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Despite some previous examples of successful application to the field of
pharmacogenomics, the utility of machine learning (ML) techniques for warfarin dose
predictions in Caribbean Hispanic patients has yet to be fully evaluated. This study
compares seven ML methods to predict warfarin dosing in Caribbean Hispanics. This is a
secondary analysis of genetic and non-genetic clinical data from 190 cardiovascular
Hispanic patients. Seven ML algorithms were applied to the data. Data was divided into 80
and 20% to be used as training and test sets. ML algorithms were trained with the training
set to obtain the models. Model performance was determined by computing the
corresponding mean absolute error (MAE) and % patients whose predicted optimal
dose were within ±20% of the actual stabilization dose, and then compared between
groups of patients with “normal” (i.e., > 21 but <49 mg/week), low (i.e., ≤21 mg/week,
“sensitive”), and high (i.e., ≥49 mg/week, “resistant”) dose requirements. Random forest
regression (RFR) significantly outperform all other methods, with a MAE of 4.73 mg/week
and 80.56% of cases within ±20% of the actual stabilization dose. Among those with
“normal” dose requirements, RFR performance is also better than the rest of models
(MAE = 2.91 mg/week). In the “sensitive” group, support vector regression (SVR) shows
superiority over the others with lower MAE of 4.79 mg/week. Finally, multivariate adaptive
splines (MARS) shows the best performance in the resistant group (MAE = 7.22 mg/week)
and 66.7% of predictions within ±20%. Models generated by using RFR, MARS, and SVR
algorithms showed significantly better predictions of weekly warfarin dosing in the studied
cohorts than other algorithms. Better performance of the ML models for patients with
“normal,” “sensitive,” and “resistant” to warfarin were obtained when compared to other
populations and previous statistical models.
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INTRODUCTION

Warfarin is one of the most used anticoagulants worldwide.
However, its use tends to be challenging, due to its narrow
therapeutic window and dose variability requirements among
patients (Liu et al., 2015; Ma et al., 2018). Side effects may result
in bleeding for patients with an overdosing or thrombosis in case
of under-dosing, both related with an inadequate dosage.
Consequently, patients who are under treatment need to be
continuously monitored to avoid further damage. Studies have
been developed in order to improve the recommended dose for
warfarin patients that present side effects related to bleeding or
thrombosis (Liu et al., 2015; Ma et al., 2018).

Demographic variables, genetic variants, and clinical factors
are largely responsible for the broad variability of warfarin
dosing among patients. Previous studies have reported that
non-genetic factors such as age, height, weight, race, and drug
interactions can explain around 15–20% of such inter-individual
variability (Liu et al., 2015). On the other hand, genetic factors
are considered critical predictors of warfarin dose requirements
in various populations worldwide, particularly polymorphisms
in genes encoding cytochrome P450, family 2, subfamily C,
polypeptide 9 (CYP2C9) and vitamin K-epoxide reductase
complex 1 (VKORC1). These two genes may individually
contribute to 6–18 and 15–30%, respectively, in warfarin
dose variability. However, the combination of relevant
polymorphisms in both pharmacogenes accounted for approx.
30% of observed inter-patient variability in warfarin dose
requirements, affecting both pharmacodynamics and
pharmacokinetics of this drug (Liu et al., 2015).

To improve patient quality of life, researchers have developed
predictive pharmacogenetic dosing algorithms for warfarin in
multiple ethnicities (Cosgun et al., 2011; Hu et al., 2012; Liu
et al., 2015; Sharabiani et al., 2015; Li et al., 2015; Ma et al.,
2018). Most of the algorithms integrate demographic, clinical,
and genetic variants, based on multiple linear regression (MLR)
methods. Previous studies have demonstrated a prediction
accuracy of around 37–55% for the patients of warfarin stable
dose. In addition, machine learning (ML) algorithms in
pharmacogenetic warfarin dosing have been reported (Liu
et al., 2015). Some of these algorithms have been compared in
racially diverse groups, however Caribbean Hispanic populations
have not been included. Thus, in this study we aim to compare
seven ML methods to predict stable warfarin dosing in
Caribbean Hispanic patients, using genetic and non-genetic
clinical data.
MATERIALS AND METHODS

Patient Cohorts
This is a secondary analysis of genetic and clinical data collected
from participants in an open-label, single-center, population-
based, observational, retrospective cohort study (ClinicalTrial.
gov identifier NCT01318057). Participants were recruited
from the Veteran's Affairs Caribbean Healthcare System
Frontiers in Pharmacology | www.frontiersin.org 2
(VACHS)-affiliated anticoagulation clinic in San Juan, Puerto
Rico, which serves a predominantly Caribbean Hispanic
population. Participants self-reported as Caribbean Hispanic
Puerto Ricans, were ≥21 years old and on a stable maintenance
dose of warfarin. For the purpose of the study, a stable warfarin
dose was defined as the average weekly amount of drug required
to maintain stable anticoagulation levels (i.e., international
normalized ratio (INR) values within therapeutic range defined
as 2–3 for most indications on at least three consecutive visits). A
full description of this cohort as well as detailed information on
the patient's recruitment process can be found elsewhere
(Duconge et al., 2016). The study was approved by the
Institutional Review Boards (IRBs) of the VACHS (#00558)
and the University of Puerto Rico Medical Sciences Campus
(A4070109). Additional data from participants in a multicenter
case–control study of Puerto Rican Hispanic patients receiving
antiplatelet therapy with clopidogrel, who were recruited
between January 2018 and March 2019, were also included
in this secondary analysis (ClinicalTrial.gov identifier
NCT03419325). This study was also IRB-approved (A4070416)
by the corresponding institutional committee.

These two clinical studies were conducted according to the
principles in the Declaration of Helsinki. Written informed
consent was obtained from each participant prior to
enrollment. Patients were divided into three major categories
or classes based on their corresponding weekly warfarin dose
requirements as “normal” (i.e., > 21 but <49 mg/weekly; a.k.a.,
intermediate dose subgroup), “sensitive” (i.e., ≤21 mg/weekly;
a.k.a., low-dose subgroup), and “resistant” (i.e., ≥49 mg/weekly;
a.k.a., high-dose subgroup) (Duconge et al., 2016).

Dataset Preparation
The study dataset was prepared using information from patients
of the A4070109 study cohort (N = 95), but also included data
from another 95 patients in the secondary cohort (A4070416
protocol), for a total of 190 patients. Only 95 warfarin patients
from the original cohort (n = 275) had full genetic, ancestry,
clinical, and demographic data available to run the
corresponding ML methods. Pharmacogenetic variants
previously found to be associated with warfarin dose
requirements in Puerto Ricans (Ramos et al., 2012; Duconge
et al., 2016; Claudio-Campos et al., 2017), individual ancestry
proportions, as well as clinical and demographic data from all
enrolled patients were considered in the corresponding analyses.
The primary cohort, which corresponds to patients on warfarin,
included 40 “normal,” 38 “sensitive,” and 17 “resistant” cases. All
cases from the secondary cohort were assigned to the “normal”
weekly warfarin dose category. Their doses were imputed as
random values within ±20% of the average dose level in the
“normal” subgroup of the primary cohort.

To develop and evaluate the models, the data was separated as
approximately 80% for the training set (N of training = 154) and
about 20% for the testing set (N of testing = 36). The training set
had an imbalanced distribution for the number of “normal” cases
(“normal” = 111), versus “sensitives” and “resistant” (“sensitive” =
30, “resistant” = 13). Then, a randomized oversampling
January 2020 | Volume 10 | Article 1550
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technique was used to balance the training dataset in order to
develop the models (Ling and Li, 1998).

Genotyping and Ancestry Estimations
All DNA specimens from participants were tested following
manufacturer's instructions. A full description of genotyping
methods can be found elsewhere (www.illumina.com/
genotyping). Briefly, the Infinium™ Human OmniExpress-24
v1.2 BeadChip by Illumina, which provides a broad coverage of
relevant markers for genome-wide association studies (GWAS),
was used to perform the genetic testing of 95 warfarin patient
from the A4070109 study cohort in iScan® system (Illumina, San
Diego, CA). Additionally, the Infinium™ Multi-Ethnic Global
AMR/AFR BeadChip was used in the A4070416 cohort of patients
on clopidogrel. Genotypes at relevant loci (i.e., FMO2 c.107A > G,
p.D36G, rs2020870 in chromosome 1; ABCB1 c.1000-44G > A,
rs10276036 in chromosome 7; SLCO1B3 c.1833G > A, G611 =,
rs3764006 in chromosome 12; CYP2C9, rs1856908 and CYP2C9*2
c.430C > T, p.R144C, rs1799853 in chromosome 10; VKORC1
c.1173C > T, rs9934438 in chromosome 16; CYP4F2*3 c.1297G >
A, p.V433M, rs2108622 in chromosome 19;NQO1*2 c.4559C > T,
p.P187S, rs1800566 in chromosome 16) were then retrieved from
the corresponding Variant Call Format (VCF) files.

Individual proportions of each ancestry component in the
study population were estimated by ADMIXTURE software
(Alexander et al., 2009), with the corresponding parental
references for the Native American (NAT), European (EUR),
and African (AFR) contributions taken from the 1,000 Genomes
Project (Auton et al., 2015). To this purpose, data from Iberian
populations in Spain (IBS) and Yoruba population in Ibadan,
Nigeria (YRI) were used to properly represent EUR and AFR
ancestries in the analysis, respectively.

Machine Learning Algorithms
Seven ML algorithms were selected for generating the models
and testing them using the data from the two Caribbean
Hispanic cohorts. These algorithms were multivariate adaptive
splines (MARS) (Klein et al., 2009), artificial neural networks
(ANN) (Grossi et al., 2013), random forest regression (RFR)
(Cosgun et al., 2011), support vector regression (SVR) (Suykens
and Vandewalle, 1999), K-nearest neighbor for K from 1 to 3
(i.e., iBK1, iBK2, iBK3, respectively) (Aha et al., 1991), recursive
partitioning (RPART) (Breiman, 1984), and reduces error tree
classifier (REPT) (Mohamed et al., 2012). Weka—ML in Java
software was used to both train the ML algorithms and obtain the
predictive models, as well as evaluate and compare the models
(Frank et al., 2016). For each ML algorithm tested, the model
with the best predictability was chosen regardless of the number
of added variants.

To evaluate and compare the model's predictability, we
primarily computed the mean absolute error (MAE) and the
percentage (%) of patients whose predicted warfarin dosage
values were within 20% of the actual stable dosage found in
the available data (Duconge et al., 2016). This 20% value
represents a difference of 7 mg/week relative to the standard
starting dose of 35 mg/week, a difference that clinicians define as
clinically relevant. The MAE is the average of the absolute
Frontiers in Pharmacology | www.frontiersin.org 3
difference between two continuous values, in this case the
actual and the predicted dose values. Both metrics (i.e., MAE
and percentage within 20%) were compared among the ML
models independently and after dividing patients into the above-
mentioned three categories based on their warfarin dose
requirements (i.e., “normal,” “sensitive,” and “resistant”).

Statistical Analyses
All comparisons of mean values between training and test
datasets were performed by using a two-sided unpaired t-test
(Hsu, 1938) for continuous variables (e.g. warfarin dose, weight,
ancestry estimates, etc.) and a proportion-test (Wilson, 1927) for
frequencies or dichotomous variables (e.g. diplotypes,
conditions, co-medications, etc.).
RESULTS

Basic Characteristics of the Study Cohort
Clinical and demographic variables of interest are summarized in
Table 1 for the 190 patients included in this study (i.e., 154
assigned to a training set and another 36 in the test set). Table 1
TABLE 1 | Relevant characteristics of the Caribbean Hispanic patients included
in this study.

Variables Groups p-value Total cohort
(n = 190)

Training set
(n = 154)

Test set
(n = 36)

Warfarin dose
(mg/week), mean (SD)

32.59 (8.99) 32.84 (7.68) 0.8627 32.64 (8.74)

Weight
(kg), mean (SD)

81.27 (18.67) 81.42 (16.12) 0.9612 81.29 (18.17)

Height
(cm), mean (SD)

167.45 (8.73) 168.94 (8.36) 0.3440 167.74 (8.66)

Ancestry proportions – mean (SD)
NAT 0.11 (0.03) 0.11 (0.03) 0.9419 0.12 (0.05)
EUR 0.68 (0.13) 0.70 (0.10) 0.4789 0.68 (0.14)
AFR 0.20 (0.14) 0.19 (0.10) 0.5026 0.20 (0.13)
Population by age (%)
≥50 years-old 151 (98.05) 33 (91.67) 0.1915 184 (96.84)
<50 years-old 3 (1.95) 3 (8.33) 0.1915 6 (3.16)
Conditions (%)
DVT 12 (7.79) 6 (16.67) 0.1897 18 (9.47)
PE 4 (2.60) 4 (11.11) 0.1273 8 (4.21)
AF 50 (32.47) 16 (44.44) 0.1995 66 (34.74)
VR 5 (3.25) 2 (5.56) 0.5788 7 (3.68)
Stroke 9 (5.84) 5 (13.89) 0.1975 14 (7.37)
DM2 73 (47.4) 18 (50.0) 0.7826 91 (47.89)
CHF 9 (5.84) 5 (13.89) 0.1975 14 (7.37)
Smokers 15 (9.74) 5 (13.89) 0.5146 20 (10.53)
Others* 101 (65.58) 21 (58.33) 0.4331 122 (64.21)
Co-medications (%)
Aspirin 56 (36.36) 10 (27.78) 0.3175 66 (34.74)
Statins 101 (65.58) 21 (58.33) 0.4331 122 (64.21)
Azoles 5 (3.25) 1 (2.78) 0.8813 6 (3.16)
Clopidogrel∦ 79 (51.3) 16 (44.4) 0.8700 95 (50)
January 2020 | V
olume 10
Mean refers to arithmetic mean. NAT, Native Americans; AFR, Africans; EUR, Europeans;
DVT, Deep Vein Thrombosis; PE, Pulmonary Embolism; AF, Atrial Fibrillation; VR, Valve
Replacement; DM2, Type-2 Diabetes Mellitus; CHF, Congestive Heart Failure. *Others
means any other diagnosis of cardiovascular conditions (e.g., acute coronary syndrome,
peripheral artery disease, chronic hypertension, etc.). ∦clopidogrel doses of 75mg/daily.
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also presents their corresponding ancestry proportions.
Furthermore, diplotypes at each genetic locus of interest in this
study are also shown in Table 2.

Among these 190 patients, 96.8% were aged 50 years or older.
Their average warfarin dose was 32.6 mg/week with a standard
deviation of 8.74. A total of 122 patients were using statins to
lower their cholesterol levels. Of note is the relatively low
prevalence of CYP2C9*2 carriers in the study cohorts, with
only 16% of single and double carriers combined (minor allele
frequency (MAF) = 0.08). About 50–60% are homozygous for
the major alleles (i .e . , wild-types) across al l other
pharmacogenetic loci tested in this study; whereas, the
percentage of heterozygous at each of these polymorphic sites
ranged from 29.5 to 41.6%. Accordingly, a relatively low number
of patients were homozygous for the variant allele and just a few
of them had unknown genotypes at these loci and, therefore,
were excluded from subsequent analyses.
Frontiers in Pharmacology | www.frontiersin.org 4
The p-values in Tables 1 and 2 correspond to the statistical
comparisons of relevant characteristics between the training and
test sets. Overall, no significant differences between both sets
were found with regard to their pharmacogenetics, ancestry,
clinical, and demographic variables. Accordingly, these two sets
of data are comparable to each other as they were matched by all
these relevant variables. Likewise, all genotypes and allelic
frequencies of the genetic markers included in this study were
in Hardy-Weinberg (HW) equilibrium, as no significant
departure from HW assumptions were found.

Overall Comparison of Predictive
Algorithms
As can be seen in Table 3, with a MAE of 4.73 mg/week and a
percentage within 20% of 80.6, RFR was significantly better in
predictability than the other developed models. Indeed, all these
other models fell short in their performances to predict optimal
doses (i.e., MAEs of 6.15–9.87 mg/week and predictions of 47.22–
72.22% of ideal doses) when compared to RFR. TheMAE values lie
within the 6.00–7.00 mg/weekly range in five of these algorithms
(i.e., SVR, RPART, iBK1, iBK2, and iBK3). Notably, REPT, ANN,
and MARS had the worst performances as suggested by their
corresponding MAE values and % predictions within 20% of the
ideal doses (8.52–9.87 mg/week and 47.2–58.3%, respectively).
Interestingly, the combination of novel and common variants
across the pharmacogenes of interest improved model's
predictability in all but SVR and REPT algorithms, with −5 and
−18% of ideal dose predictions (i.e., within 20%) after adding
common variants of previously demonstrated clinical relevance.

Comparison of Predictive Algorithms
Within Warfarin Dose Range
In general, these ML algorithms performed better in the
subgroup of patients with normal dosing requirements.
Nonetheless, the RFR algorithm was again the best in terms of
MAE (2.91 mg/week) and within 20% (100%) when compared to
the other methods. In the subgroup with low dose requirements
(sensitives), SVR and RFR significantly outperformed all other
TABLE 2 | Frequency distributions of relevant genotypes in the Caribbean
Hispanic patients included in this study.

Genotypes Groups p-value Total cohort
(n = 190)

Training set
(n = 154)

Test set
(n = 36)

at locus 1, Chr1: FMO2 c.107A > G, p.D36G, rs2020870 (%)
A/A 84 (54.56) 23 (63.89) 0.3072 107 (56.32)
A/G 48 (31.17) 12 (33.33) 0.8068 60 (31.58)
G/G 20 (12.99) 1 (2.78) 0.0010 21 (11.05)
Unknown# 2 (1.30) 0 – 2 (1.05)

at locus 2, Chr7: ABCB1 c.1000-44G > A, rs10276036 (%)
G/G 81 (52.60) 28 (77.78) 0.9986 109 (57.37)
G/A 59 (38.31) 8 (22.22) 0.9748 67 (35.26)
A/A 13 (8.44) 0 – 13 (6.84)
Unknown# 1 (0.65) 0 – 1 (0.53)

at locus 3, Chr12: SLCO1B3 c.1833G > A, G611 =, rs3764006 (%)
G/G 82 (53.25) 27 (75) 0.9941 109 (57.37)
G/A 51 (33.12) 8 (22.2) 0.1781 59 (31.05)
A/A 20 (12.99) 1 (2.78) 0.9109 21 (11.05)
Unknown# 1 (0.65) 0 – 1 (0.53)

at locus 4, Chr10: CYP2C9, rs1856908 (%)
A/A 94 (61.04) 26 (72.2) 0.1955 120 (63.16)
A/G 47 (30.52) 9 (25.0) 0.5043 56 (29.47)
G/G 13 (8.44) 1 (2.78) 0.1166 14 (7.37)

at locus 5, Chr10: CYP2C9*2 c.430C > T, p.R144C, rs1799853 (%)
C/C 129 (83.7) 30 (83.3) 0.9961 159 (83.5)
C/T 24 (15.6) 6 (16.6) 0.8102 30 (15.8)
T/T 1 (0.65) 0 – 1 (0.77)

at locus 6, Chr16: VKORC1 c.1173C > T, rs9934438§ (%)
C/C 75 (48.70) 12 (33.33) 0.1388 87 (45.79)
C/T 62 (40.26) 17 (47.22) 0.5651 79 (41.58)
T/T 17 (11.04) 7 (19.44) 0.2765 24 (12.63)

at locus 7, Chr19: CYP4F2*3 c.1297G > A, p.V433M, rs2108622 (%)
C/C 69 (44.80) 25 (69.44) 0.0133 94 (49.47)
C/T 70 (45.45) 9 (25.0) 0.0399 79 (41.58)
T/T 15 (9.74) 2 (5.56) 0.6400 17 (8.95)

at locus 8, Chr16: NQO1*2 c.4559C > T, p.P187S, rs1800566 (%)
C/C 77 (50.0) 23 (63.39) 0.1878 100 (52.63)
C/T 60 (38.96) 11 (30.56) 0.4549 71 (37.37)
T/T 17 (11.04) 2 (5.56) 0.4973 19 (10.00)
#unknown genotype indicates a missing or non-calling at this particular locus. §The
VKORC1c.-1639G > A (rs9923231) and c.1173C > T (rs9934438) SNPs are in near
complete linkage disequilibrium in individuals of European, Asian and African descent
(Cavallari and Momary, 2013).
TABLE 3 | Mean absolute error (MAE) and percentage within 20% of actual
dose in the overall test set of the Caribbean Hispanic cohort.

Models MAE (mg/week) Within 20%

RPART 6.27 (4.16-8.38) 72.22
MARS 8.52 (5.92-11.12) 55.56
RFR 4.73 (3.24-6.21) 80.56
ANN 9.73 (6.53-12.93) 58.33
SVR# 6.86 (4.75-8.97) 61.11
iBK1 6.78 (4.41-9.15) 66.67
iBK2 6.30 (3.88-8.71) 69.44
iBK3 6.15 (3.72-8.57) 72.22
REPT# 9.87 (6.62-13.12) 47.22
January 2020 | Volume 10 |
#best prediction model does not include common variants in VKORC1 (rs9923231),
CYP2C9 (rs1799853), CYP4F2 (rs2108622) and NQO1 (rs1800566).
Data are expressed asmean (95%CI) or percentage. MAE, mean absolute error; multivariate
adaptive regression splines (MARS), artificial neural networks (ANN), random forest regres-
sion (RFR), support vector regression (SVR), K-nearest neighbor for K from 1 to 3 (iBK1,
iBK2, iBK3), recursive partitioning (RPART) and reduces error pruning tree classifier (REPT).
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methods in MAE (4.79–7.17 mg/week, respectively) and within
20% (75.00–50.00%, respectively). For the resistant patients,
MARS was the best algorithm in both MAE (7.22 mg/week)
and % values within 20% (66.67), though iBK2 and iBK3 also
showed good results (7.58 mg/week and 66.67%). Overall, the
models generated for the subgroup with normal warfarin dose
requirements performed better than those used to predict dosing
among sensitives and resistant patients (Table 4). Strikingly,
when models included both common and novel variants
combined their predictability improved in general, except for
the sensitive subgroup where performances were as bad as −67%
of ideal dose predictions (i.e., within 20%) in comparison to the
models excluding the common variants. In the resistant
subgroup, only MARS had a worse performance (−50%) after
adding the common variants (Supplementary Material S1).
DISCUSSION

Overall, we found different performances of the nine ML-based
algorithms that were used to predict warfarin dosing in the
Caribbean Hispanic population (Table 3). When all the cases
were considered, the RFR algorithm achieved the best
performance. However, RFR, SVR, and MARS algorithms had
the best performance when the patients were grouped by dose
range as “normal,” “sensitive,” “resistant,” respectively. There is
no obvious explanation or a given reason why these specific
models performed better than the others. It is because algorithms
derived from ML techniques are based on choosing the best
model as they learn from data (Brownlee, 2019). Therefore, it
seems to be population dependent.

The model with best predictability was chosen for each of the
ML-based algorithms tested, regardless of the number of added
variants. However, we tried to keep the models as simple as
possible (i.e., minimum number of parameters or variables)
while preserving a reasonably great explanatory predictive
power. Since models with low parsimony will likely be useless
for predicting other datasets, we chose the models with the right
balance between parsimony and goodness of fit.
Frontiers in Pharmacology | www.frontiersin.org 5
Comparison to Previous Algorithms for
Dose Predictions in Other Populations
The performance of similar ML methods applied to warfarin
dose predictions have shown different results in a previous study
(Liu et al., 2015). Of note is that no significant differences in
overall performances of various ML-based algorithms were
reported by others when used as a prediction tool for stable
warfarin dose estimations in a multi-ethnic cohort. However,
differences in model accuracy were indeed found after stratifying
data by ethnicity (i.e., White vs. Asians vs. Blacks) or dose range
subgroups (i.e., high vs. intermediate vs. low) (Liu et al., 2015; Ma
et al., 2018). We have obtained better MAEs than this previous
report for the analyses of data from all cases in most of the tested
ML methods (e.g. RFR, SVR, RPART, iBK1). When datasets
from Liu et al. (2015) and our study were compared, the best
result for all cases was obtained with the use of the RFR
technique in our dataset of Caribbean Hispanics (i.e. MAE =
4.73 mg/week and 80.56% cases within ±20% of ideal doses). We
reason that these observed differences in performance may have
arisen as a consequence of the unique genetic backgrounds,
clinical characteristics of our study cohort (Caribbean
Hispanics), and special attributes of the available dataset (e.g.,
genetic markers for resistance, ancestry metrics). Accordingly,
such findings may be attributed to differences in the
characteristics of participants from both studies and the fact
that the previous one was conducted in a more heterogeneous
cohort of individuals from the International Warfarin
Pharmacogenetics Consortium (IWPC), without a proper
representation of Caribbean Hispanics (Liu et al., 2015). It is
important to mention that the IWPC cohort comprised a mixed
sample from different countries, regions, and clinical sites that
could lead to misclassification and large genetic variability.
Finally, it may also be related to the unequal sample sizes
between both studies.

Similarly, after grouping patients by dose requirements (i.e.
“normal,” “sensitive,” and “resistant” to warfarin, Table 4), the
ML prediction models in our study performed better than those
in the published report (Liu et al., 2015). In those labeled as
“normal,” our best model (RFR) yielded a MAE = 2.91 mg/week
TABLE 4 | Mean absolute error and mean percentage within 20% of actual dose stratified by therapeutic warfarin dose requirements (i.e., sensitives, resistant and
normal) in the test set of the Caribbean Hispanic cohort.

Models Normal Sensitive Resistant

MAE (mg/week) Within 20% MAE (mg/week) Within 20% MAE (mg/week) Within 20%

RPART 4.17 (2.60-5.73) 88.00 9.83 (3.53-16.12) 37.50 14.28 (7.19-21.37) 33.33
MARS 6.98 (4.44-9.52) 68.00 11.44 (6.55-16.33)# 25.00 7.22 (2.11-12.33)# 66.67
RFR 2.91(2.18-3.64)# 100.00 7.17 (3.48-10.86)# 50.00 13.45 (7.41-19.48) 33.33
ANN 8.03 (5.01-11.05) 68.00 10.32 (1.49-19.15) 50.00 16.75 (10.87-22.63)# 0.00
SVR 5.67 (3.82-7.53)# 68.00 4.79 (1.21-8.36) 75.00 19.44 (15.83-23.05) 0.00
iBK1 3.62 (2.01-5.24) 88.00 12.81 (6.15-19.48)# 25.00 12.83 (2.48-23.18) 33.33
iBK2 3.75 (1.94-5.55) 88.00 9.33 (2.17-16.49)# 37.50 7.58 (2.33-17.50) 66.67
iBK3 3.83 (2.01-5.64) 88.00 9.33 (2.17-16.49)# 37.50 7.58 (2.33-17.50) 66.67
REPT 6.89 (4.68-9.09)# 56.00 12.30 (2.60-22.01)# 37.50 15.08 (2.67-27.50) 66.67
January 2020 | Volume 10 |
#best prediction model does not include common variants in VKORC1 (rs9923231), CYP2C9 (rs1799853), CYP4F2 (rs2108622) and NQO1 (rs1800566).
Data are expressed as mean (95% CI) or percentage. MAE: mean absolute error; multivariate adaptive regression splines (MARS), artificial neural networks (ANN), random forest regression
(RFR), support vector regression (SVR), K-nearest neighbor for K from 1 to 3 (iBK1, iBK2, iBK3), recursive partitioning (RPART) and reduces error pruning tree classifier (REPT).
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to outperform the 5.53 mg/week from the study by Liu et al.
(2015). For “sensitive” patients, the SVR is our best model with a
MAE = 4.79 mg/week that resulted more accurate for predictions
in this subgroup than the value of 8.68 mg/week from the
previous report (Liu et al., 2015). Finally, those warfarin
patients classified as “resistant” had a MAE = 7.22 mg/week
with our best-performance model in this subgroup (MARS),
which is far better than the reported 15.24 mg/week in the
previous study by Liu et al. (2015).

As expected, our results indicate that both the MAEs andmean
percentages within 20% of all algorithms under consideration
differed across the dose range categories (i.e., “normal,” “sensitive,”
and “resistant”), with best performance and accuracy (i.e., lower
MAE and higher mean percentage within 20%) achieved in the
“normal” dose group and “resistant” showing the worst
predictions. In fact, the largest difference in the MAE and
percentage within 20% were observed between “normal” and
“resistant” subgroups. However, better predictors do not really
translate into a real clinical utility to this “normal” subgroup as
patients in this class are least likely to benefit from
pharmacogenetics (Klein et al., 2009). Consequently, benefits are
mainly for those at the extreme dose requirements. “Resistant”
demonstrated to have the highest variability in warfarin dose
requirements among patients at any dosing range, suggesting that
either current ML-based methods are not yet robust enough to
optimally predict dosing in patients with a resistant phenotype or
the lack of information from all predictors of resistance to warfarin
in the model. Since ML techniques learn from existing data, the
insufficient number of “resistant” cases in available dataset and,
therefore, the limited amount of relevant data that can inform the
model, may in part explain the poorer performance at this dose
range. Accordingly, efforts should be made in order to enhance the
representation of this sub-group in future assessments.

Comparison to Previous Algorithms for
Dose Predictions in Caribbean Hispanics
Our group has earlier published three previously developed
pharmacogenetic algorithms to predict optimal warfarin dosing
in Caribbean Hispanics of mostly Puerto Rican origin, which
included ethno-specific alleles and adjustments by admixture
measures in the derivation cohort (Ramos et al., 2012; Duconge
et al., 2016; Claudio-Campos et al., 2017). All these models were
based on multivariate linear regression analyses. Overall, they
showed a good predictability in our patients to outperform prior
genotype-guided algorithms derived from populations other
than Hispanics. When using these regression pharmacogenetic
models, up to 46% of their predictions in high risk individuals
resulted in ideal doses (i.e., % of predictions within ±20% of the
actual patient's stabilization dose) with MAE values that sit
slightly over 5 mg/week. However, some ML-based models
developed in this survey by using RFR, MARS, and SVR
approaches showed even better results in predicting optimal
warfarin doses in the study cohort as compared to the previously
published regression methods. Particularly, the overall
performance of the RFR model was better than published
algorithms, as suggested by a MAE of less than 5 mg/week and
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80.6% of ideal dose predictions. Among those at the highest risk
of adverse events, both SVR and RFR showed superiority over
the previously published regression algorithms with higher
percentages of ideal dose predictions (i.e., 50 and 62%,
respectively). Notably, the ML-based methods (RFR, SVR)
performed better than previous linear regression models in
both high- and low-dose subgroups (i.e., resistant and
sensitives). Therefore, this analysis reflects the potential of ML
techniques for predictions at extreme dose levels given their
capabilities to assess patient characteristics under extreme dosing
requirements. A possible explanation for this observed
superiority of ML models over the conventional algorithms is
given by the fact that these applications of artificial intelligence
(AI) provides systems the ability to automatically learn and
improve predictability from experience (i.e., available data).

The Missing Links for Global
Pharmacogenomics
Most of the existing pharmacogenetic-driven algorithms such as
the one developed by the IWPC project have been derived from
findings in individuals of mostly European descent, and
therefore they often include variants commonly found in white
people only. Multiple ethno-specific variants occurring across
warfarin-related pharmacogenes are generally overlooked and,
consequently, the utility of existing prediction models is limited
in patients with mixed ancestry. Healthcare disparities could be
exacerbated when such models are not suitable to populations
with ethno-geographic particularities.

White people of European ancestry make up the largest
percent of participants in pharmacogenomic (PGx) studies,
despite the fact that they only represent a fraction of the
world's population. Furthermore, clinically relevant findings
from such studies with Europeans do not generalize well to
other ethnic groups. This overwhelming whiteness of
pharmacogenetics research is holding back the new paradigm
of precision medicine. One of the greatest promises of the
Precision Medicine initiative is the opportunity to develop
treatment plans that are tailored to an individual's genetic risk
profile. Therefore, if individuals from underrepresented
populations are not involved in these investigations, they will
not benefit from the advances. Indeed, there is a paucity of data
from studies recruiting minority, more diverse or admixed
populations like Caribbean Hispanics who reside in Puerto
Rico. Unfortunately, individuals from these populations are
often excluded or marginally represented in these studies and
this lack of representation tends to exacerbate existing healthcare
disparities. It's adding to the long-standing problem of minorities
being excluded from medical research, which preclude any
opportunity to make them equitable.

MLR analysis routinely used to derive pharmacogenetic
models is data driven and hence population dependent. There
is promising research indicating that mathematical models other
than linear regression may yield more predictive algorithms
(Cosgun et al., 2011; Hu et al., 2012; Liu et al., 2015;
Sharabiani et al., 2015; Duconge and Ruaño, 2018; Ma et al.,
2018). AI, and particularly the use of ML techniques, offers new
January 2020 | Volume 10 | Article 1550
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avenues in the prediction of clinical outcomes (e.g., warfarin dose
requirements) by accounting for relevant gene–drug
interactions. Failure to account for ethno-specific genotypes
and a better use of available predictive tools (e.g., ML) has
raised some concerns about expected benefits of genotyping
patients to guide pharmacotherapies and improve clinical
outcomes, leading to a lack of full endorsement by medical
organizations and payers. The more complete the PGx
characterization and the more learned the prediction models,
the larger the benefit.

This study has some limitations. Firstly, some data were
retrospectively collected and, therefore, we were unable to
control for such data variability and potential confounders.
Given a relatively lesser representation of cases at the extreme
dose levels with respect to those in the “normal” range, a
potential bias may arise in the comparison after subgrouping
by dosing requirements. For the purpose of the analyses in this
paper, we considered “normal” responders as those without any
obvious or given reason to make adjustments in their standard
initial warfarin dose (i.e., 35 mg/week; range: 21–49 mg/weekly).
Theoretically speaking, we reasoned that those from the
clopidogrel study can be considered as “normal” because of a
lack of any obvious reason for starting these patients with a
different dosing (e.g., frail elderly, high risk of bleeding/
thrombosis, etc.) had they been treated with warfarin.
However, this assumption should be observed with caution
and, hence, is another study limitation. Finally, our findings
need further validation in a larger replication cohort before
making any statement about the superiority of some of these
algorithms over the others.

The metrics to assess the performance of algorithms
developed in other studies are not comparable to those used in
this study, whose methodology is mainly based on an early work
by Liu and coworkers (Liu et al., 2015). Unlike previous reports,
in this study we have included genetic markers for both
sensitivity and resistance phenotypes, and admixture/ancestry
estimates as critical covariates in model development (Klein
et al., 2009; Ramos et al., 2012; Liu et al., 2015). Moreover,
relevant data from a highly diverse admixed population of
Caribbean Hispanics is used for the first-time to perform an
ML prediction modeling of a pharmacogenetic trait. MAEs and
percentage of predictions within ±20% revealed that models
generated by using RFR, MARS, and SVR ML algorithms
showed significantly better predictions of warfarin dosing in
our cohort of participants than other algorithms. Better
performance of the ML models for patients with “normal,”
“sensitive,” and “resistant” to warfarin were obtained in our
study as compared to other populations and previous
statistics models.
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