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Changes of cholesterol level in the plasma membrane of cells have been shown to 
modulate ion channel function. The proposed mechanisms underlying these modulations 
include association of cholesterol to a single binding site at a single channel conformation, 
association to a highly flexible cholesterol binding site adopting multiple poses, and 
perturbation of lipid rafts. These perturbations have been shown to induce reversible 
targeting of mammalian transient receptor potential C (TRPC) channels to the cholesterol-
rich membrane environment of lipid rafts. Thus, the observed inhibition of TRPC channels 
by methyl-β-cyclodextrin (MβCD), which induces cholesterol efflux from the plasma 
membrane, may result from disruption of lipid rafts. This perturbation was also shown to 
disrupt multimolecular signaling complexes containing TRPC channels. The Drosophila 
TRP and TRP-like (TRPL) channels belong to the TRPC channel subfamily. When the 
Drosophila TRPL channel was expressed in S2 or HEK293 cells and perfused with MβCD, 
the TRPL current was abolished in less than 100 s, fitting well the fast kinetic phase of 
cholesterol sequestration experiments in cells. It was thus suggested that the fast kinetics 
of TRPL channel suppression by MβCD arise from disruption of lipid rafts. Accordingly, 
lipid raft perturbation by cholesterol sequestration could give clues to the function of lipid 
environment in TRPC channel activity and its mechanism.

Keywords: TRP-like (TRPL) channel, lipid rafts, methyl-β-cyclodextrin, cholesterol recognition amino acid 
consensus sequence (CRAC), caveolae

INTRODUCTION
Cholesterol molecules are intercalated among the phospholipids of cell membrane forming an 
integral part of the plasma membrane, which is essential for the proper function of ion channels. 
Plasma membrane cholesterol includes domains known as lipid rafts (Pike, 2006). However, 
cholesterol is located in both rafts and non-raft fractions.

An efficient method to modulate the content of plasma membrane cholesterol is by methyl-β-
cyclodextrin (MβCD), which is a cyclic oligosaccharide (Ohtani et al., 1989; Davis and Brewster, 
2004). The β-cyclodextrins (seven glucose units) have high affinity for encapsulating cholesterol 
(Ohtani et al., 1989). MβCD is quite specific for cholesterol, allowing enrichment or a relatively rapid 
sequestration of cholesterol from living cells. Cholesterol-saturated MβCD is efficient as cholesterol 
donor. The degree of cholesterol enrichment is between ~30% to ~threefold, according to the type 
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of cell (Christian et al., 1997; Levitan et al., 2000). When cells 
are incubated with high concentration of “empty” MβCD (5–10 
mM) for hours (> 2 h), 80–90% of total cellular cholesterol can 
be sequestered (Kilsdonk et al., 1995; Levitan et al., 2000). The 
amount of cholesterol sequestration from different cell types 
is a highly variable parameter (Matthews et al., 1985; Kilsdonk 
et al., 1995; Christian et al., 1997; Niu et al., 2002). Cholesterol 
sequestration leads to dis-association of proteins from lipid rafts 
(Scheiffele et al., 1997; Kabouridis et al., 2000; Predescu et al., 
2005) and to decrease in clustering of raft-associated molecules 
(Harder et al., 1998). Cholesterol depletion also disrupts caveolae 
structure; it does not result in the disappearance of caveolin but 
leads to a shift of caveolin from raft to non-raft fractions (Hissa 
et al., 2017) and to ruffling (Grimmer et al., 2002). It was shown 
that βCDs sequestered cholesterol from both cholesterol-rich and 
cholesterol-poor membrane domains (Ottico et al., 2003; Gaus 
et al., 2005; Rouquette-Jazdanian et al., 2006; Tikku et al., 2007).

In this mini-review, we discuss physiological effects of 
modulating plasma membrane cholesterol. We focus on 
modulations of transient receptor potential C (TRPC) channels 
activity following application MβCD, with emphasis on fast 
modulations (in less than 100 s).

THe KINeTICS OF CHOLeSTeROL 
ReMOvAL BY MβCD
Cholesterol sequestration by βCD from several cell types revealed 
bi-exponential kinetics, when monitored with radiolabeled [H3]
cholesterol: a fast (τ 1/2 of 19–23 s) and a slow (τ 1/2 of 15–30 
min) kinetics, suggesting the existence of two separate pools of 
cholesterol (Yancey et al., 1996). It was further suggested that 
the “fast” pool of cholesterol corresponds to the outer leaflet of 
the plasma membrane, while the identity of the slow pool was 
unclear (Yancey et al., 1996). Recently, imaging studies showed 
that cholesterol level in the inner leaflet of the plasma membrane 
was ~12-fold smaller than cholesterol concentration in the 
outer leaflet (Liu et al., 2017). Interestingly, two pools of MβCD 
extracts were observed, with half-lives similar to those reported 
previously (Yancey et al., 1996; Haynes et al., 2000). However, it 
was also found that the slower cholesterol efflux (from the “slow” 
pool) was absent from energy-depleted cells (Hao et al., 2002).

The existence of a fast-modulated pool of cholesterol 
is important for the interpretation of studies showing fast 
responses of ion channels to modulations of cholesterol (see 
below). Unfortunately, most studies used prolonged incubations 
of cells and tissues with cyclodextrins, thus precluding the ability 
to observe fast kinetics of cholesterol modulations.

MODULATION OF MAMMALIAN TRPC 
CHANNeL ACTIvITY BY CHOLeSTeROL
Cholesterol-ion channels interactions have been studied both 
computationally and experimentally. Earlier studies identified two 
types of cholesterol binding motifs: the cholesterol consensus motif 
(CCM) and the cholesterol recognition amino acid consensus 

sequence (CRAC), as well as the so-called CARC motif, in which 
the amino acid sequence appears in reverse. These motifs have 
been found in many ion channels, such as nicotinic acetylcholine 
receptor (nAChR), BK, P2X7, Kv1.3, as well as TRPV1 channels 
(Picazo-Juárez et al., 2011; Singh et al., 2012; Balajthy et al., 2017; 
Murrell-Lagnado, 2017). However, a recent analysis of the solved 
crystal structures of 24 cholesterol–protein complexes with 38 
distinct cholesterol binding sites showed that fewer than 40% of 
these sites contained a CRAC or CARC motif, indicating that these 
motifs at best form only a subset of potential cholesterol binding 
sites (Rosenhouse-Dantsker, 2017). Furthermore, the relatively 
loose definition of the motif, (L/V)-X1–5-(Y)-X1–5-(K/R), where X 
can be one to five residues of any kind, has raised concerns about 
the predictive nature of the motif and the risk of identifying false 
positives (Epand, 2006; Jaipuria et al., 2018). Notably, while for 
many channels, there is little or no experimental confirmation 
for cholesterol interacting with these motifs, it was shown that a 
CRAC motif has a significant effect on cholesterol modulation of 
TRPV1 channel activity (Picazo-Juárez et al., 2011).

Because the above cholesterol binding motifs represent only 
a subset of potential cholesterol binding sites, there is a risk in 
using this approach. Consequently, more recent strategies for 
identifying binding sites have utilized computational approaches 
such as docking analyses and molecular dynamics simulations 
to identify potential sites in an unbiased manner. In particular, 
cholesterol binding sites were identified on nAChR, as well as on 
inwardly rectifying potassium (Kir) channels, voltage-dependent 
anion channel (VDAC), and GABAA receptors (Brannigan et al., 
2008; Rosenhouse-Dantsker et al., 2013; Hénin et al., 2014; 
Weiser et al., 2014). In these studies, docking analyses were 
first used to predict a set of candidate binding sites, which were 
then refined through short atomistic simulations and tested 
experimentally. Importantly, these binding sites did not contain 
the previously described cholesterol binding motifs. A limitation 
of this approach, however, is that atomistic simulations usually 
are not long enough to observe the dynamic behavior of the 
cholesterol molecule moving from the bilayer to the binding site. 
This limitation is addressed most recently, with the development 
of coarse-grained force fields such as the Martini force field, long 
(µs) time-scale simulations of membrane proteins allowing for the 
dynamic binding and unbinding of cholesterol to target proteins, 
providing deeper insight into the mechanisms of cholesterol 
regulation (Cang et al., 2013; Genheden et al., 2017; Rouviere 
et al., 2017; Barbera et al., 2018). Using these approaches, most 
recent studies discovered that in contrast to most other ligands, 
cholesterol binding is highly flexible and cholesterol dynamically 
explores its binding site, adopting multiple poses in a “cloud,” 
rather than occupying a single conformation (Gimpl, 2016; 
Genheden et al., 2017; Rouviere et al., 2017; Barbera et al., 2018). 
Recently electron cryo-microscopy structure of zebra fish TRPC4 
(TRPC4DR) channel in its unliganded closed state, at an overall 
resolution of 3.6 Å was published (Vinayagam et al., 2018). The 
transmembrane S1–S6 helices structure revealed that in the 
pre-S1 elbow domain inside the membrane, a cavity is formed 
with helices S1 and S4, in which a density corresponding to a 
sterol is formed (Figure 1). Since the authors added cholesteryl 
hemisuccinate (CHS) during the purification of TRPC4DR, they 
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fitted this molecule into the density. This density in the S1–S4 
cavity is consistent with the above notion that sterol binding to 
channel proteins is flexible.

Cholesterol changes in the plasma membrane of cells have been 
shown to modulate ion channels function, and these modulations 
include perturbation of specific lipid environments. Experimental 
observations have suggested reversible targeting of mammalian 
TRPC channels to cholesterol-rich membrane environment of 
lipid rafts. This led to the suggestion that the observed inhibition 
of mammalian TRPC channels by MβCD-inducing cholesterol 
efflux may result in part from disruption of lipid rafts, including 
disruption of multimolecular signaling complexes (Svobodova 
and Groschner, 2016). Below we give examples for the role of lipid 
rafts in several types of TRPC channels.

TRPC1
The mammalian TRPC1 was shown to interact with caveolin-1 
(Cav-1), which is a scaffolding protein that binds cholesterol 
(Lockwich et al., 2000). This interaction is mediated via both 
N-terminal Cav-1 binding motif and C-terminal Cav-scaffolding 
consensus. The important role of caveolae in TRPC1 activation 
was supported by the finding that TRPC1 activity was dependent 
on Cav-1 (Murata et al., 2007), while TRPC1 was found mainly 
in caveolae (Lockwich et al., 2000). The experiments indicated 
that TRPC1 mainly resides in lipid rafts and exposed to the 
cholesterol-rich membrane of caveolae (Lockwich et al., 2000). 
Inhibition of TRPC1 currents by MβCD-induced cholesterol 
sequestration may result from both disruption of lipid raft 
architecture, including impaired local assembly of signaling 
molecules, and inhibition of a gating mechanism. The above 
two effects of cholesterol on TRPC1 function (i.e. disruption 
of lipid raft architecture and inhibition of a gating mechanism) 

was demonstrated for several cell types (Bergdahl et al., 2003; 
Brownlow and Sage, 2005; Kannan et al., 2007).

TRPC3
Cholesterol sensitivity of the TRPC3 channel was demonstrated 
by using acute administration of cholesterol-saturated MβCD to 
modify membrane cholesterol content. Cholesterol application 
elevated conductance in TRPC3-expressing HEK293 cell culture. 
The membrane conductance derived from I–V curves was typical 
for phospholipase C (PLC)–mediated TRPC3 currents, showing 
fast rise time of several seconds. Thus, increased cholesterol 
concentrations induced a relatively fast TRPC3-mediated current 
in HEK293 cells (Graziani et al., 2006). Surface biotinylation 
experiments revealed a significant increase of TRPC3 level at 
the plasma membrane caused by cholesterol addition. This result 
suggests that TRPC3-mediated current and the ensuing Ca2+ 
influx that were induced by cholesterol elevation may resulted 
from a cholesterol-induced expression of TRPC3 in the surface 
membrane (Graziani et al., 2006).

Like TRPC1, the TRPC3 channels reside in caveolae. The 
significance of caveolae in mediating inositol 1,4,5 trisphosphate 
(IP3)–induced non-selective cation current (ICat) activation 
and arterial smooth muscle constriction was studied in 
smooth muscles of cerebral arteries (Adebiyi et al., 2011). 
Immunoprecipitation and immunoFRET experiments revealed 
that Cav-1, TRPC3, and IP3 receptor1 (IP3R1-1) formed a 
multimolecular signaling complex via Cav-1 scaffolding domain 
that was reversibly disrupted by MβCD and by a peptide with 
Cav-1 scaffolding domain. These experiments revealed close 
association of the signaling proteins in smooth muscles of 
cerebral arteries. In other experiments, caveolae disassembly was 
obtained by: (1) MβCD, (2) Cav-1 knockdown using RNAi, or (3) 

FIGURe 1 | A sterol binding pocket in the TRPC4DR structure. Electron cryo-microscopy structure of zebra fish TRPC4 (TRPC4DR) channel in its unliganded closed 
state, at an overall resolution of 3.6 Å. The transmembrane S1–S6 helices structure revealed that in the pre-S1 elbow domain inside the membrane, a cavity is 
formed with helices S1 and S4, in which a density corresponding to a sterol is formed. (Reproduced from Vinayagam et al. (2018) with permission from eLife.)
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application of Cav-1 scaffolding domain. Caveolae disassembly 
inhibited the ICat currents and vasoconstriction. The data thus 
indicated that the multimolecular signaling complex via Cav-1 
scaffolding domain allowed signal-induced vasoconstriction 
(Adebiyi et al., 2011).

TRPC6
Podocytes are multipolar cells that cover the external surface 
of glomerular capillaries and form an essential component of 
the kidney ultrafiltration apparatus (Pavenstädt et al., 2003). 
Importantly, in order for podocytes to respond to distending 
forces, their Ca2+-dependent contractile elements must be 
coupled to a Ca2+ signaling pathway. The major source of regulated 
Ca2+ influx into podocytes is Ca2+-permeable TRPC6 channel, 
which like other mammalian TRPC channels are activated via 
PLC-mediated signaling cascade (Dryer and Reiser, 2010; Katz 
et al., 2017). Several mutations in the TRPC6 channel result in 
autosomal-dominant nephrotic syndromes (Reiser et al., 2005; 
Winn et al., 2005; Heeringa et al., 2009). Podocin is a cholesterol 
binding protein, which interacts, in a still unclear manner, with 
the TRPC6 channel (Reiser et al., 2005; Huber et al., 2006). 
The ability of podocin, which resides in lipid raft domains (Lei 
et al., 2014), to bind cholesterol may be central to TRPC6 gating 
(Huber et al., 2006). Inhibition of TRPC6 channels by application 
of MβCD or by expression of dominant-negative Cav-1 isoform 
indicated that TRPC6 activation requires lipid rafts regions at 
the surface membrane (Lei et al., 2014), suggesting that podocin 
coordinates TRPC6 channel activity (Anderson et al., 2013).

FAST INHIBITION OF THe DROSOPHILA 
TRP-LIKe CHANNeL ACTIvITY BY MβCD
The Drosophila light-sensitive TRP and TRP-like (TRPL) 
channels are the first members of the TRPC subfamily that were 
discovered (review Katz et al., 2017). It is well established that the 
TRP/TRPL channels are the target of the rhodopsin-activated-
phosphoinositide cascade, which leads to production of lipids 
that may function as second messenger in a variety of cells and 
tissues. Cyclodextrins, both α-cyclodextrin and MβCD, are 
known to sequester phospholipids (Ohtani et al., 1989) that are 
involved directly or indirectly in gating of TRPC channels.

Light activation of PLC in Drosophila photoreceptors leads 
to the formation of diacylglycerol (DAG) and IP3, which are 
then recycled back to form phosphatidylinositol 4,5-bisphosphate 
[PtdIns(4,5)P2, designated the phosphoinositide (PI) cycle, 
Figure 2A). The mechanism by which the PI cycle activates the 
TRP/TRPL channels is not entirely clear (e.g. see Hardie, 2003). 
Nevertheless, the involvement of lipids in TRP/TRPL channel 
activation may account for the effects of MβCD on the TRPL 
channel (see below).

To characterize the Drosophila light-sensitive channels, TRPL 
channels were expressed in tissue-cultured S2 (Hardie et al., 1997; 
Chyb et al., 1999; Parnas et al., 2009; Lev et al., 2012b; Peters et al., 
2017) and HEK293 cells (Hambrecht et al., 2000; Lev et al., 2012b; 

Peters et al., 2017). TRPL channels expressed in the Drosophila S2 
cells showed basal activity that could be amplified by polyunsaturated 
fatty acid [PUFA, e.g. linoleic acid (LA), Lev and Minke, 2010; Lev 
et al., 2012a; Lev et al., 2012b]. The pronounced basal TRPL current 
obtained at positive voltage was virtually abolished by MβCD, in 
less than 100 s (Figures  2B–D). This quick effect of cholesterol 
sequestration is in marked contrast to the previously shown slow 
effect (of many minutes) of cholesterol sequestration (Singh et al., 
2011). Inhibition of the TRPL current persisted long after removal 
of MβCD, excluding direct inhibition of TRPL by MβCD (Figure 
2C). In further experiments, cholesterol was first depleted by 
means of MβCD in S2 cells expressing TRPL; then the excess of 
MβCD was washed out, and the cells were perfused with the TRPL 
channel activator LA. This protocol initially resulted, as expected, 
in reduction of TRPL currents (see Figure 2), but surprisingly, LA 
could activate the TRPL channels independent of MβCD. These 
results suggest that in S2 cells, MβCD does not affects the TRPL 
channels directly but affected G-protein coupled related signaling 
proteins upstream of TRPL in the cascade. Also, it is possible that 
cholesterol and LA share common mechanism of action, or that LA 
activation does not require cholesterol for its action.

To further examine at what stage of the transduction cascade 
MβCD operates, we expressed the Pleckstrin Homology domain 
of PLC-δ attached to the green fluorescent protein (GFP) in tissue 
culture cells. The Pleckstrin Homology domain, which binds 
specifically PtdIns(4,5)P2 (and IP3), marks plasma membrane 
PtdIns(4,5)P2 in living cells (Balla and Varnai, 2002; Suh et al., 
2006; Lev et al., 2012b). Since it is technically difficult to perform 
these experiments in S2 cells, HEK293 cells were used. In HEK293 
cells expressing TRPL, no basal (constitutive) TRPL current was 
observed [(Figure 3A), unlike the situation in S2 cells (Figures 
2B, C, Lev et al., 2012a)]. Under control conditions, the Pleckstrin 
Homology domain–GFP was associated with PtdIns(4,5)P2 of the 
surface membrane (Figures 3C–H). However, when PtdIns(4,5)
P2 concentrations were reduced [e.g. by PLC-dependent 
hydrolysis of PtdIns(4,5)P2], the GFP-associated peptide diffused 
to the cell body (Figures 3C–H). PLC was activated by the 
expressed muscarinic receptor (hM1, which was activated by 
carbachol, CCH, Figures 3C, D), before (Figure 3C) and after 
application of MβCD (Figure 3D). These experiments showed 
that MβCD had no effect on PtdIns(4,5)P2 hydrolysis by PLC, 
thus indicating that inhibition of TRPL-dependent current by 
cholesterol sequestration takes place after activation of PLC in 
the transduction cascade in HEK293 cells. Strikingly, application 
of LA, which is a highly potent activator of the TRPL channels, 
acting directly on the channels (Parnas et al., 2009) had virtually 
no effect (Figure 3B). Thus, in HEK293 cells, LA applied after 
response suppression by MβCD had virtually no effect on TRPL 
channel activity, suggesting that in HEK293 cells unlike S2 cells, 
cholesterol depletion suppress directly TRPL channel activation.

CONCLUSION
Cholesterol molecules are essential for the proper function of ion 
channels, including TRPC channels. Sequestration of cholesterol 
by MβCD from the plasma membrane of cells expressing TRPC 
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FIGURe 2 | (A) The phosphoinosite (PI) cycle. In the phototransduction cascade, light triggers the activation of phospholipase Cβ (PLCβ, encoded by norpA). This catalyzes 
hydrolysis of the membrane phospholipid PI(4,5)P2 (PIP2) into IP3 and diacylglycerol (DAG). DAG is transported by endocytosis to the endoplasmic reticulum and inactivated 
by phosphorylation converting it into phosphatidic acid (PA) via DAG kinase (DGK, encoded by rdgA) and to CDP-DAG via CDP-DAG synthase. Subsequently, CDP-DAG is 
converted into phosphatidyl inositol (PI), which is transferred back to the microvillar membrane, by the PI transfer protein (encoded by rdgB). PIP and PIP2 are produced at the 
microvillar membrane by PI kinase and PIP kinase, respectively. PA can also be converted back to DAG by lipid phosphate phosphohydrolase (Lpp, encoded by laza). PA is 
also produced from phosphatidyl choline (PC) by phospholipase D (PLD). DAG is also converted in two enzymatic stages, one of them is by DAG lipase (encoded by inaE), into 
polyunsaturated fatty acids (PUFAs). (B–D) MβCD blocks constitutive TRPL channels activity. (B) Current–voltage relationships (I–V curves) measuring TRPL-dependent currents. 
I–V curves obtained in response to voltage ramp (of 1 s duration) from S2 cells expressing TRPL and showing basal channel activity with strong outward rectification, typical for 
TRPL-dependent current (1). The TRPL channel activity was highly reduced after perfusion with 10 mM methyl-β-cyclodextrin (MβCD) (2) and the effect was irreversible, even 
after washout of MβCD (3) (n > 10). (C) Time course of the MβCD effects on TRPL currents in S2 cells. Current densities are shown as a function of time. Series of I–V curves 
were derived from repeatedly applied voltage ramps every 5 s, and currents were measured at ±120 mV holding potentials as a function of time under the various experimental 
conditions as indicated. The numbers correspond to the numbers on the I–V curves in (B). (D) Statistics of the cholesterol depletion experiments in S2 cells. (A) Cholesterol 
depletion by MβCD had a significant effect on the positive TRPL currents at 120 mV (n = 5, values are average ± SEM, paired Student t-test, *p ≤ 0.05). Reproduced from Katz 
and Minke, 2009 with permission from Frontiers. (B–D) Reproduced from Peters et al., 2017 with permission from Elsevier, license number 4676401165468.)
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channels suppressed channel activity. It is still not entirely clear 
what is the mechanism underlying suppression of TRPC channels 
activity by MβCD. Possible mechanisms include association 
of cholesterol to a highly flexible cholesterol binding site or 
perturbation of specific lipid environments. Mammalian TRPC1 
and TRPC6 channels require for their activity binding to scaffold 
proteins located in cholesterol-rich lipid rafts. For these channels, 

inhibition resulting from cholesterol sequestration by MβCD 
possibly resulted from disruption of lipid rafts at the plasma 
membrane, rather than direct inhibition of a gating mechanism. 
Nevertheless, channel–cholesterol interactions similar to those 
reported for Kir channels cannot be excluded. Future availability 
of atomic structure of TRPC channel subfamilies nanodisks 
can be very useful to determine the possibility that in contrast 

FIGURe 3 | Continued
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to most other ligands, cholesterol binding to TRPC channels is 
highly flexible and cholesterol dynamically explores its binding 
site, adopting multiple poses in a “cloud,” rather than occupying 
a single conformation and in this way affects channel gating. For 
the Drosophila TRPL channel, where the gating mechanism of the 
channel is still unknown, elucidating the mechanism of cholesterol 
action may help solve the long-standing enigma of channel gating.
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FIGURe 3 | (A–B) Cholesterol depletion suppressed receptor-activated TRPL-dependent current. (A) TRP-like–green fluorescent protein (TRPL–GFP) did not show 
any spontaneous activity in HEK293 cells, but it could be readily activated via PLC and blocked by MβCD: current–voltage relationships measured from HEK293 
cells expressing TRPL–GFP, showing no basal channel activity (1). However, coexpression of the hM1 muscarinic receptor and application of carbachol (CCH) 
activated the expressed TRPL–GFP channels via endogenous PLC-mediated cascade (2) and the TRPL-dependent current in the presence of CCH was suppressed 
by application of MβCD (3), while subsequent application of LA, a strong activator of TRPL channels, did not activate the channels after the application of MβCD (4). 
(B) Time course of the receptor-activated TRPL-dependent current and the effect of cholesterol depletion on the receptor-activated TRPL currents in HEK293 
cells. Current densities are shown as a function of time. Series of i–V curves were derived from repeatedly applied voltage ramps every 5 s, and currents were 
measured at ±120 mV holding potentials as a function of time under the various experimental conditions as indicated (C–H) Cholesterol depletion did not affect 
receptor-induced PLC activity. No effects of cholesterol depletion on PLC activity as monitored by translocation of the PIP2 sensor PH–GFP: representative series 
of multiphoton images of HEK293 cells coexpressing eGFP-tagged PH domain and hM1 receptor. Application of CCH to the bathing solution, in a concentration 
that activated the TRPL channels (10 μM CCH), induced similar translocation of the eGFP-tagged PH domain to the cell body, with and without MβCD, indicating 
the PLC-mediated hydrolysis of PIP2 is not affected by MβCD. (C) The time course of fluorescence changes measured in the cytosol before application of MβCD: 
graph plotting the relative mean pixels’ intensity (red curve) as a function of time measured from multiphoton images of HEK293 cells expressing PH–GFP and 
hM1 receptors. Before PLC stimulation by CCH application (white background), the GFP–PH is associated with the plasma membrane where most PIP2 is located 
and the cell body fluorescence is low (for quantification, see G, H). Once PLC is activated and PIP2 is hydrolyzed (green background), the PH–GFP translocates 
to the cytosol and there is a marked increase in fluorescence intensity at the cytosol. The individual single-cell measurements are shown by noisy dim gray traces. 
(D) The time course of fluorescence changes measured in the cytosol after application of MβCD: similar graph as in (C), but measured following application 
of MβCD. (e) Multiphoton images of HEK293 cells expressing PH–GFP and hM1 receptor without application of MβCD: Left: GFP fluorescence of cells before 
application of CCH, little PH–GFP translocation was observed. Right: GFP fluorescence of cells after perfusion with the M1 agonist CCH. Translocation of PH–GFP 
is observed. MβCD was not applied (n > 50). (F) Multiphoton images of HEK293 cells expressing PH–GFP and hM1 receptor after application of MβCD: Similar 
images of HEK293 cells expressing TRPL PH–GFP and hM1 receptor before (left) and after application of CCH (right). MβCD was applied, but it did not affect PH–
GFP translocation (n > 50). (G, H) Graphs plotting the PH–GFP fluorescence intensity as a function of cell position: fluorescence intensity of images showing cross 
sections of two representative cells along the red line, before application of CCH (red curve), and after application of CCH (black curve) in the absence of MβCD 
(G) and after application of MβCD (H). (Reproduced from Peters et al., 2017 with permission from Elsevier, license number 4676401165468.)
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