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Drug metabolism research plays a key role in the discovery and development of drugs.
Based on the discovery of drug metabolites, new chemical entities can be identified and
potential safety hazards caused by reactive or toxic metabolites can be minimized.
Nowadays, computational methods are usually complementary tools for experiments.
However, current metabolites prediction methods tend to have high false positive rates
with low accuracy and are usually only used for specific enzyme systems. In order to
overcome this difficulty, a method was developed in this paper by first establishing a
database with broad coverage of SMARTS-coded metabolic reaction rule, and then
extracting the molecular fingerprints of compounds to construct a classification model
based on deep learning algorithms. The metabolic reaction rule database we built can
supplement chemically reasonable negative reaction examples. Based on deep learning
algorithms, the model could determine which reaction types are more likely to occur than
the others. In the test set, our method can achieve the accuracy of 70% (Top-10), which is
significantly higher than that of random guess and the rule-based method SyGMa. The
results demonstrated that our method has a certain predictive ability and
application value.
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INTRODUCTION

The discovery of small molecule drugs is time-consuming, expensive and labor-intensive. (Dickson
and Gagnon, 2004; Paul et al., 2010; Dimasi et al., 2015) It is resource intensive, and involves typical
timelines of 10–20 years and costs that range from US$0.5 billion to US$2.6 billion (Paul et al., 2010;
Avorn, 2015). In addition to economic and technical reasons, the main reason is that almost half of
the candidate drugs failed in clinical trials. Up to 25% of compounds were withdrawn due to
metabolic, pharmacokinetic, or toxic problems (Hwang et al., 2016). Drug metabolism can produce
metabolites with physicochemical and pharmacological properties, which are significantly different
from the physical and pharmacological properties of parent drugs (Kirchmair et al., 2013). As
Figure 1 shows, when drugs or other exogenous substances enter the human body, they are largely
controlled by three stages of drug metabolism. In the first stage, reactive groups are introduced by
oxidation, reduction, or hydrolysis. In the second stage, conjugation reactions with macromolecules
occur in vivo. In the third stage, allogeneic and metabolites are removed from liver and intestinal
in.org January 2020 | Volume 10 | Article 15861
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cells. After these three stages, exogenous substances such as
drugs may be transformed into non-physiological active
substances or toxic metabolites. 70% clinical drugs are
removed by the body’s metabolic system, so as part of drug
development, it is also necessary to conduct in-depth research on
drug metabolism (Grant et al., 2001; Embrechts and Ekins, 2007;
Lazar and Birnbaum, 2012; Damsky and Bosenberg, 2012; Di,
2014; Mackenzie et al., 2017; Kang et al., 2018). Understanding
the metabolic process of drugs is essential for successful drug
discovery and development, and helps to optimize the stability of
drugs, so as to optimize the half-life in vivo.

In order to reduce the risk caused by metabolic characteristics
of candidate drugs, effective andreliable methods are needed to
predict drug metabolism in vitro. Many experimental methods
can be used to explore the metabolic process of drugs (Diao et al.,
2016; Mackenzie et al., 2017). For example, fast LC-MS scans can
be carried out to specifically detect predicted metabolites.
However, experimental methods are still highly demanding in
terms of equipment, expertise, cost, and time (Kirchmair et al.,
2013). Therefore, it has great prospects to develop computational
tools for predicting drug metabolism with lower cost and higher
throughput than existing tools. Many different methodologies to
predict metabolites or sites of metabolism have been reported
recently. Various methods in predicting drug metabolism using
in silico approaches have been reviewed (Fox and Kriegl, 2006;
Gleeson et al., 2011; Zhang et al., 2011; Tan et al., 2017).
However, most of these methods are limited to P450 catalytic
reactions and represent only unstable sites, rather than
predicting the actual metabolites formed.

Metabolic sites (SOMs) andmetabolite structure are twomain
research directions of computer-aided metabolic prediction
Frontiers in Pharmacology | www.frontiersin.org 2
methods, which can provide decisive support and guidance for
experimenters. SOM prediction methods usually have high
prediction accuracy. The program MetaSite estimate the
possibility of metabolic reactions at an atomic site using protein
structure information, GRID-derived MIFs of protein, and ligand
and molecular orbital calculations (Gabriele et al., 2005). The
program SMARTCyp contains a pre-calculated energy reaction
analysis table for density functional theory activation, where a
large number of ligand fragments pass through CYP3A4 or
CYP2D6 mediated transformation (Rydberg et al., 2010a;
Rydberg et al., 2010b). A method called cypscore, in which 2400
CYP-mediated transformations and 850 literature compounds are
used as data bases (Hennemann et al., 2010). However, most of
these methods are limited to CYP450 catalytic reactions and can
only predict unstable sites rather than metabolite structures.
Furthermore, predicted SOMs are not identical to identifying
the correct bioinformations that will occur at an atomic location,
and they do not provide information about the type of reaction
that will occur. Therefore, these limitations make it difficult to
draw any quantitative conclusions about the metabolic
possibilities of a molecule.

So far, only a few computational methods have been
developed for predicting the structure ofmetabolites. Existing
methods can be divided into two categories: expert rule-based
anddescriptor-based. Rule-based approaches use data mining
techniques. Large databases with data onmetabolism are used
to extract generalized rules to determine the part of a molecule
that undergoes metabolic alteration (Cariello et al., 2002). The
ligand-based approach relies on the assumption that the
metabolic fate of compounds is entirely determined by their
chemical structure and properties. These methods include
FIGURE 1 | General pathway of drug metabolism.
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quantum mechanics methods. Descriptor-based methods to
obtain an idea of the route of a drug through the metabolic
system, the identification of the involved enzymes, and the
reaction pathways is necessary (Livingstone, 2010). The
program of Bioprint contains a database of most marketed
drugs together with reference compounds and data from a
wide variety of biological and in-vitro ADME assays, called the
Biological fingerprint (Krejsa et al., 2003). Thus, the possible
results of new compounds can be calculated by neighborhood
relation and QSAR model. In the MetaDrug database (Ekins et al.,
2006; Ekins et al., 2005b), metabolic reactions with substrates
(including primary and secondary metabolites), xenobiotic
reactions, and kinetic data on enzyme inhibition are stored. 317
molecules (parent drug and primary and secondary metabolite)
were randomly selected from this database to build kernel-partial
least squares models for metabolism rules (Embrechts and Ekins,
2007). Metabolite prediction is usually accomplished through a large
set of transformation rules. Given the reactant, all rules are then
matched to determine the site of metabolic instability. Expert
systems such as METEOR (Testa et al., 2010; Button et al., 2015),
META (Klopman et al., 1994; Talafous et al., 1994; Klopman et al.,
1997), MetabolExpert (Darvas, 1988), RD-Metabolizer (Meng et al.,
2017), MetaDrug (Korolev et al., 2003; Ekins et al., 2005a), and
KnowItAll (Stouch et al., 2003) are based on these databases and
provide a ranked list of most likely metabolites. In a study described
by AstraZeneca (Scott et al., 2007), the substrates and reaction
centers of the metabolite database were stored as fingerprints in two
databases. Then the query molecule powders are compared with the
two databases, and the proposed SOM is ranked by using the
number of clicks as a weighted scheme. An approach called SyGMa
based on the MDL metabolite database was developed (Ridder and
Wagener, 2010). According to the corresponding rules of MDL
metabolite data coding, the structure of possible metabolites is
predicted, and probability scores are assigned to each metabolite,
covering 70% of all known human metabolic reactions.

So far, one of the difficulties in predicting possible metabolites
is that this task means identifying the reaction site (SOM) and
the type of metabolic reaction correctly. Current methods for
predicting metabolite structure tend to have high false-positive
rates and can only be used for specific enzymes without covering
all the metabolic enzymes involved in human reactions. In view
of the above problems, we mainly designed a deep learning
algorithm combined with drug metabolism characteristics.
Frontiers in Pharmacology | www.frontiersin.org 3
In this work, by combining metabolic reaction template and
Deep Learning, we have established a model to predict the main
metabolites of drugs (Figure 2). Our method has the following
innovations: (1) Data enhancement strategy, which provides
chemically reliable examples of negative reactions through the
metabolic reaction template library; (2) the implementation and
validation of a neural network-based model, which can obtain
that some reaction modes are more or less likely to occur than
other potential modes.
MATERIALS AND METHODS

Data Collection and Processing
We collected metabolic reaction data from MDL Database (2011
edition). Here we used only human metabolic reactions with
effective substrates and metabolites. The data were filtered to
remove unreasonable structures, such as reactants and products
containing R groups, free radicals, metal chelating, and structural
errors, which could make it impossible to distinguish the
reaction records of reaction sites. The pretreatment resulted in
7,380 reaction records, of which 74 reactions had only chiral
changes. We randomly selected 300 response records from them
as standby for external test sets.

Generation of Metabolic Reactions
Template Library
The process of constructing the metabolic reactions template
library is shown in Figure 3. At present, the methods based on
expert system mainly use the general metabolic rules deduced by
experts to predict the structure of metabolites. However, this
method has some drawbacks. The model needs to understand the
influence of coding reaction functional groups. Such rules can
not completely produce the desired response because the
complete background of molecules is ignored. The remaining
Non-coding functional groups of the molecule may affect or react
competitively. So maybe even if the rules are matched, the ideal
reaction product cannot be produced. Therefore, reaction rules
need to be annotated with relevant information, such as
functional groups, priority of reactions. However artificial code
rules are time-consuming, laborious, and lack of internal ranking
mechanism. Based on this, expert rules cannot be implemented
FIGURE 2 | Metabolic reaction product prediction flow chart.
January 2020 | Volume 10 | Article 1586
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on a large scale. Marwin H.S. (Law et al., 2009; Segler et al., 2018)
has proved that in predicting the products of inverse synthesis
reaction, the artificial extraction of reaction rules based on expert
rules is far less effective than the algorithm which automatically
judges the type of reaction according to the reactants and
products in the deep learning model training. In order to
construct a database of metabolic templates, we also adopted
the heuristic driving algorithm of Law (Law et al., 2009).

Table 1 shows the most common reaction types in the
database. It can be seen that the most common metabolic
reactions are amide hydrolysis, carboxylic acid hydrolysis, and
hydroxylation of N, O, S atoms.

Producing Candidate Metabolites
The above-mentioned metabolic reaction templates are stored in
the database for subsequent production of positive and negative
potential metabolites. For each atom mapping reaction in the
dataset, the reaction center is defined by determining which
product atoms are different from the corresponding reactant
atoms. The reaction center is expanded to include the
surrounding environment, and then other factors that play a
role in the reaction is found out. Adjacent atoms are defined as
non-hydrogen substituents, where high coverage is achieved at
the expense of low specificity. Metabolic Templates are defined
with SMART format strings encoding reaction centers. The
reaction template generated in this way does not depend on
manual extraction, marking, or sorting.

As shown in Figure 4, we can match the reaction template of
the metabolic database one by one and produce a large number
of potential metabolic reaction products by using RDKit. Positive
Frontiers in Pharmacology | www.frontiersin.org 4
compounds are the products recorded in the database, and the
rest are all negative products. This strategy can continuously
produce negative products for later use.

Model Training
For deep learning and supervised learning, we need to input
eigenvalues. What we need to consider is using what molecular
descriptors to characterize the whole metabolic process. Here we
choose molecular fingerprints to describe the atomic and
functional characteristics of metabolic reactions. The abstract
representation of molecular fingerprints, which encodes
molecular transformation into a series of vectors, makes it easier
for molecules to compare with each other. If two molecules are
similar, there must be many common fragments between them.
Then molecules with similar fingerprints will have a high
probability of being similar in 2D structures. Here we use
RDKit to generate 1,024-dimensional Morgan molecular
fingerprints. Molecular fingerprint ECFP is suitable for machine
learning because it containsmoremolecular structure details. The
metabolites generated above through the metabolic reaction
template will be scored separately by Deep Learning model.
Here we use Python library of Keras. The input layer consists of
molecular fingerprints of products and reactants, with a total of
2,048 dimensions. One reaction corresponds tomultiple potential
metabolites. Thus, the input layer generates a matrix of 2,048
dimensions with n vectors. We use keras wrapper to realize each
vector, that is, each individual potential metabolite is fully
connected independently, which increases the ability of the
model to achieve one-to-many and many-to-many. The
probability of all potential reaction products is finally mapped
out by the output layer activation function softmax, so that the
total probability of all potential metabolites is 1. According to the
score of the output layer, it is most likely to describe which
metabolites actually exist. Deep neural network models are
trained here to solve problems similar to classification
problems: given hundreds of possible classes (potential
metabolites), predicting real classes (recording reaction
products), each metabolic reaction may correspond to multiple
classifications. We use cross-entropy as the loss function during
training. This objective function can be understood as the negative
logarithm of probability allocated to the true class (true
metabolites). During the training period, we use five-fold cross-
validation to divide all the data sets into five parts, one of them is
taken as the validation set without repetition, and the other four
are used as training model of training set. Cross-validation can
avoid over-fitting and under-fitting, and the final results are
more convincing.
RESULTS AND DISCUSSION

Accuracy of Prediction Results
Following the above steps, we cross-validated the model with five
folds by using 200 epochs. The training set, validation set, test set
segmentation was 7:1:2. The objective of the training period is to
minimize the cross-entropy loss of classification, which is the
FIGURE 3 | The generation of metabolic reactions template.
January 2020 | Volume 10 | Article 1586
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natural logarithm of probability allocated to real metabolites.
Considering that there may be more than one metabolic reaction
product for a drug, we believe that the top ten predicted products
may have more reference value. As shown in Table 2, the model
achieves an average test set accuracy of 70% for Top-10 in the
five-fold cross-validation. In addition, we also calculated the
Frontiers in Pharmacology | www.frontiersin.org 5
accuracy of Top-1, Top-3, and Top-6 rankings. Since our
metabolites are generated automatically by the metabolic
template obtained by the algorithm, as long as the template is
matched, the reaction products can be formed. There is a
problem with the explosion of potential metabolite
combinations. It is a great challenge for the model to hit the
TABLE 1 | The most common type of reactions and SMART fragments in the dataset.

Template SMART Example

O = C-[NH;+0:1]-[C:2]> > [C:2][NH2;+0:1]

O = C-[NH;+0:1]-[c:2]> > [NH2;+0:1]-[c:2]

O = C-[O;H0;+0:1]-[C:2]> > [C:2]-[OH;+0:1]

[C]-[O;H0;+0:1]-[C:2] = [O:3]> > [O:3] = [C:2]-[OH;+0:1]

[C:1]-[N;H0;+0:2](-[C:3])-[C:4]> > [C:1]-[N+;H0:2](-[C:3])(-[C:4])

[c:1]-[S;H0;+0:2] [c:3]> > O = [S;H0;+0:2](-[c:1])-[c:3]

[C:1]-[CH2;+0:2]-[C:3]> > O-[CH;+0:2](-[C:1])-[C:3]

[c:1]:[n;H0;+0:2]:[c:3]> > [O-]-[n+;H0:2](:[c:1]):[c:3]

[c:1]:[cH;+0:2]:[c:3]> > O-[c;H0;+0:2](:[c:1]):[c:3]

[C:1]-[S;H0;+0:2]-[C:3]> > O = [S;H0;+0:2](-[C:1])-[C:3]
January 2020 | Volume 10 | Article 1586
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product of the real reaction in the reaction product, but at the
same time, the model can learn a lot of false product information
because of the production of a large number of false metabolites,
thus enhancing the learning ability.

Here, we conducted external tests on 300 reaction records
that were not used for model training. It is also compared with
the rule-based prediction method SyGMa. The accuracy rates of
Top-1, Top-3, Top-6, and Top-10 are 35, 55, 67, and 78%
respectively for our method (Figure 5). The accuracies of
SyGMa for Top-1, Top-3, Top-6, and Top-10 are 20, 39, 50,
and 70 respectively. The accuracy rates of our method are higher
than SyGMa’s. The main reason is that SyGMa does not produce
the correct metabolites in some reactions.

As can be seen from Figure 6, correctly predicted metabolic
reaction products by our method are common metabolic
Frontiers in Pharmacology | www.frontiersin.org 6
reactions, because these types of reaction samples account for
the vast majority of the training set. Some of the metabolic
reactions that cannot be correctly predicted are due to reaction
types being uncommon with fewer occurrences in data sets, or
because the reactants are too complicated and have multiple
reaction sites. Furthermore, because usually only one metabolite
of a compound is recorded in the reaction record, the Top-1
metabolite predicted by our method may not exactly be the
recorded one, but it may still be one of the metabolites. Besides,
in the reaction record involving multi-site and multi-step
reactions, we can only predict a single-step metabolic reaction
at one site. For our model, it is difficult for us to learn the changes
in ring-opening and ring-closing reactions, because too much
information is lost in those processes. It is difficult to characterize
those metabolic processes only by the molecular fingerprints of
reactants and products.

The amount of our data is small for Deep Learning to learn
more information. The more reaction records that focused on a
specific reaction, the more accurate the prediction of the reaction
is. Thus we need to expand the data set for training. Next, we will
collect more and more metabolic reactions from KEGG and
other databases to train models, so as to improve the prediction
accuracy of the models.
FIGURE 4 | Flow chart for potential metabolites production.
TABLE 2 | Prediction accuracies of the test set.

Accuracy

Top-1 34%
Top-3 51%
Top-6 68%
Top-10 70%
January 2020 | Volume 10 | Article 1586
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FIGURE 6 | Reaction cases for correct and incorrect predictions.
FIGURE 5 | Comparison results on external test set.
Frontiers in Pharmacology | www.frontiersin.org January 2020 | Volume 10 | Article 15867

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Wang et al. Drug Metabolites Prediction
Influences of Molecular Fingerprint Radius
on the Results
We retrieved Morgan molecular fingerprints with radius 3 from
potential metabolic reaction products in training set and
retrained them with AutoEncoder algorithm (Figure 7).
Morgan molecular fingerprint with a radius of 3 is equivalent
to ECFP6, which will contain more information about
molecular fragments.

As shown in Table 3, increasing fingerprint radius did not
improve the prediction accuracy of Top-1 and Top-3, but did
Frontiers in Pharmacology | www.frontiersin.org 8
improve the prediction accuracy of Top-10. The results suggested
that increasing fingerprint radius can improve the accuracy of the
model to a certain extent, and AutoEncoder algorithm can help
improve the prediction ability of the model as well.

Here we take Zileuton as an example to analyze its prediction
results of metabolites. It is an inhibitor of 5-lipoxygenase for the
maintenance treatment of asthma. The main metabolic pathways
of Zileuton are hydroxylation of benzene ring, oxidation of sulfur
atoms on sulfur-containing heterocycles, and hydrolysis of
nitrogen atoms on amide groups (Joshi et al., 2004) (Figure 8
and Table 4).

Here, three metabolites of zileuton were predicted correctly
by our method, namely hydroxylation of the benzene ring and
oxidation of sulfur atoms on sulfur-containing heterocycles.
But our model has not predicted the hydrolysis of N atom of
the side chain amide. The possible reason is that our training
set has too little reactions to this type and the model has not
adequately learned.
TABLE 3 | Prediction accuracies at molecular fingerprint radius of 3.

Accuracy

Top-1 32%
Top-3 51%
Top-6 68%
Top-10 81%
FIGURE 7 | Flow chart of AutoEncoder combined with molecular fingerprint.
FIGURE 8 | Metabolic pathways of Zileuton.
January 2020 | Volume 10 | Article 1586
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CONCLUSION

In summary, we developed a deep learning based drug
metabolites prediction algorithm to complement the
experimental methods. By generating a broad coverage of
Frontiers in Pharmacology | www.frontiersin.org 9
metabolic reaction templates, we can generate a large number
of potential metabolic reactants, and rank all metabolites by
deep neural network algorithm to get the right metabolites
ranked high. The accuracy of Top-1, Top-3, Top-6, and Top-10
in 300 external test sets with metabolic reactions is 35, 55, 67,
and 78% respectively, which is significantly higher than that of
random guess and the rule-based method SyGMa. Nevertheless,
our method still has some limitations. It can rank the
metabolites, but cannot give the probability of occurrence of
metabolic sites. Besides, despite the relatively high prediction
accuracy, it still has a high false-positive problem. To sum up, A
approach of drug metabolites prediction based Deep learning
was developed in this paper, which has certain predictive ability
and can be used to provide some guidance information for
researchers to improve the metabolic properties of
lead compounds.
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