION
The rise of high-throughput methods in recent years allows 
for massive screening of compound combinations. With the 
increase of data, there is an urge to develop methods that allow 
for reliable filtering of promising combinations. Additionally, 
the recent success of a synergy study of in vivo mice by Grüner 
et al. (2016) underlines the fast development of possibilities to 
generate biological data. Therefore, it is all the more important 
to develop methods that are sound and easily applicable to high-
throughput data.

In this study we use two datasets of compound combinations 
that come with a categorization into synergistic, non-interactive 
or antagonistic for each record.

Based on the fitted conditional responses, we compute the 
synergy scores of all records. We compare six models that build 
on the principles of Loewe Additivity and Bliss Independence. 
Those six models are used with two different methods to 
compute a synergy score for each record. The first method is a 
parametric approach and is motivated by the Combination Index 
introduced by Berenbaum (1977). The second method quantifies 

FIGURE 6 | Maximal response y∞ (left) and slope parameters s (right) of Hill curves. Parameters are shown for the conditional responses of the four cases for which 
the lack-of-fit method resulted for fmean(x1, x2) and fGI(x1, x2) in a synergy score of opposite sign to its categorization from the Cokol dataset. Different records are 
depicted in different colours. The original categorization of each record is depicted per shape. The conditional responses of one record, and hence their Hill curve 
parameters, are grouped depending on size of the Hill curve parameter s (larger or smaller).
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the lack-of-fit, i.e. the difference in volume between the expected 
response assuming no interaction and the measured response 
and is motivated by Di Veroli et al. (2016).

We compare the computed synergy scores from both methods, 
each applied with the six reference models, based on Kendall rank 
correlation coefficients. Based on these correlation coefficients 
we investigate the reconstruction of ranking of the records (see 
Kendall Rank Correlation Coefficient). We further conduct an 
ROC analysis (results shown in Supplementary Material). With 
this, we quantify the methods' and models' capacity to distinguish 
records from different categories, given a computed synergy 
score. Both, the Kendall rank correlation coefficient and the ROC 
analysis, show a superiority of those models that are based on 
Loewe Additivity relative to those based on Bliss Independence. 
From those additive models the Explicit Mean Equation is the 
overall best performing model for both datasets.

For the above comparison of the six null reference models 
and the two methods, we rely on the underlying categorization of 
both datasets. All performance metrics are based on how well the 
predicted synergy scores agree with the underlying categorization. 
The categorizations of both datasets were created very differently 
from one another. On one hand, the Mathews Griner dataset 
was categorized on a visual inspection, on account of which we 
cannot be certain about the assumptions made that guided the 
decision making process. On the other hand, the categorization 
of the Cokol dataset is based on the principle of Loewe Additivity. 
This leads to the natural preference of null models that are based 
on Loewe Additivity over those based on Bliss Independence, 
which we find back in our analysis. Irrespective of the origin of 
the classification, we stress that the labels were provided to us by 
independent researchers and hence were not biased in any way to 
favor the Explicit Mean Equation model.

Note that we conduct the research only on combinations of two 
compounds. Research on higher-order combinations is usually 
performed with the principle of Bliss Independence (Zimmer 
et al., 2016; Katzir et al., 2019) as its extension is straight-forward. 
The General Isobole Equation is also easily extensible to more 
than two compounds (theoretical work in Gennings and Carter, 
1995 and an analysis of three combinations can be found in 
Fang et al., 2017; Tosi et al., 2018). An extension of the explicit 
formulations of Loewe Additivity to more than two compounds 
would increase the number of explicit equations (Eq. 5 and Eq. 
6) equal to the number of compounds used. Hence, all six null-
reference models can be extended to higher-order compound 
combinations. The same holds for the parametric and lack-of-
fit method. It has to be kept in mind, that the number of drug 
combinations grows exponentially with the number of drugs. A 
full experimental design with complete set of dose combinations 
is, to the best of our knowledge, only reported in the work of 
Fang et al. (2017) and Tosi et al. (2018).

Meanwhile, it is shown in Russ and Kishony (2018) that Bliss 
Independence maintains accuracy when increasing the number 
of compounds that are combined with each other. Loewe 
Additivity, however, loses its predictive power for an increasing 
number of compounds.

The comparison of the parametric method with the lack-
of-fit method shows a superiority of the lack-of-fit method. To 

recall, the motivation behind the parametric approach was the 
statistical advantages of such an approach. It allows to define an 
interval around α = 0 in which a compound combination can be 
considered additive. For the lack-of-fit method, such statistical 
evaluation can not be done directly, but could be performed on 
the basis of bootstrapping.

Chou and Talalay (1977) measure the interaction effect 
locally for a fixed ratio of doses of both compounds that are 
supposed to reach the same effect, say one unit of the first 
compound causes the same effect as two units of the second 
compound, which results in the dose combination of 1:2. Along 
this fixed ratio of doses, they compute the left-hand side of Eq. 
3 given the two doses x1 and x2 that are assumed to reach a 
fixed effect y* together with x*i being the dose of compound 
i that reaches the fixed effect alone. For the fixed dose ratio, 
they run over all expected effects, usually from zero to one. A 
geometric interpretation of that method is depicted in (Greco 
et al., 1995, Figure 7, p. 341). The resulting values of the left-
hand side of Eq. 3 are analyzed graphically: all computed 
values are plotted versus the expected fixed effect y* = [0, 1]. 
Values higher than one exhibit synergistic behavior, values 
below one antagonism. This method allows for results that 
show antagonistic behavior for, say, smaller effects, as well as 
synergistic behavior for higher effects, or vice versa. That such 
a behavior of switching from antagonistic behavior in one 
region to synergistic behavior in another can occur was also 
shown in Norberg and Wahlström (1988). With one synergy 
score, as used throughout this paper, we do not provide such 
a measure for local antagonism and synergism. Our main 
motivation in this study is to provide a single synergy score 
that allows for fast filtering of interesting candidates for more 
in-depth research. To extend that idea, the standard deviation 
could be taken into account, as in a t-value or Z-score. 
Additionally, the superior lack-of-fit method is much faster 
and simpler to implement than the parametric one.

Finally, to asses how distinguishable the synergy scores γ are, 
we visualize the synergy scores based on the underlying category 
(Scattering of Synergy Scores). The synergy scores from the lack-
of-fit method can, based on their sign, reliably be categorized 
as synergistic or antagonistic. For records categorized as non-
interactive, the computed synergy scores are positive as well 
as negative. For the two datasets, we saw different extents of 
separation between those γ-scores, which makes it difficult to 
generalize the results. All in all, the differentiation from no 
interaction poses a more difficult task as choosing the threshold 
is arbitrary.

During the analysis, we observed higher synergy scores when 
applying the Bliss Independence principle as null reference 
model. This is due to the more conservative null reference surface 
as derived from Bliss Independence [see exemplary comparison 
of isoboles from most of the models discussed here in (Sinzger 
et al., 2019, Figure 6)]. Due to the synergy scores being relatively 
high, a differentiation between categories based on the synergy 
score poses a bigger challenge. There is a strong overlap of synergy 
scores from all three categories. Additionally, most of the synergy 
scores γ, that are computed with the lack-of-fit method, are above 
zero. Different ranges of synergy scores for both datasets make it 
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additionally difficult to assess synergy or antagonism for a record 
based on the unique information of the synergy score.

We want to emphasize the performance benefit of the recently 
introduced Explicit Mean Equation (Lederer et al., 2018b) 
over the implicit formulation in form of the General Isobole 
Equation. On both datasets, it is the overall best performing 
model when compared to the provided categorizations. The 
explicit formulation of this additive model was shown to speed 
up computation by a factor of 250 [see Lederer et al., 2018b, 
Figure S1)]. Together with the implementation of the lack-of-
fit method, which is easier to implement and a lot faster than 
the parametric method, this combination of model improvement 
and method can be of great benefit for the research community.

Although the performance of models and methods are 
consistent across the two (quite different) datasets considered in 
this study, reliable comparison of different models and methods 
would benefit from the availability of drug screening datasets 
that are available with ground truth labeling.
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