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Exosome is a nanoscale vesicle with a size range of 30–100 nm. It is secreted from cell to
extracellular space by exocytosis after fusion of multivesicular body (MVB) (formed by
endocytic vesicles) with plasma membrane. Exosome plays several important roles in
cellular homeostasis and intercellular communications. During the last two decades,
exosome has acquired a wide attention to explore its additional roles in various aspects of
cell biology and function in several organ systems. For the kidney, several lines of evidence
have demonstrated 1that exosome is involved in the renal physiology and pathogenic
mechanisms of various kidney diseases/disorders. This article summarizes roles of the
exosome as the potential source of biomarkers, pathogenic molecules, and therapeutic
biologics that have been extensively investigated in many kidney diseases/disorders,
including lupus nephritis (LN), other glomerular diseases, acute kidney injury (AKI), diabetic
nephropathy (DN), as well as in the process of renal fibrosis and chronic kidney disease
(CKD) progression, in addition to polycystic kidney disease (PKD), kidney transplantation,
and renal cell carcinoma (RCC). Moreover, the most recent evidence has shown its
emerging role in kidney stone disease (or nephrolithiasis), involving inflammasome
activation and inflammatory cascade frequently found in kidney stone pathogenesis.

Keywords: acute kidney injury, chronic kidney disease, diabetic nephropathy, glomerular disease, lupus nephritis,
nephrolithiasis, renal cell carcinoma, transplantation
INTRODUCTION

Exosome is a nanoscale extracellular vesicle with a size range of approximately 30–100 nm and spherical
shape surrounded by lipid bilayers (Huotari and Helenius, 2011; Raimondo et al., 2011). Initially,
exosome had been thought to serve only as an exocytic vesicle to shed some intracellular andmembrane
components out of the cells (Pan et al., 1985; Johnstone et al., 1987). However, recent evidence has
revealed its more significant roles as the messenger cargo for intercellular communications (Hessvik and
Llorente, 2018). Exosome is originated from small intraluminal vesicle inside multivesicular body
(MVB) (also known as late endosome) that is subsequently fused with cellular plasma membrane to
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Thongboonkerd Exosome and Kidney Diseases
expel such nano-sized vesicle to the extracellular space (Hessvik and
Llorente, 2018). Therefore, the exosome contains greater
proportion of membrane proteins and MVB-formation proteins
as compared to the parental cells (Bobrie et al., 2011; Colombo et al.,
2014; Park et al., 2018). The biogenesis of exosome also enables
transportation of various receptors, proteins, genetic materials [e.g.,
DNA, messenger RNA (mRNA), and microRNA (miRNA)] and
lipids to the target cells, which incorporate these information-rich
molecules from exosome by three major pathways, including
receptor-ligand interaction, direct fusion with plasma membrane,
and endocytosis (Bobrie et al., 2011; Colombo et al., 2014; Park
et al., 2018).

Exosome can be found in several biological fluids, e.g., blood,
seminal fluid, cerebrospinal fluid, synovial fluid, breast milk, saliva,
bile, ascitic fluid, amniotic fluid, pleural fluid, and urine (Lin et al.,
2015). For the renal system, recent studies have investigated the
compositions of urinary exosomes secreted from different segments
of the nephron and their relevance to the renal physiology and
pathophysiology of kidney diseases (Morrison et al., 2016; Pomatto
et al., 2017; Stahl et al., 2019). In addition, roles for exosomes
derived from serum/plasma/blood, renal tubular cells, renal tissues,
glomerular endothelial cells, mesenchymal stem cells (MSCs),
urinary stem cells, cancer cells, and macrophages related to
kidney diseases have been also examined. This review
summarizes the current knowledge of roles for exosome in
pathogenic mechanisms, biomarker discovery and therapeutics of
various kidney diseases/disorders, particularly lupus nephritis (LN),
other glomerular diseases, acute kidney injury (AKI), diabetic
nephropathy (DN), as well as in the process of renal fibrosis and
chronic kidney disease (CKD) progression, in addition to polycystic
kidney disease (PKD), kidney transplantation, and renal cell
carcinoma (RCC) (Table 1). Finally, the emerging role of
exosome in kidney stone disease is also emphasized.
EXOSOME AND THE RENAL PHYSIOLOGY

Kidney is one of the vital organs responsible for homeostasis to
maintain and regulate the normal physiology of human body.
Abbreviations: ADPKD, autosomal dominant polycystic kidney disease; AGEs,
advanced glycation end products; AKI, acute kidney injury; AQP, aquaporin;
CaOx, calcium oxalate; CCL2, chemokine (C-C motif) ligand-2; CCR2, C-C motif
chemokine receptor-2; ccRCC, clear cell renal cell carcinoma; CKD, chronic
kidney disease; COD, calcium oxalate dihydrate; COM, calcium oxalate
monohydrate; CSCs, cancer stem cells; DN, diabetic nephropathy; ECM,
extracellular matrix; eGFR, estimated glomerular filtration rate; EMT, epithelial
mesenchymal transition; ENaC, epithelial sodium channel; FSP1, fibroblast-
specific protein 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GM-
CSF, granulocyte-macrophage colony-stimulating factor; ICAM-1, intercellular
adhesion molecule-1; IGF-1, insulin growth factor-1; IFN-g, interferon-g; IL,
interleukin; LN, lupus nephritis; MCP-1, monocyte chemoattractant protein-1;
MIP-1, macrophage inflammatory protein-1; miRNA, microRNA; MSCs,
mesenchymal stem cells; MVB, multivesicular body; NGAL, neutrophil
gelatinase-associated lipocalin; NS, nephrotic syndrome; PKD, polycystic kidney
disease; RANTES, regulated upon activation normal T cell expressed and secreted;
RCC, renal cell carcinoma; ROS, reactive oxygen species; siRNA, small-interfering
RNA; SLE, systemic lupus erythematosus; TGF-b1, transforming growth factor-
b1; TNF-a, tumor necrosis factor-a; UUO, unilateral ureteric obstruction.
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Exosome has been proposed to play roles in cell-cell
communications within nephron segments that affect the renal
physiology (Stahl et al., 2019). Several proteomics studies have
revealed that the majority of exosomes in the nephron are
originated mostly from glomerular podocytes and tubular cells at
proximal convoluted tubule, thick ascending limb of the Henle’s
loop, distal convoluted tubule and collecting duct (Pisitkun et al.,
2004; Miranda et al., 2010; Vlassov et al., 2012; Dear et al., 2013). In
addition, there are numerous membrane vesicles with the diameter
of 30–50 nm and positive MVBmarkers found in the pellet derived
from the normal urine of healthy individuals (Pisitkun et al., 2004).
Moreover, these urinary exosomes are enriched with proteins and
transporters from each part of the nephron, e.g., podocin and
podocalyxin from glomerular podocytes, aquaporin (AQP)-1 from
proximal convoluted tubule, type-2 Na+-K+-2Cl− cotransporter
from thick ascending limb of the Henle’s loop, Na+-Cl−

cotransporter from distal convoluted tubule, and AQP-2 from
collecting duct (Pisitkun et al., 2004).

The roles for exosome in the renal physiology have been
investigated in both in vitro and in vivo settings. For water
transport, exosomes secreted from vasopressin analogue-treated
collecting duct cells expressed high level of AQP-2 and
subsequently induced neighboring cells to up-regulate expression
of AQP-2 to enhance water reabsorption (Street et al., 2011; Radin
et al., 2012; Miyazawa et al., 2018). For intra-nephron
communications, several studies have implicated that exosome is
involved in proximal-distal signaling (Prunotto et al., 2013; Gildea
et al., 2014; Merchant et al., 2017). For example, a proteomics study
has demonstrated that exosomes derived from glomerular
podocytes could pass through the upstream proximal renal tubule
and transferred information to the downstream distal renal tubular
epithelial cells (Prunotto et al., 2013). Similarly, another study has
also shown that exosomes derived from proximal renal tubular cells
treated with fenoldopam (a dopamine receptor agonist) could be
transferred to distal renal tubule and collecting duct, and further
modulated production of reactive oxygen species (ROS) in the cells
lining these tubular segments (Gildea et al., 2014). In addition,
exosomes derived from LLC-PK1 proximal renal tubular cells
expressed glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
which could be delivered to distal convoluted tubule and collecting
duct (Jella et al., 2016). GAPDH-expressing exosomes then induced
conformational changes of epithelial sodium channel (ENaC) and
reduced sodium ion reabsorption capability of the affected cells
(Jella et al., 2016).

Apart from function involving the renal physiology, urinary
exosomes also act as immune effectors to protect from bacterial
infection in the urinary tract. The intact human urinary exosome
carries several innate immune proteins, including lysozyme-C,
dermcidin, mucin-1, calprotectin, and myeloperoxidase, all of
which potently inhibit the growth of various pathogenic and
non-pathogenic Escherichia coli strains (Hiemstra et al., 2014).
Taken together, under the normal state of the kidney, urinary
exosome acts as the shelter for bioactive molecules to effectively
transmit the functional substances from the upstream renal
tubular cells to the downstream tubular cells that finally
influence functions or activities of the effector cells.
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TABLE 1 | Summary of roles for exosome in various kidney diseases/disorders.

Kidney
disease/
disorder

Role of
exosome

Source of
exosome

Main findings Reference

LN Biomarker Urine (mouse) Increased urinary exosomal miR-26a in LN animals with progressive glomerular injury. (Ichii et al., 2014)
Biomarker Urine (human) Increased miR-146a in urinary exosomes derived from SLE patients with active LN. (Perez-Hernandez

et al., 2015)
Biomarker Urine (human) Urinary exosomal miR-29c might serve as a biomarker to predict renal fibrosis in LN. (Sole et al., 2015)
Biomarker Urine (human) Decreases of let-7 and miR-21 in urinary exosomes derived from LN patients. (Tangtanatakul

et al., 2019)
Biomarker Urine (human) Urinary exosomal miR-3135b was increased in patients with active LN class IV compared to

those with inactive LN class IV and healthy controls, whereas miR-654-5p was increased only in
LN class IV with cellular crescent.

(Li et al., 2018b)

Other
glomerular
diseases

Biomarker Urine (human) Urinary exosomal aminopeptidase N, vasorin precursor, a-1-antitrypsin, and ceruloplasmin could
differentiate IgA nephropathy from thin basement membrane nephropathy and healthy controls.

(Moon et al., 2011)

Biomarker Urine (human) Urinary exosomal miR-193a was greater in children with primary focal segmental
glomerulosclerosis comparing to those with minimal change NS.

(Huang et al., 2017)

Biomarker Urine (human) Urinary exosomal excretion and CCL2 mRNA level were increased in IgA nephropathy and
correlated with the disease activity.

(Feng et al., 2018)

Biomarker Urine (human) Thirty urinary exosomal miRNAs were markedly increased in children with idiopathic NS. Among
these, miR-194-5p and miR-23b-3p correlated well with urine protein level.

(Chen et al., 2019)

Biomarker Urine (human) Level of FSP1 in extracellular vesicles (including exosomes) was increased in patients with active
crescentic glomerulonephritis and decreased after immunosuppressive therapy.

(Morikawa et al.,
2019)

Ischemia/
reperfusion-
induced AKI

Pathogenic
mechanism

Urine (rat) Decreased urinary exosomal AQP-1 in animals with ischemia/reperfusion-induced AKI. (Sonoda et al.,
2009)

Pathogenic
mechanism

Urine (rat) Decreased urinary exosomal AQP-1 and AQP-2 in animals with ischemia/reperfusion-induced
AKI.

(Asvapromtada
et al., 2018)

Biomarker Urine (rat) - Increased urinary exosomal miR-16, miR-24, and miR-200c at an early (injury) phase of
ischemia/reperfusion injury.
- Increased urinary exosomal miR-125 and miR-351 at a late (fibrotic) phase of ischemia/
reperfusion injury.

(Sonoda et al.,
2019a)

Therapeutics MSCs (human) Recovery of tubular damage in rats after administration of human Wharton’s jelly MSCs-derived
extracellular vesicles.

(Zhang et al., 2014;
Zhang et al., 2016)

Therapeutics MSCs (mouse) High expression of exosomal CCR2 could reduce macrophage infiltration. (Shen et al., 2016)
Therapeutics MSCs (rat) Exosomes derived from adipose MSCs could protect ischemia/reperfusion-induced AKI. (Lin et al., 2016)
Therapeutics Renal tubular

epithelial cells
(rat)

Intravenous administration of extracellular vesicles (mainly exosomes) derived from rat renal
tubular cells could improve ischemia-induced renal injury.

(Dominguez et al.,
2017)

Therapeutics Renal tubular
epithelial cells
(human)

Intravenous administration of exosomes derived from human renal tubular cells could improve
ischemia-induced renal injury.

(Dominguez et al.,
2018)

Therapeutics MSCs (human) Exosomes derived from bone marrow MSCs were rich with miR-199a-3p and could prevent
ischemia/reperfusion-induced AKI by increasing expression of miR-199a-3p in renal cells.

(Zhu et al., 2019a)

Sepsis-
induced AKI

Biomarker Urine (human) Increased urinary exosomal NGAL and activating transcription factor 3 in sepsis-induced AKI
patients.

(Panich et al., 2017)

Biomarker Renal tubular
epithelial cells
(mouse)

Increased exosomal miR-19b-3p in lipopolysaccharide-induced AKI. (Lv et al., 2019)

Therapeutics Serum (mouse)/
myoblast
(mouse)

Exosomes derived from sera of animals with remote ischemic preconditioning and myoblasts
under hypoxia and reoxygenation preconditioning could prevent sepsis-induced AKI in vivo and
in vitro, respectively, by enhancing the expression of miR-21.

(Pan et al., 2019)

Cisplatin-
induced AKI

Biomarker Urine (rat) Increase of fetuin-A but decrease of AQP-2 in urinary exosomes derived from cisplatin-induced
AKI animals.

(Zhou et al., 2006;
Sonoda et al.,
2019b; Sonoda
et al., 2019a)

Therapeutics MSCs (human) Transfer IGF-1 receptor to cisplatin-treated renal tubular cells and co-incubation of these injured
cells with soluble IGF-1 and exosomes derived from bone marrow MSCs significantly increased
cell proliferation.

(Tomasoni et al.,
2013)

Therapeutics MSCs (human) Exosomes derived from umbilical cord MSCs could prevent cisplatin-induced AKI by 14-3-3z-
dependent pathway.

(Jia et al., 2018)

DN Pathogenic
mechanism

Urine (human) Increased urinary exosomal plasmin, prostasin and urokinase, and proteolytic activation of ENaC
in type 1 DN patients.

(Andersen et al.,
2015)

Pathogenic
mechanism

Glomerular
endothelial cells
(mouse)

Exosomes isolated from high-glucose-treated glomerular endothelial cells played a crosstalk role
to activate EMT and fibrotic changes of mesangial cells and podocytes in DN.

(Wu et al., 2016;
Wu et al., 2017)

(Continued)
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TABLE 1 | Continued

Kidney
disease/
disorder

Role of
exosome

Source of
exosome

Main findings Reference

Pathogenic
mechanism

Macrophages
(mouse)

High-glucose enhanced secretion of exosomes from macrophages, which then caused
mesangial proliferation and activated inflammatory cascade. Knockdown of TGF-b1 significantly
reduced such effects of exosomes.

(Zhu et al., 2019b)

Pathogenic
mechanism/
biomarker

Podocytes
(mouse)/urine
(human)

- AGEs activated TGF-b-Smad3 signaling pathway and induced secretion of Elf3-containing
exosomes from the murine podocytes.
- Urinary exosomal Elf3 was detectable only in DN patients, not in those with minimal change
NS and healthy controls.

(Sakurai et al., 2019)

Biomarker Urine (human) Urinary exosomal bikunin precursor and histone-lysine N-methyltransferase were increased, but
voltage-dependent anion-selective channel protein 1was decreased in DN patients.

(Zubiri et al., 2014)

Biomarker Urine (human) Urinary exosomal miR-320c, miR-6068, miR-1234-5p, miR-6133, miR-4270, miR-4739, miR-
371b-5p, miR-638, miR-572, miR-1227-5p, miR-6126, miR-1915-5p, miR-4778-5p, and miR-
2861 were increased, whereas miR-30d-5p and miR-30e-5p were decreased in type 2 DN
patients.

(Delic et al., 2016)

Biomarker Urine (human) Urinary exosomal miR-15b, miR-34a, and miR-636 were increased in type 2 DN patients. (Eissa et al., 2016a)
Biomarker Urine (human) Urinary exosomal miR-133b, miR-342, and miR-30a were increased in type 2 DN patients. (Eissa et al., 2016b)
Biomarker Urine (rat) Urinary exosomal miR-451-5p was increased in diabetic rats and could predict albuminuria at a

later time-point.
(Mohan et al., 2016)

Biomarker Urine (human) Urinary exosomal miR-150-5p, miR-362-3p, and miR-877-3p were increased, but miR-15a-5p
was decreased in type 2 DN.

(Xie et al., 2017)

Biomarker Urine (human) Increased urinary exosomal AQP-2 and AQP-5 in DN patients. (Rossi et al., 2017)
Biomarker Urine (human) Urinary exosomal WT1 mRNA served as the diagnostic and prognostic marker for type 2 DN. (Abe et al., 2018)
Biomarker Urine (human) Urinary exosomal let-7c-5p was increased, whereas miR-29c-5p and miR-15b-5p were

decreased in type 2 DN patients. These three miRNAs could predict the development of DN.
(Li et al., 2018a)

Therapeutics MSCs (rat) MSCs-derived exosomes suppressed infiltration of dendritic cells into the kidney (by regulating
expression of ICAM-1) and inhibited production of the pro-inflammatory cytokines (TNF-a and
TGF-b1) and renal fibrosis.

(Nagaishi et al.,
2016)

Therapeutics Urinary stem
cells (human)

Exosomes derived from urinary stem cells carried growth factor, TGF-b1, angiogenin and bone
morphogenetic protein-7, which might recover vascular regeneration and cell survival in an early
phase of DN.

(Jiang et al., 2016)

Renal fibrosis
and other
CKD models

Pathogenic
mechanism

Renal cortex
(mouse)

TGF-b1 mRNA was transported by exosomes, which might activate fibroblast proliferation and
development of renal fibrosis.

(Borges et al., 2013)

Biomarker Urine (human) Urinary exosomal miR-29c was decreased and associated with degree of chronicity in CKD
patients.

(Lv et al., 2013)

Biomarker Kidney (mouse) Urinary exosomal miR-181a was decreased (200-fold) in CKD patients. (Khurana et al.,
2017)

Biomarker Kidney (mouse) Increased level of secreting transglutaminase-2 (a fibrosis-activating enzyme) through exosomal
pathway in UUO mice.

(Furini et al., 2018)

Biomarker Urine (human) Urinary exosomal miR-29c was decreased and correlated with the degree of renal fibrosis. (Chun-Yan et al.,
2018)

Biomarker Urine (human) Urinary exosomal miR-200b was decreased in CKD patients and the degree of decrease was
greatest in urinary exosomes derived from cells other than those of proximal renal tubules.

(Yu et al., 2018)

Biomarker Urine (human) Urinary exosomal miR-21 was increased in CKD patients and had a negative correlation with
eGFR.

(Lange et al., 2019)

Biomarker Urine (human/
rat)

Urinary exosomal ceruloplasmin was increased in CKD patients and animals with passive
Heyman nephritis.

(Gudehithlu et al.,
2019)

Therapeutics MSCs (human) Exosome miR-let7c derived from MSCs could attenuate fibrotic process in renal tubular epithelial
cells.

(Wang et al., 2016)

PKD Pathogenic
mechanism/
biomarker

Urine (human) Multiple gene products related to PKD were excreted into the urine via exosomal secretion. (Pisitkun et al.,
2004; Hogan et al.,
2009)

Biomarker Urine (human) Decreased levels of polycystin-1 and polycystin-2 but increased level of transmembrane protein
2 in urinary exosomes derived from ADPKD patients with PKD1 mutation.

(Hogan et al., 2015)

Biomarker Urine (human) Complement C3 and C9 were increased in urinary extracellular vesicles (including exosomes)
derived from ADPKD patients with or without progressive CKD, whereas urinary exosomal villin-
1, periplakin and envoplakin were increased only in ADPKD patients with progressive CKD.

(Salih et al., 2016)

Biomarker Urine (rat/
human)

Increased urinary exosomal activator of G protein signaling 3 in PKD animals/patients. (Keri et al., 2018)

Biomarker Urine (human) Increased urinary exosomal CD133 in ADPKD patients. (Bruschi et al.,
2019)
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TABLE 1 | Continued

Kidney
disease/
disorder

Role of
exosome

Source of
exosome

Main findings Reference

Kidney
transplantation

Pathogenic
mechanism

Urine (human) Increased levels of 50-kDa and 75-kDa subunits of g-ENaC in urinary exosomes derived from
albuminuric kidney transplant recipients.

(Hinrichs et al.,
2018)

Pathogenic
mechanism

Urine (human) Temporary decreased level of AQP-2 in urinary extracellular vesicles (including exosomes) on
day 1 after kidney transplantation that might explain acute diuresis phenomenon.

(Oshikawa-Hori
et al., 2019)

Biomarker Urine (human) Increased urinary exosomal Na-K-2Cl co-transporter in cyclosporine-A-treated kidney transplant
recipients.

(Esteva-Font et al.,
2014)

Biomarker Urine (human) Levels of Na+-Cl− cotransporter and its phosphorylated form were greater in urinary exosomes
derived from tacrolimus-treated kidney transplant recipients with hypertension.

(Rojas-Vega et al.,
2015)

Biomarker Urine (human) Higher level of CD3-positive urinary exosomes in patients with acute cellular rejection. (Park et al., 2017)
Biomarker Urine (human) Increased urinary exosomal tetraspanin-1 and hemopexin in patients with T-cell mediated

rejection.
(Lim et al., 2018)

Biomarker Plasma
(human)

Increased mRNA levels of gp130, CCL4, TNFa, SH2D1B, CAV1, and atypical chemokine
receptor 1 in plasma exosomes derived from patients with antibody-mediated rejection.

(Zhang et al., 2017)

RCC Pathogenic
mechanism

Primary RCC
cells (human)/
RCC cell line
(human)

RCC cells had increased exosomal TGF-b1 that further mediated natural killer cell dysfunction. (Xia et al., 2017)

Pathogenic
mechanism/
Biomarker

CSCs (human) - CSCs-derived exosomes promoted proliferation and EMT of ccRCC.
- CD103-positive exosomes served as the biomarker for metastatic ccRCC.

(Wang et al., 2019b)

Biomarker Urine (human) Matrix metalloproteinase 9, ceruloplasmin, podocalyxin, Dickkopf-related protein 4 and carbonic
anhydrase IX were increased, whereas AQP-1, extracellular matrix metalloproteinase inducer,
neprilysin, dipeptidase-1, and syntenin-1 were decreased in urinary exosomes derived from
RCC patients.

(Raimondo et al.,
2013)

Biomarker Urine (human) - Urinary exosomal miR-126-3p combined with miR-449a or miR-34b-5p could discriminate
ccRCC from healthy individuals.
- Urinary exosomal miR-126-3p combined with miR-486-5p could discriminate ccRCC from
benign lesions.

(Butz et al., 2016)

Biomarker Urine (human) Urinary exosomal miR-30c-5p served as the diagnostic marker for early-stage ccRCC. (Song et al., 2019)
Biomarker Urine (mouse) Urinary exosomal miR-204-5p served as the diagnostic marker for Xp11.2 translocation RCC. (Kurahashi et al.,

2019)
Biomarker Serum (human) Serum exosomal miR-224 served as the prognostic marker for ccRCC. (Fujii et al., 2017)
Biomarker Serum (human) Serum exosomal miR-210 served as the diagnostic and prognostic marker for ccRCC. (Wang X. et al., 2019)
Biomarker Serum (mouse) Serum exosomal miR-126-3p, miR-17-5p and miR-21-3p were decreased 1-day after

cryoablation of RCC.
(Zhang et al., 2018)

Therapeutics RCC cell line
(human)

CD8+ T-cells stimulated by exosomes derived from RCC cells combined with GM-CSF and IL-
12 exerted autologous anti-cancer effects.

(Xu et al., 2019)

Kidney stone
disease

Pathogenic
mechanism

Urine (human) Stone formers excreted greater amount of urinary exosomes. (Jayachandran
et al., 2015)

Pathogenic
mechanism

Renal tubular
epithelial cells
(human)

Hyperoxaluria activated exosomal secretion from HK-2 cells. (He et al., 2017)

Pathogenic
mechanism

Macrophages
(human)

- Exosomes derived from COM-exposed macrophages had changes in levels of proteins
involved in immune regulation, i.e., T-cell activation and homeostasis, Fcg receptor-mediated
phagocytosis, IFN-g regulation, and cell migration.
- Increased production of IL-1b (a marker for inflammasome activation) in exosomes derived
from the COM-exposed macrophages that activated several functions of inflammatory cells,
including monocytes, macrophages, and T-cells.
- Knockdown of vimentin by siRNA could abolish the effects of exosomes derived from the
COM-exposed macrophages on monocytic and T-cell migration and phagocytic activity of
macrophages.

(Singhto et al.,
2018)

Pathogenic
mechanism

Macrophages
(human)

- Exosomes derived from COM-exposed macrophages had changes in levels of proteins
involved in cytoskeletal and actin binding, calcium binding, stress response, transcription
regulation, immune response, and ECM disassembly.
- COM-induced exosomes caused IL-8 overproduction from renal tubular cells and enhanced
neutrophil migration.
- COM-induced exosomes could bind with COM crystals more tightly than the control
exosomes and subsequently activated COM crystal invasion through the ECM.

(Singhto and
Thongboonkerd,
2018)
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ROLES OF EXOSOME IN VARIOUS
KIDNEY DISEASES/DISORDERS

Lupus Nephritis and Other Glomerular
Diseases
To date, urinary exosome has been widely proposed as the
promising source of non-invasive biomarkers for diagnostics and
prognostics to predict severity and progression of various kidney
diseases, including glomerular disorders (Hoorn et al., 2005). In a
murine model of LN, it has been shown that miR-26a expression in
urinary exosomes significantly increased along with progressive
glomerular injury (Ichii et al., 2014). The data obtained from this
study has implicated that miR-26a regulates podocyte
differentiation and cytoskeletal integrity and its increase might
serve as the marker for the injured podocytes in glomerulonephritis
(Ichii et al., 2014). Transcriptomics study in humans has shown
that miR-146a was increased in urinary exosomes derived from
active LN patients and might serve as the diagnostic biomarker for
discriminating active LN from healthy controls and systemic lupus
erythematosus (SLE) patients without LN (Perez-Hernandez et al.,
2015). In addition, early phase of renal fibrosis and chronicity in
LN patients could be predicted by a decline in urinary exosomal
miR-29c (Sole et al., 2015). Similarly, the anti-inflammatory
miRNAs (i.e., let-7a and miR-21) were down-regulated in
urinary exosomes derived from patients with LN and might
serve as the non-invasive biomarkers to classify the clinical stage
of LN (Tangtanatakul et al., 2019). Furthermore, urinary exosomal
miR-3135b was increased in patients with active LN class IV as
compared to those with inactive LN class IV and healthy controls,
whereas miR-654-5p was increased only in LN class IV with
cellular crescent (with very poor prognosis) (Li et al., 2018b).

For other glomerular diseases, a previous study using a
proteomics approach has shown that urinary exosomal
aminopeptidase N, vasorin precursor, a-1-antitrypsin, and
ceruloplasmin could differentiate immunoglobulin A (IgA)
nephropathy from thin basement membrane nephropathy and
healthy controls (Moon et al., 2011). In another study, level of
fibroblast-specific protein 1 (FSP1) has been shown to increase in
extracellular vesicles (including exosomes) derived from patients
with active crescentic glomerulonephritis (Morikawa et al., 2019).
Interestingly, its level was decreased after immunosuppressive
therapy (Morikawa et al., 2019).

In addition to proteins, exosomal mRNAs and miRNAs also
serve as the valuable markers for glomerular disorders. For
example, level of urinary exosomal miR-193a was greater in
children with primary focal segmental glomerulosclerosis as
compared to those with minimal change nephrotic syndrome
(NS) (Huang et al., 2017). Urinary exosomal excretion and
chemokine (C-C motif) ligand-2 (CCL2) mRNA level were
increased in IgA nephropathy and correlated with the disease
activity (Feng et al., 2018). Additionally, 30 urinary exosomal
miRNAs were markedly increased in children with idiopathic NS
(Chen et al., 2019). Among these, miR-194-5p and miR-23b-3p
correlated well with urinary protein level (Chen et al., 2019).
These data strengthen that urinary exosomes are rich with the
information or molecules that can be further developed to serve
Frontiers in Pharmacology | www.frontiersin.org 6
as the diagnostic and prognostic biomarkers for LN and other
glomerular diseases.

Acute Kidney Injury
Similar to LN, exosome has gained a wide attention as a source of
pathogenic molecules, biomarkers, and therapeutic compounds
in AKI. For pathogenic mechanisms and biomarker discovery,
studies in a rat model have revealed that levels of urinary
exosomal AQP-1 and AQP-2 protein and mRNA were reduced
in animals with ischemia/reperfusion-induced AKI (Sonoda
et al., 2009; Asvapromtada et al., 2018). The decreased levels of
aquaporins in renal tubules could affect water handling of the
nephron and might reflect the progressive development of AKI
(Nielsen et al., 2002). In addition, different sets of exosomal
miRNAs could be used as the biomarkers to classify AKI
progression in ischemia/reperfusion injury. For example, the
increased levels of miR-16, miR-24, and miR-200c were
detected in urinary exosomes at an early (or injury) phase,
whereas the increases of miR-125 and miR-351 were found at
the late (or fibrotic) stage of ischemia/reperfusion injury (Sonoda
et al., 2019a).

A most recent transcriptomics study has revealed that
exosomal miR-19b-3p derived from renal tubular epithelial
cells was elevated in mice with lipopolysaccharide-induced AKI
(Lv et al., 2019). This molecule has been proposed to play a
critical pathogenic role in tubulointerstitial inflammation by
recruiting macrophage infiltration (Lv et al., 2019). Moreover,
studies of cisplatin-induced AKI have revealed the increased level
of fetuin-A but decreased level of AQP-2 in urinary exosomes
from the AKI animals (Zhou et al., 2006; Sonoda et al., 2019a;
Sonoda et al., 2019b). In another study, exosomes derived from
patients with sepsis-induced AKI carried high amounts of
neutrophil gelatinase-associated lipocalin (NGAL) and
activating transcription factor 3 (Panich et al., 2017). All of
these data indicate that changes in levels of the mentioned
urinary exosomal proteins may serve as the biomarkers for
diagnosis of AKI and prediction of its severity.

For therapeutics, there is increasing evidence implicating the
renoprotective role of exosomes, particularly those derived from
MSCs, for attenuation and/or prevention of AKI (Aghajani
Nargesi et al., 2017). Administration of extracellular vesicles
derived from human Wharton’s jelly MSCs could decrease
renal injury and improve renal function after ischemia/
reperfusion-induced renal damage in rats (Zhang et al., 2014;
Zhang et al., 2016). High expression of C-C motif chemokine
receptor-2 (CCR2) on exosomes derived from MSCs could
reduce the level of its ligand (CCL2) and suppress its effects to
induce macrophage infiltration in mice with ischemia/
reperfusion-induced AKI (Shen et al., 2016). Exosomes derived
from adipose MSCs could protect ischemia/reperfusion-induced
AKI (Lin et al., 2016). Similarly, exosomes derived from bone
marrow MSCs were rich with miR-199a-3p and could prevent
ischemia/reperfusion-induced AKI by increasing expression of
miR-199a-3p in renal cells (Zhu et al., 2019a). Additionally,
intravenous administration of extracellular vesicles (mainly
exosomes) derived from rat and human renal tubular cells
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could improve ischemia-induced renal injury (Dominguez et al.,
2017; Dominguez et al., 2018).

In other models of AKI, exosomes derived from sera of
animals with remote ischemic preconditioning and myoblasts
under hypoxia and reoxygenation preconditioning could prevent
sepsis-induced AKI in vivo and in vitro, respectively, by
enhancing the expression of miR-21 (Pan et al., 2019). Also,
transferring insulin growth factor-1 (IGF-1) receptor to
cisplatin-treated renal tubular cells and co-incubation of these
injured cells with soluble IGF-1 and exosomes derived from bone
marrow MSCs significantly increased cell proliferation
(Tomasoni et al., 2013). Moreover, exosomes derived from
umbilical cord MSCs could prevent cisplatin-induced AKI via
14-3-3z-dependent pathway (Jia et al., 2018). Although all of
these studies were carried out in animals, their results hold a
promise for further validation in the clinical setting.

Chronic Kidney Disease
The roles of exosome have also been extensively investigated in
CKD, particularly in DN and renal fibrosis models. A recent
study has shown that type 1 DN was associated with increases in
urinary excretion of exosomal plasmin, prostasin, and urokinase
as well as the proteolytic activation of ENaC that might
contribute to the dysfunction of Na+ excretion and
hypertension (Andersen et al., 2015). Interestingly, exosomes
derived from high-glucose-treated glomerular endothelial cells
played a crosstalk role to activate epithelial mesenchymal
transition (EMT) and fibrotic changes of glomerular mesangial
cells and podocytes in DN (Wu et al., 2016; Wu et al., 2017).
High-glucose also enhanced secretion of exosomes from
macrophages, which then caused mesangial proliferation and
activated inflammatory cascade in the renal tissue (Zhu et al.,
2019b). Knockdown of TGF-b1 significantly reduced such effects
of exosomes indicating that TGF-b1 serves as an important
mediator for interactions or cross talks between macrophages
and renal cells (Zhu et al., 2019b). In addition, advanced
glycation end products (AGEs) activated TGF-b-Smad3
signaling pathway and induced secretion of a transcription
factor Elf3 through exosomes from the murine podocytes
(Sakurai et al., 2019). Moreover, urinary exosomal Elf3 was
detectable only in DN patients, not in those with minimal
change NS and healthy controls (Sakurai et al., 2019).

For biomarker discovery, urinary exosomal miR-451-5p was
increased in diabetic rats at 6 weeks post-induction with
streptozotocin and could predict albuminuria at a later time-
point (Mohan et al., 2016). In addition, a proteomics study using
label-free quantitative technique compared urinary exosomes
derived from DN patients with those collected from healthy
individuals. The data showed that urinary exosomal bikunin
precursor and histone-lysine N-methyltransferase were increased,
whereas voltage-dependent anion-selective channel protein 1 was
decreased, in DN patients and might lead to the improve
diagnostics and monitoring of DN (Zubiri et al., 2014). Later, the
increased levels of AQP-2 and AQP-5 were detected in urinary
exosomes derived from DN patients, suggesting that these proteins
may serve as the non-invasive biomarkers for diagnosis of DN
Frontiers in Pharmacology | www.frontiersin.org 7
(Rossi et al., 2017). In a subsequent transcriptomics study using
miRNAs microarrays, urinary exosomal miR-320c, miR-6068,
miR-1234-5p, miR-6133, miR-4270, miR-4739, miR-371b-5p,
miR-638, miR-572, miR-1227-5p, miR-6126, miR-1915-5p, miR-
4778-5p, and miR-2861 were increased, whereas miR-30d-5p and
miR-30e-5p were decreased in type 2 DN patients (Delic et al.,
2016). Similarly, urinary exosomal miR-15b, miR-30a, miR-34a,
miR-133b, miR-342, and miR-636 were increased in type 2 DN
patients (Eissa et al., 2016a; Eissa et al., 2016b). WT1 mRNA was
increased in urinary exosomes derived from type 2 DN patients
compared to those of patients with minimal changeNS and healthy
controls and might serve as the diagnostic and prognostic markers
for type 2 DN (Abe et al., 2018). Contradictory changes in urinary
exosomal miRNAs were also found. While miR-150-5p, miR-362-
3p, and miR-877-3p were increased, miR-15a-5p was decreased in
urinary exosomes derived from type 2 DN patients (Xie et al.,
2017). Urinary exosomal let-7c-5p was increased, whereas miR-
29c-5p and miR-15b-5p were decreased in type 2 DN patients, and
all of these three miRNAs could predict the development of DN (Li
et al., 2018a).

In renal fibrosis, a study using unilateral ureteric obstruction
(UUO) model has indicated that transforming growth factor-b1
(TGF-b1) mRNA was transported by exosomes, which might
activate fibroblast proliferation and development of renal fibrosis
(Borges et al., 2013). Additionally, a recent proteomics study has
demonstrated an increased level of secreting transglutaminase-2
(a fibrosis-activating enzyme) through exosomal pathway in
UUO mice and suggested that its increase might serve as a
prognostic biomarker to predict the progression of renal fibrosis
(Furini et al., 2018).

In other studies of CKD, urinary exosomal miR-29c and miR-
181a were decreased and correlated with the degree of chronicity or
renal fibrosis in CKD patients (Lv et al., 2013; Khurana et al., 2017;
Chun-Yan et al., 2018). Urinary exosomal miR-200b was decreased
in CKD patients and the degree of decrease was greatest in urinary
exosomes derived from cells other than those of proximal renal
tubules (Yu et al., 2018). By contrast, urinary exosomal miR-21 was
increased in CKD patients and inversely correlated with estimated
glomerular filtration rate (eGFR) (Lange et al., 2019). Urinary
exosomal ceruloplasmin was increased in animals with passive
Heyman nephritis and also in CKD patients (Gudehithlu et al.,
2019). Interestingly, its increase in animals was detected prior to the
onset of proteinuria and thus might serve as an early biomarker to
predict the renal histopathological change (Gudehithlu et al., 2019).

For therapeutics, the study in DN has shown that exosomes
derived from bone marrow MSCs suppressed infiltration of
dendritic cells into the kidney by regulating expression of
intercellular adhesion molecule-1 (ICAM-1) (Nagaishi et al.,
2016). These exosomes also inhibited renal fibrosis and
reduced production of pro-inflammatory cytokines, i.e., tumor
necrosis factor-a (TNF-a) and TGF-b1 (Nagaishi et al., 2016). In
addition, exosomes derived from urinary stem cells carried
growth factor, TGF-b1, angiogenin, and bone morphogenetic
protein-7 that might play roles in vascular regeneration and cell
survival in an early phase of DN (Jiang et al., 2016). In the UUO
model, exosomal miR-let7c derived from MSCs could attenuate
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fibrotic process in TGF-b-treated renal tubular epithelial cells
(Wang et al., 2016). Taken together, these findings indicate the
potential roles of exosome for therapeutic intervention in CKD
in both DN and UUO renal fibrosis models.

Polycystic Kidney Disease
In an early phase of proteomics studies of urinary exosomes,
multiple gene products related to PKD were detected in the
urine, implicating that they were excreted into the urine via
exosomal secretion (Pisitkun et al., 2004; Hogan et al., 2009).
Comparing to those derived from healthy individuals, urinary
exosomes derived from autosomal dominant PKD (ADPKD)
patients with PKD1 gene mutation had decreased levels of
polycystin-1 and polycystin-2, but increase of transmembrane
protein 2 (Hogan et al., 2015). A subsequent proteomics study
has demonstrated that complement components C3 and C9 were
increased in urinary extracellular vesicles (including exosomes)
derived from ADPKD patients with or without progressive CKD,
whereas urinary exosomal villin-1, periplakin, and envoplakin
were increased only in ADPKD patients with progressive CKD
(Salih et al., 2016). More recently, the study in both animal model
and in PKD patients has shown the increase in urinary exosomal
activator of G protein signaling 3 (Keri et al., 2018). Furthermore,
a most recent study has reported the increased urinary exosomal
CD133 that could effectively discriminate ADPKD patients from
those with medullary sponge kidney (Bruschi et al., 2019). These
findings underscore the important role of exosomes as the source
of the non-invasive biomarkers for diagnostics and prognostics
of PKD.

Kidney Transplantation
Currently, renal biopsy is the gold standard for the diagnosis of
kidney transplant rejection. However, such diagnostic procedure is
invasive and is frequently accompanied by hematuria and other
biopsy-related complications. Recently, much attention has been
given to urinary and blood-derived exosomes as alternative means
for monitoring the graft rejection. Indeed, exosomes served as the
source of potential non-invasive biomarkers to facilitate the
diagnosis of cell-mediated and antibody-mediated allograft
rejection. The presence of intragraft infiltration of T-cells is one
of the hallmarks for the diagnosis of acute cellular rejection after
kidney transplantation. A recent study has shown the higher level
of CD3-positive urinary exosomes in patients with acute cellular
rejection that could reflect T-cell infiltration in the renal allografts
(Park et al., 2017). Similarly, a subsequent proteomics study has
demonstrated the increased levels of urinary exosomal tetraspanin-
1 and hemopexin in patients with T-cell-mediated rejection (Lim
et al., 2018). For antibody-mediated rejection, the increased mRNA
levels of gp130, CCL4, TNFa, SH2D1B, CAV1, and atypical
chemokine receptor 1 were found in plasma exosomes derived
from patients with allograft rejection (Zhang et al., 2017).

Additionally, the information obtained from exosomes also
leads to better understanding of the mechanisms and pathogenic
events after kidney transplantation. For example, the increased
levels of 50-kDa and 75-kDa subunits of g-ENaC were found in
urinary exosomes derived from albuminuric kidney transplant
recipients and was associated with hypertension (Hinrichs et al.,
Frontiers in Pharmacology | www.frontiersin.org 8
2018). Moreover, the decreased level of AQP-2 was detected in
urinary extracellular vesicles (including exosomes) 1-day after
kidney transplantation together with increased urinary volume
and decreased urinary osmolality (Oshikawa-Hori et al., 2019).
However, such decrease of AQP-2 in urinary extracellular
vesicles and diuresis were recovered by day-6 post-
transplantation, suggesting the temporary decrease in the renal
expression of AQP2 and impairment of renal tubular water
handling during the first few days after transplantation that
might explain the acute diuresis phenomenon after kidney
transplantation (Oshikawa-Hori et al., 2019).

For biomarker discovery, exosomes could be used for
monitoring toxicities from immunosuppressive drugs. For
example, the increased urinary exosomal Na+-K+-2Cl−

cotransporter was observed in cyclosporine-A-treated kidney
transplant recipients (Esteva-Font et al., 2014). Similarly, levels
of Na+-Cl− cotranspoter and its phosphorylated form were
greater in urinary exosomes derived from tacrolimus-treated
kidney transplant recipients with hypertension (Rojas-Vega
et al., 2015). Interestingly, the increases in both of these
cotransporters were associated with high blood pressure, which
is a common complication of kidney transplantation during
immunosuppressive therapy.

Overall, these findings strengthen the important roles of
exosome as the source of pathogenic molecules and non-
invasive biomarkers in kidney transplantation. Exosome-based
monitoring during the early post-transplantation phase may help
the clinicians to maintain and perhaps prolong the allograft
survival and function.

Renal Cell Carcinoma
Exosome also plays roles in pathogenic mechanisms of RCC. For
evasion of immune surveillance, an in vitro study has indicated
that exosomes from primary RCC cells of patients with clear cell
RCC (ccRCC) and from RCC cell line had increased level of
TGF-b1 that further mediated natural killer cell dysfunction (Xia
et al., 2017). For cancer progression, exosomes derived from
cancer stem cells (CSCs) of RCC patients promoted proliferation
and EMT of ccRCC (Wang et al., 2019b). Moreover, the same set
of data also showed that CD103-positive exosomes served as the
biomarker for metastatic ccRCC (Wang et al., 2019b).

In addition to its pathogenic role, exosome has been extensively
investigated for biomarker discovery in RCC using body fluids,
especially urine. From a previous proteomics study, matrix
metalloproteinase 9, ceruloplasmin, podocalyxin, Dickkopf-
related protein 4, and carbonic anhydrase IX were increased,
whereas AQP-1, extracellular matrix metalloproteinase inducer,
neprilysin, dipeptidase-1, and syntenin-1 were decreased in
urinary exosomes derived from RCC patients (Raimondo et al.,
2013). However, the majority of exosomal biomarker studies in
RCC had focused on miRNAs. A study on urinary exosomes had
shown that exosomal miR-126-3p combined with miR-449a or
miR-34b-5p could discriminate ccRCC from healthy individuals
(Butz et al., 2016). Moreover, urinary exosomal miR-126-3p
combined with miR-486-5p could discriminate ccRCC from
benign lesions (Butz et al., 2016). Similarly, other more recent
studies have reported that urinary exosomalmiR-30c-5p andmiR-
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204-5p might serve as the diagnostic markers for early-stage
ccRCC (in a human study) and Xp11.2 translocation RCC (in a
murine model), respectively (Kurahashi et al., 2019; Song et al.,
2019). In addition, two consistent studies in humans have revealed
that serum exosomal miR-224 and miR-210 could serve as the
prognostic and diagnostic biomarkers for ccRCC (Fujii et al., 2017;
Wang X. et al., 2019). Furthermore, serum exosomal miR-126-3p,
miR-17-5p and miR-21-3p were decreased 1-day after
cryoablation of RCC in a murine model and might be used as
the biomarker formonitoring therapeutic outcome inRCC(Zhang
et al., 2018).

For therapeutics, the in vitro study on a RCC cell line showed
that CD8+ T-cells stimulated by exosomes derived from RCC
cells combined with granulocyte-macrophage colony-
stimulating factor (GM-CSF) and interleukin (IL)-12 exerted
autologous anti-cancer effects (Xu et al., 2019). Taken together,
exosomes play several roles in RCC, from the pathogenesis to
diagnostics, prognostics and therapeutics.

Emerging Role of Exosome in Kidney
Stone Disease
Kidney stone disease (“nephrolithiasis” or “urolithiasis”) is a
common but under-estimated disease of the world involving 1–
20% of worldwide population, depending on geographical areas
(Thongboonkerd, 2008; Vinaiphat and Thongboonkerd, 2017).
Its incidence/prevalence has been increasing in both
industrialized and developing countries (Ziemba and Matlaga,
2017; Alelign and Petros, 2018). Calcium oxalate (CaOx) is the
most common constituent in kidney stone matrix accounting
approximately 80% of all kidney stones analyzed (Schubert,
2006). The stone formation frequent ly starts with
supersaturation of urinary calcium and oxalate ions to form
CaOx crystals inside the renal tubules (Thongboonkerd et al.,
2006). After crystallization, CaOx crystalline particles can
increase their sizes by crystal growth and self-aggregation and
then be retained inside renal tubules by crystal-cell adhesion
(Tsujihata, 2008).

Between the two common hydrated forms of CaOx crystals,
CaOx monohydrate (COM) is more prominent and more
pathogenic than CaOx dihydrate (COD) in kidney stone
disease (Semangoen et al., 2008a; Semangoen et al., 2008b;
Thongboonkerd et al., 2008; Vinaiphat et al., 2017; Peerapen
et al., 2018). By differences in adhesive capability, atomic lattice,
binding kinetics and surface atomic pattern of these two
hydrated forms, COM crystal adheres more tightly to renal
epithelial cell surface and is then internalized into the cells and
subsequently transferred to the renal interstitium (Chiangjong
and Thongboonkerd, 2012; Kanlaya et al., 2013; Chaiyarit et al.,
2016; Chiangjong and Thongboonkerd, 2016; Vinaiphat et al.,
2017). In addition to forming stone(s) in the renal interstitial
locale (Randall’s plaque’s model) (Alelign and Petros, 2018;
Wiener et al., 2018), the crystals deposited in the renal
interstitium can then trigger several cascades of cellular
response, e.g., increases in production of prostaglandin E, ROS,
and inflammatory chemokines/cytokines (Umekawa et al., 2002;
Khan, 2004; Khan, 2014; Mulay et al., 2014). In particular, the
Frontiers in Pharmacology | www.frontiersin.org 9
increased synthesis of chemokines [i.e., osteopontin, MIP-1
(macrophage inflammatory protein-1), RANTES (regulated
upon activation normal T cell expressed and secreted), and
MCP-1 (monocyte chemoattractant protein-1)] in the renal
interstitium can activate and attract monocytes, macrophages,
and other leukocytes to the crystal-deposited locales to serve as
effector cells involving the inflammatory processes (Umekawa
et al., 2002; Okada et al., 2010).

Although many efforts have been made to extensively
investigate the roles for exosome in several other kidney
diseases, the contributions of exosome in kidney stone disease
remain under-investigated (Table 1). Indeed, the involvement of
exosome-like vesicles in kidney stone disease had initially been
discovered in rat models (Nagasawa et al., 1992; Khan et al., 2012).
These studies have suggested that crystal deposition in renal
papillae might start from nanoscale membrane vesicles derived
from brush border of the injured renal cells that could induce
nucleation, crystallization, and growth of the causative crystals at
the periphery within a collagen framework (Khan et al., 2012). In
humans, patients with kidney stones (stone formers) showed
differential levels of urinary exosomal secretion when compared
with the healthy volunteers without kidney stone (Jayachandran
et al., 2015). Later, additional evidence has suggested that
hyperoxaluria (an aggravating or etiologic factor for kidney
stone formation) caused cytotoxicity in HK-2 cells and activated
exosomal secretion (He et al., 2017). Nevertheless, the biological
relevance of the increased exosomal secretion in kidney stone
disease remains under-investigated.

Macrophage is an effector cell responsible for elimination of
CaOx crystals deposited in the renal interstitium but, on the other
hand, can aggravate or worsen tissue inflammation in kidney stone
disease by autocrine, paracrine, and/or cytokine mechanisms
(Kusmartsev et al., 2016). Recently, a combined expression and
functional study has been conducted to examine proteome
changes in exosomes derived from macrophages after exposure
to COM crystals using a gel-based proteomics technology followed
by several functional assays (Singhto et al., 2018). The data have
shown that exosomes derived from COM-exposed macrophages
had changes in levels of proteins involved in immune regulation,
i.e., T-cell activation and homeostasis, Fcg receptor-mediated
phagocytosis, interferon-g (IFN-g) regulation, and cell migration
(Singhto et al., 2018). Functional assays revealed an increase in
production of IL-1b (a marker for inflammasome activation) in
exosomes derived from the COM-exposed macrophages.
Additionally, these exosomes activated several functions of
inflammatory cells, including monocytes, macrophages, and T-
cells. Moreover, exosomes derived from the COM-exposed
macrophages caused an increase in production of pro-
inflammatory cytokine (IL-8) in monocytes. Interestingly,
knockdown of expression of vimentin (one of the significantly
increased proteins in exosomes derived from the COM-exposed
macrophages identified by proteomics approach) by small-
interfering RNA (siRNA) could abolish the effects of exosomes
derived from the COM-exposed macrophages on monocytic and
T-cell migration and phagocytic activity of macrophages (Singhto
et al., 2018). The data obtained from this study indicate that
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macrophage-derived exosome is involved, at least in part, in
immune process and inflammatory cascade frequently found in
kidney stone pathogenesis.

In addition to the inflammasome activation, a most recent
study using label-free, gel-free, quantitative proteomics approach
has identified 26 proteins whose levels were significantly changed
in exosomes derived from the COM-exposed macrophages as
compared to the control exosomes derived from the untreated
macrophages (Singhto and Thongboonkerd, 2018). These
proteins with significantly altered levels were involved mainly
in cytoskeletal and actin binding, calcium binding, stress
response, transcription regulation, immune response, and
extracellular matrix (ECM) disassembly. Functional assays
have shown the IL-8 overproduction from renal tubular cells
treated with these COM-induced exosomes that also enhanced
neutrophil migration. In concordance, these COM-induced
exosomes were more fragile, thereby were easily to release their
intraluminal contents for inflammasome activation.
Interestingly, these COM-induced exosomes could bind with
COM crystals more tightly than the control exosomes and
subsequently activated COM crystal invasion through the ECM
(Singhto and Thongboonkerd, 2018), a process that relies on
plasminogen-plasmin activity on the COM crystal surface
(Chiangjong and Thongboonkerd, 2012; Chiangjong and
Thongboonkerd, 2016). These findings strengthen the
pathogenic roles of macrophage-derived exosome, particularly
in the inflammatory cascade of kidney stone disease induced by
COM crystals in the renal interstitium.
CONCLUSIONS AND FUTURE
PERSPECTIVES

The aforementioned studies have demonstrated the important
roles for exosome as the vesicular cargo for carrying and
transferring molecular mediators for cell-cell communications
and signal transduction. For example, exosomes derived from the
urinary system are involved in intercellular communications
under the physiologic and pathologic states. Their release
during development and progression of kidney diseases may
exert dual effects, i.e., aggravating the disease severity while
promoting tissue repair. Exosome not only plays a role in the
pathogenic mechanisms of kidney diseases but also serves as the
valuable source of potential non-invasive biomarkers for
diagnostics and prognostics (Hoorn et al., 2005). Comparing to
the conventional urinary and circulating biomarkers, exosome
carries and is enriched with specific sets of biomarker molecules,
particularly receptors, proteins, genetic materials (e.g., DNA,
mRNA, and miRNA) and lipids that are much less abundant in
the urine and circulating blood. Therefore, exosomal markers
provide the advantages for biomarker discovery in specific
diseases that involve abnormalities of such molecules carried
by exosome. Because these biomarker molecules are carried
inside the exosomal cargo, they are more stable in biological
fluids as compared to the other freely circulating molecules. In
addition to serving as the important source of non-invasive
Frontiers in Pharmacology | www.frontiersin.org 10
biomarkers, exosome also provides the therapeutic potential as
well (Tomasoni et al., 2013; Nagaishi et al., 2016; Aghajani Nargesi
et al., 2017). Details of the roles for exosomes in various kidney
diseases/disorders obtained from previous and recent studies are
summarized in Table 1. Nevertheless, it should be noted that
exosomes have not yet entered into the clinical practice, which of
course needs clinical trials and validation in large cohorts.

In kidney stone disease, the emerging role of exosome has
been recently reported to serve as the mediator to promote
kidney stone generation at the initial phase of inflammatory
cascade by activation of inflammasome (Singhto and
Thongboonkerd, 2018; Singhto et al., 2018). Although the
mentioned recent studies have provided convincing evidence
for the pathogenic role of macrophage-derived exosome in
kidney stone disease, there are still many challenges that need
further elucidations. For example, roles of exosomes derived
from cells other than macrophages (e.g., renal cells aligning
various segments of the nephron) should be also investigated.
In addition, large-scale analyses of exosomes in kidney stone
research should not be limited only to proteomics but can be
done by other “omics” studies (e.g., transcriptomics, lipidomics,
metabolomics, interactomics, etc.) as well. Moreover, it would be
interesting to observe the effects of exosomes derived from
specific cell types on the disease course using animal models or
ex vivo setting. However, isolation or purification of exosomes
from animal model or raw biological fluids is still challenging
because some components, such as high-density lipoproteins,
chylomicrons, and microvesicles, have their size ranges close to
that of exosomes (Yuana et al., 2014). Recently, several efforts
have been made to optimize the isolation/purification of
exosomes (Gheinani et al., 2018; Ayala-Mar et al., 2019; Doyle
andWang, 2019; Hou et al., 2019; Huang et al., 2019; Wang et al.,
2019a; Yang et al., 2019). Nevertheless, the outcome is still
unsatisfactory. Therefore, it is essential to further optimize the
isolation methods or develop new techniques to isolate/purify
exosomes more efficiently. Finally, genetic manipulation of
specific transcript or protein compositions of the exosome
would yield better understanding of the mechanisms for
exosomal involvement in kidney stone disease. Having done
so, the roles for exosome in kidney stone disease will be
much clearer.
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