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Long-term use of imatinib is effective and well-tolerated in children with chronic myeloid
leukaemia (CML) yet defining an optimal dosing regimen for imatinib in younger patients is
a challenge. The potential interactions between imatinib and coadministered drugs in this
“special” population also remains largely unexplored. This study implements a
physiologically based pharmacokinetic (PBPK) modeling approach to investigate
optimal dosing regimens and potential drug interactions with imatinib in the paediatric
population. A PBPK model for imatinib was developed in the Simcyp Simulator (version
17) utilizing in silico, in vitro drug metabolism, and in vivo pharmacokinetic data and verified
using an independent set of published clinical pharmacokinetic data. The model was then
extrapolated to children and adolescents (aged 2–18 years) by incorporating
developmental changes in organ size and maturation of drug-metabolising enzymes
and plasma protein responsible for imatinib disposition. The PBPK model described
imatinib pharmacokinetics in adult and paediatric populations and predicted drug
interaction with carbamazepine, a cytochrome P450 (CYP)3A4 and 2C8 inducer, with a
good accuracy (evaluated by visual inspections of the simulation results and predicted
pharmacokinetic parameters that were within 1.25-fold of the clinically observed values).
The PBPK simulation suggests that the optimal dosing regimen range for imatinib is 230–
340 mg/m2/d in paediatrics, which is supported by the recommended initial dose for
treatment of childhood CML. The simulations also highlighted that children and adults
being treated with imatinib have similar vulnerability to CYP modulations. A PBPK model
for imatinib was successfully developed with an excellent performance in predicting
imatinib pharmacokinetics across age groups. This PBPK model is beneficial to guide
optimal dosing regimens for imatinib and predict drug interactions with CYP modulators in
the paediatric population.

Keywords: imatinib, physiologically based pharmacokinetic (PBPK), simulation, paediatrics, drug interactions
in.org January 2020 | Volume 10 | Article 16721

https://www.frontiersin.org/article/10.3389/fphar.2019.01672/full
https://www.frontiersin.org/article/10.3389/fphar.2019.01672/full
https://www.frontiersin.org/article/10.3389/fphar.2019.01672/full
https://www.frontiersin.org/article/10.3389/fphar.2019.01672/full
https://www.frontiersin.org/article/10.3389/fphar.2019.01672/full
https://loop.frontiersin.org/people/828754
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:andrew.mclachlan@sydney.edu.au
https://doi.org/10.3389/fphar.2019.01672
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2019.01672
https://www.frontiersin.org/journals/pharmacology
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2019.01672&domain=pdf&date_stamp=2020-01-30


Adiwidjaja et al. PBPK Model for Imatinib in Paediatrics
INTRODUCTION

Imatinib has revolutionised the treatment for cancer and led to a
subsequent discovery of a class of drugs known as small molecule
kinase inhibitors (Rowland et al., 2017). It is approved as the
first-line treatment for chronic myeloid leukaemia (CML) and
gastrointestinal stromal tumours (GIST) in adult patients and for
CML and Philadelphia chromosome-positive (Ph+) acute
lymphoblastic leukaemia (ALL) in children and adolescents
(Suttorp et al., 2018a). A phase III clinical trial highlighted that
imatinib was well tolerated and effective for newly diagnosed
paediatric CML, with a 5-year progression free survival of 94%
(Suttorp et al., 2018b). A 5-year follow-up of imatinib (340 mg/
m2/d) in combination with conventional chemotherapy drugs
(e.g., cyclophosphamide, methotrexate, and cytarabine) showed
a favorable outcome in children with Ph+ ALL, similar to that of
bone marrow transplantation (Schultz et al., 2014).

The prevalence of childhood CML and Ph+ ALL, however, is
very low, accounting for around 2% of all leukaemias and 3%–5%
of ALL in children, respectively (Coebergh et al., 2006).
Therefore, an optimal dose for imatinib in paediatric patients,
let alone its potential drug-drug interactions, has been less widely
explored. Imatinib is mainly metabolised by cytochrome P450
(CYP)3A4 and CYP2C8 (Barratt and Somogyi, 2017), and thus,
has a potential for drug interactions with modulators of these
CYP enzymes. A clinically significant interaction between
imatinib and carbamazepine, a CYP3A and CYP2C8 inducer,
was described in a 12-year old CML patient with epilepsy
(Taguchi et al., 2014). However, little is known about imatinib
interactions with other potential perpetrator drugs in paediatric
patients. Conducting a dedicated clinical interaction study in
paediatric population remains challenging owing to the ethical
and logistical constraints (Barker et al., 2018). Clearly, a feasible
and systematic approach to address this gap is warranted.

Physiologically based pharmacokinetic (PBPK) modeling can
account for anatomical and physiological growth and organ
maturat ion under ly ing age-re lated changes in the
pharmacokinetics of a drug of interest (Yellepeddi et al., 2019).
This facilitates an extrapolation across the age spectrum
(Kuepfer et al., 2016). The PBPK approach has been
increasingly embraced by regulatory authorities for the
purposes of informing dose selection, providing simulation-
based trial design and investigating potential drug interactions
in paediatric populations (Cole et al., 2017; Bi et al., 2019).
According to applications related to PBPK that were submitted
to the US Food and Drug Administration (FDA) from 2008 to
2017, PBPK analyses are mainly intended for evaluating and
predicting enzyme-based drug interactions (60% of all
applications), followed by utilization in paediatric area (15%)
(Grimstein et al., 2019). PBPKmodeling and simulation has been
an integral part of drug development for paediatric cancers
(Rioux and Waters, 2016). PBPK models which can capture
developmental changes in biological components are useful in
describing in paediatrics the pharmacokinetics of anticancer
drugs, including etoposide (Kersting et al., 2012), busulfan
(Diestelhorst et al., 2014), docetaxel (Thai et al., 2015),
Frontiers in Pharmacology | www.frontiersin.org 2
actinomycin D (Walsh et al., 2016) and nilotinib (Heimbach
et al., 2019).

A PBPK model for imatinib that incorporates maturational
changes of key drug-metabolising enzymes and age-dependent
organ development can help inform optimal dose selection in
children. PBPK modeling and simulation also provides a greater
understanding of potential drug interactions with imatinib in
this vulnerable patient group which remains largely unexplored.
The aim of this study was to develop and implement a paediatric
PBPK model of imatinib for investigating optimal dosing
regimens in children and the vulnerability to drug interactions
relative to adults with a range of CYP3A modulators.
METHODS

In this study, a PBPK model for imatinib was developed and
verified in adults and subsequently extrapolated to children and
adolescents (aged 2–18 years). The verified PBPK model was
then implemented to explore optimal dosing regimens for
imatinib in children and to evaluate potential drug interactions
with CYP3A modulators. The workflow of this study is
summarized in Figure 1.

Development and Verification of a PBPK
Model for Imatinib in Adults
All population-based PBPK modeling and simulations were
conducted using the Simcyp Simulator (version 17 release 1,
Certara UK Limited, Simcyp Division, Sheffield, UK) using the
“general North European Caucasian” population library data,
which represents typical healthy adult people from European
ancestry. The description of Simcyp Simulator workflow, basic
algorithm, and ordinary differential equations have been detailed
previously (Rowland-Yeo et al., 2010; Jamei et al., 2013). The
drug-related input parameters for imatinib are listed in Table 1.

As a basic compound, imatinib binds extensively to a1-acid
glycoprotein (AAG) (Kretz et al., 2004) with an unbound fraction
(fup) of 0.05 (Smith et al., 2004). A higher level of AAG has been
reported in patients with solid tumours (Thai et al., 2015). However,
plasma AAG concentration is similar in healthy people when
compared to patients with CML and GIST (mean value of 0.81
vs. 0.79–1.08 and 0.89 g/L, respectively) (Gambacorti-Passerini
et al., 2003; Gandia et al., 2013; Haouala et al., 2013; Bins et al.,
2017). This corresponded to an unbound fraction in plasma (fup)
for imatinib which was not dissimilar, yet highly variable, between
healthy people [0.05 (range 0.02–0.10)] and patients with CML
[0.03 (range 0.01–0.10)] (Smith et al., 2004; Gandia et al., 2013).
Interestingly, AAG concentrations in patients with GIST were
relatively stable over a 1-year course of treatment with imatinib
(Bins et al., 2017). Thus, a fixed fup of 0.05 with associated variability
was assigned to adult population. There is a paucity of data on AAG
concentration in paediatrics with CML. Nevertheless, clinical data in
children with Ph+ ALL (n = 4, aged 6–15 years) hinted at a similar
AAG concentration (mean ± standard deviation of 0.88 ± 0.39 g/L)
(Marangon et al., 2009) with that of healthy adults and adult
patients with CML.
January 2020 | Volume 10 | Article 1672
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The Advanced Dissolution, Absorption and Metabolism
(ADAM) model (Darwich et al., 2010) was used to describe
imatinib absorption. The effective intestinal permeability (Peff) of
imatinib was estimated using the apparent permeability data in
Caco-2 cell lines (7.9 x 10-6 cm/s). Peff was then utilized to predict
the gut blood flow rate (QGut) (Yang et al., 2007). A whole-body
PBPK model was used to describe the distribution of imatinib,
with tissue-to-plasma partition coefficient (kp) values to each of
the organs predicted in silico (Rodgers and Rowland, 2007).

The intrinsic clearances (CLint) of imatinib to N-desmethyl
imatinib (NDMI) and other metabolites were estimated from
in vitro kinetic data using recombinant CYP3A4 (rCYP3A4) and
human liver microsomes (HLM, in the presence of azamulin) as
detailed in Table 1 (unpublished). The latter represented the
contribution of CYP2C8, since CYP enzymes other than
CYP3A4 and CYP2C8 had a very minor contribution (3%) to
imatinib metabolism (Filppula et al., 2013a). Biliary clearance
(CLbile) of imatinib mediated by ABCB1 and ABCG2
transporters was parameterised by CLint,T or Jmax and Km the
values of which were extracted from previous in vitro studies
(Dai et al., 2003; Breedveld et al., 2005). Relative activity factor
(RAF) of ABCG2 transporter was adjusted to 0.38 to give a CLbile
of 28% of overall clearance of imatinib (Gschwind et al., 2005).
The renal clearance value for imatinib (CLR = 0.5 L/h) was taken
Frontiers in Pharmacology | www.frontiersin.org 3
from a study in patients with CML and Ph+ ALL (Bornhauser
et al., 2005). The CYP3A4-mediated formation clearance of
metabolites other than NDMI (CLuint,others,3A4) was estimated
from subtraction of depletion clearance of imatinib in rCYP3A4
enzyme (CLudep,3A4) to formation clearance of NDMI in
rCYP3A4 (CLuint,NDMI,3A4) as detailed in Table 1. Intersystem
extrapolation factor (ISEF) of 0.21 (Chen et al., 2011) was used to
correct for differences in intrinsic activity per unit enzyme
between rCYP3A4 and HLM. Clearance of imatinib to other
metabolites through a CYP2C8-mediated pathway was estimated
according to Eq. 1.

CLuint,others,2C8 = CLuint,total−

CLuint,bile + CLuint,NDMI,3A4 + CLuint,NDMI,2C8 + CLuint,others,3A4
� �

(1)

where CLuint,total was back-calculated from in vivo apparent
clearance (CL/F = 14.4 L/h) (Widmer et al., 2006) after
subtraction of CLR using the well-stirred hepatic model (a
retrograde approach) (Rowland-Yeo et al., 2010).
The mechanism-based inhibition (MBI) of CYP3A4
following a chronic use of imatinib was modeled by an enzyme
FIGURE 1 | Schematic representation of workflow of this study. Physiologically based pharmacokinetic (PBPK) model of imatinib in adults was constructed using
drug-dependent and system-related input parameters and verified using published clinical pharmacokinetic data. The verified model was subsequently extrapolated
to children and adolescents by incorporating age-related changes in organ size and maturation of cytochrome P450 (CYP)3A4 and CYP2C8 and a1-acid
glycoprotein and then verified to clinically observed concentrations in paediatric population. Paediatric PBPK model of imatinib was implemented to determine an
optimal dosing regimen for imatinib and evaluate potential drug interactions with a range of CYP3A modulators in children older than 2 years.
January 2020 | Volume 10 | Article 1672
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turnover model as follows:

dEnz
dt

= kdeg : Enz0 − kdeg :Enz tð Þ 1 +
kinact : fu : I½ �
KIu + fu : I½ �

� �
;  

Enz 0ð Þ = Enz0

(2)

where Enz0 and Enz(t) indicate the amount of CYP3A4 (Enz) at
baseline as reported previously (Cubitt et al., 2011) and at time t,
respectively; kdeg represents the first-order degradation (turnover)
rate constant of the enzyme in hepatocytes and enterocytes (Yang
et al., 2008); kinact denotes the maximum rate of inactivation, while
KIu is imatinib concentration needed to reach half of kinact, both of
which were obtained from a previous report (Filppula et al., 2012);
[I] and fu indicate imatinib concentrations in the liver or gut at time
t and the unbound fraction of imatinib at the corresponding site of
enzyme, respectively. Not accounting for CYP3A4 autoinhibition
by imatinib at steady-state led to an overestimation of the extent of
interaction with ritonavir, a CYP3A inhibitor, as summarized in
Table S1. PBPK model predictions which incorporated a CYP3A4
MBI (Eq. 2)were consistentwith the clinically observed interaction,
however, CL/F of imatinib was underestimated (Table S1). A
nonpathway specific additional clearance was assigned to the
PBPK model at steady-state (Table 1) to correct this
underprediction. This was also supported by a lack of significant
changes in imatinib CL/F at steady-state compared to that on day 1
(Petain et al., 2008; Gotta et al., 2013).

The importance of uptake transporter(s) has been
hypothesized since imatinib is almost completely bioavailable,
despite being a substrate of both ABCB1 and ABCG2
transporters (Barratt and Somogyi, 2017). The activity of this
uptake transporter seems to be diminished by coadministration
TABLE 1 | Drug-related parameters used to build a physiologically based
pharmacokinetic (PBPK) model for imatinib in Simcyp Simulator.

Parameter Value Source

Physicochemical and blood-binding properties
Molecular
weight

493.6 PubChem
a)

Log Po:w 1.99 (Peng et al., 2005)
Ionisation
pattern

Diprotic base PubChem and ChEMBL
b)

pKa 8.07; 3.73
B/P 0.73 (Kretz et al., 2004)
fup 0.05 (Smith et al., 2004)
Plasma binding
component

a1-acid-
glycoprotein

Absorption phase
Model ADAM model (Darwich et al., 2010)
Peff (10

-4 cm.s-1) 0.92 Predicted in Simcyp Simulator
fuG 1 Assumed (Yang et al., 2007)
QGut (L.h

-1) 6.04 Predicted in Simcyp Simulator
Distribution phase
Prediction
method

Rodgers and
Rowland
method

(Rodgers and Rowland, 2007)

Vss (L.kg
-1) 1.8 Predicted in Simcyp Simulator

Elimination phase
Pathway 1 CYP3A4 (NDMI

formation)
Vmax (pmol.min-1

.pmol CYP-1)
3.0 Estimated from an in vitro study in

recombinant CYP3A4
Km (µmol.L-1) 10.54
fuinc 0.96 Predicted in Simcyp Simulator
ISEF 0.21 (Chen et al., 2011)
Pathway 2 CYP2C8 (NDMI

formation)
Vmax (pmol.min-1

.mg protein-1)
56.4 In vitro study in HLM of which CYP3A4

enzyme was inactivated by azamulin
Km (µmol.L-1) 7.49
fuinc 0.97 Predicted in Simcyp Simulator
Pathway 3 CYP3A4 (other

metabolites)
CLint (µl.min-1

.mg protein-1)
33.4 Estimated from imatinib depletion in

recombinant CYP3A4
fuinc 1
Pathway 4 CYP2C8 (other

metabolites)
CLint (µl.min-1

.mg protein-1)
24.2 Calculated from subtraction of in vivo CL/F

(Widmer et al., 2006) to the sum of scaled
CLint from other pathwaysfuinc 1

CLR (L.h-1) 0.5 (Bornhauser et al., 2005)
Additional HLM
CLint (µl.min-1

.mg protein-1)

31 Compensatory clearance for autoinhibition
of CYP3A4 at steady-state

Drug transport – hepatobiliary transporters
Pathway 1 ABCB1
CLint,T (µl.min-1

.million cells-1)
1.5 Calculated from Peff data in ABCB1-

transfected MDCK II cells (Dai et al., 2003)
RAF 1
Pathway 2 ABCG2
Jmax (pmol.min-1

.million cells-1)
89.4 Estimated from in vitro transport data

(Breedveld et al., 2005)
Km (µmol.L-1) 4.37
RAF 0.38 Estimated from in vivo biliary clearance of

imatinib (Gschwind et al., 2005)

(Continued)
TABLE 1 | Continued

Parameter Value Source

CLPD (ml.min-1

.million
hepatocytes-1)

0.2 Assumed

Drug interactions (for multiple-dosing of imatinib)
Mechanism-
based inhibition
kinact, CYP3A (h-1) 4.29 (Filppula et al., 2012)
KI (µmol.L-1) 14.3
fu,inc 0.8
ABCB1,multidrug resistance protein 1 or p-glycoprotein; ADAM, advanced dissolution, absorption
and metabolism; B/P, blood to plasma ratio; CLint, hepatic intrinsic clearance; CLint,T, transporter-
mediated intrinsic clearance; CLPD, passive diffusion clearance; CLR, renal clearance; fuinc, unbound
fraction during incubation; fuG, unbound fraction in the enterocytes; fup, unbound fraction in plasma;
HLM, human liver microsomes; ISEF, intersystem extrapolation factor; Jmax, maximum flux of a
substrate across a drug transporter; KI, the concentration that provides half of kinact; kinact, maximum
inactivation rate of CYP enzyme; Km, substrate concentration giving half of Vmax or Jmax; Log Po:w,
the partition coefficient in oil and water; MDCKII, Madine-Darby canine kidney cells; NDMI,
N-desmethyl imatinib; Peff, the effective intestinal permeability; pKa, negative logarithm of acid
dissociation constant; QGut, the gut blood flow rate; RAF, relative activity factor; Vmax,maximum rate
of reaction; Vss, volume of distribution at steady-state based on total tissue volumes.
a)Accessed from pubchem.ncbi.nlm.gov.
b)Accessed from ebi.ac.uk/chembl.
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of gemfibrozil (Filppula et al., 2013b) and in patients who had
undergone major gastrectomy (Lubberman et al., 2017).
However, available clinical evidence has been conflicting as to
which transporter is primarily responsible for the uptake of
imatinib (Neul et al., 2016; Barratt and Somogyi, 2017).
Coadministration of rifampicin, an inducer and inhibitor of
CYP enzymes and SLCO1B transporters, respectively
(Kalliokoski and Niemi, 2009; Asaumi et al., 2018) at 600 mg/d
for 7 days decreased systemic exposure (AUC0-∞) of imatinib
given as a single 400 mg oral dose by 74% in healthy adults
(Bolton et al., 2004). This suggests that either the uptake process
into the liver is not the rate-limiting step for hepatic metabolism
of imatinib or sinusoidal uptake transporter(s) other than
SLCO1B may play a role. However, the latter is unlikely given
that clinical evidence of transporter-mediated drug interactions
Frontiers in Pharmacology | www.frontiersin.org 5
with imatinib as a victim drug is lacking. Therefore, transporter-
mediated uptake processes in gut and liver were not included in
the PBPK model.

PBPK simulations of imatinib in adults were performed with
trial designs (number of people, age range, proportion of male/
female, and dosing regimens) matched to the corresponding
clinical studies (Table 2). A total of 10 virtual trials for each
simulation were carried out. Clinically observed concentrations of
imatinib were retrieved from the original publications using
WebPlotDig i t i zer ver s ion 4 .1 (www.automer i s . io /
WebPlotDigitizer) and superimposed to simulated profiles to
allow visual inspection of the predictive performance. Prediction
differences of imatinib pharmacokinetic parameters, expressed as
the ratio of PBPK model prediction to clinically reported para
meter values were also evaluated.
TABLE 2 | Summary of clinical cohorts used for physiologically based pharmacokinetic (PBPK) model verification and comparison of simulated and clinically reported
values for pharmacokinetic parameters of imatinib.

Age
range
(years)

Population Dosing regimens Pharmacokinetic
parameter

PBPK model
prediction

a)

Clinically
observed
value

Prediction
fold-

difference

Reference

Adult population
40–58 Healthy people (n = 12; 2 female) 400 mg, single-

dose
Cmax (µg/ml) 1.6 1.8 ± 1.2 0.89 (Peng et al., 2004)
tmax (h) 2.6 2.5 (1.0–6.0) 1.04
AUC0-∞ (µg.h/ml) 32.1 32.6 ± 16.5 0.98
CL/F (L/h) 12.5 14.9 ± 7.5 0.84

28–84 Patients with GIST (n = 34; 6 female) 400 mg, day 1 CL/F (L/h) 11.2 10.9
b)

1.03 (Petain et al., 2008)
CV of CL/F (%) 51 19

c)

400 mg/d, steady-
state

CL/F (L/h) 10.7 10.9
b)

0.98
CV of CL/F (%) 54 19

c)

39–82 Patients with GIST (n = 50; 21
female)

400 mg/d, steady-
state

d)

CL/F (L/h) 9.6 9.1
b)

1.05 (Eechoute et al., 2012)
CV of CL/F (%) 52 50

c)

18–77 Patients with PAH (n = 103; 83
female)

400 mg/d, steady-
state

CL/F (L/h) 9.8 10.8
b)

0.91 (Renard et al., 2015)
CV of CL/F (%) 53 43

c)

Paediatric population
2–22

e)

Patients with GIST (n = 33; 13
female)

340 mg/m2, day 1 CL/F (L/h) 7.6 7.8
b)

0.97 (Petain et al., 2008)
CV of CL/F (%) 69 19

c)

340 mg/m2, steady-
state

CL/F (L/h) 6.8 7.8
b)

0.87
CV of CL/F (%) 75 19

c)

6–24
e)

Patients with solid tumours and Ph+
leukaemia (n = 41; 14 female)

440 mg/m2, day 1 CL/F (L/h) 10.1 10.8
b)

0.94 (Menon-Andersen
et al., 2009)CV of CL/F (%) 63 32

c)

440 mg/m2, steady-
state

CL/F (L/h) 8.7 10.8
b)

0.81
CV of CL/F (%) 62 32

c)

4–17 Patients with CML (n = 26; 6 female) 300 mg/m2, steady-
state

Cmin (µg/ml) 1.2 1.4 ± 0.8 0.86 (Jaeger et al., 2012;
Suttorp et al., 2018a)

6–15 Patients with Ph+ ALL (n = 4; 2
female)

300 mg/m2, day 1 Cmax (µg/ml) 3.3 3.9 (2.7–5.1) 0.85 (Marangon et al., 2009)
AUC24 (µg.h/ml) 49 55 (37–74) 0.89

300 mg/m2, steady-
state

Css,max (µg/ml) 4.5 6.1 (3.8–8.4) 0.74
AUC24 (µg.h/ml) 59 73 (60–87) 0.81

2–18 Patients with tumours in CNS (n = 4;
1 female)

300 mg bid, day 1
and steady-state

Cmax (µg/ml) 2.7 2.5 (1.7–3.0) 1.08 (Baruchel et al., 2009)
Cmin (µg/ml) 3.9 3.3 (2.1–3.7) 1.18

Patients with tumours in CNS (n = 1;
no female)

500 mg/d, day 1
and steady-state

Cmax (µg/ml) 5.4 4.9 1.10
C24 (µg/ml) 0.9 0.9 1.00
Cmin (µg/ml) 2.1 2.1 1.00
Jan
uary 2020 | V
AUC0-∞, area under the plasma concentration-time curve from time zero to infinity; AUC24, area under the plasma concentration-time curve during 24 h after dose; C24, plasma
concentration at 24 h; Cmax, peak plasma concentration; Cmin, trough concentrations; CNS, central nervous system; Css,max, peak plasma concentration at steady-state; CL/F, apparent
clearance; CML, chronic myeloid leukaemia; CV, coefficient of variation; GIST, gastrointestinal stromal tumours; PAH, pulmonary arterial hypertension; Ph+ ALL, Philadelphia chromosome-
positive acute lymphoblastic leukaemia; tmax, time required to achieve peak plasma concentration.
a)Reported as geometric mean values of PBPK model prediction.
b)Typical population value.
c)Based on w (standard deviation of eta, interindividual variability) of apparent clearance.
d)26% of the cohort received 800 mg/d of imatinib.
e)This cohort also includes young adult patients.
olume 10 | Article 1672
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Extrapolation of the PBPK Model of
Imatinib to Paediatric Population
The verified PBPK model of imatinib in the adult population was
extrapolated to children and adolescents (2–18 years) according
to the best practice in development of paediatric PBPK model
(Maharaj et al., 2013; Maharaj and Edginton, 2014). Drug-specific
parameters for imatinib were fixed at the same values as those
defined in the adult PBPK model (Table 1). The algorithms for
ontogeny profiles of CYP enzymes (Figure 2A) are incorporated
intoSimcyp Simulator bydefault (Johnson et al., 2006).A sigmoidal
Emax model (Eq. 3), driven by postnatal age, adequately describes
the maturation of CYP3A4 and CYP2C8. Parameters specific to
each enzyme are summarized in Table 3.

Fraction   of   adult =   Fbirth +
(adultmax − Fbirth)� PNAn

PNAn
50 + PNAn (3)

where adultmax represents themaximumlevel of expression (as a
fraction)ofCYPenzymes inadultpopulation; Fbirth is the fractionof
CYPenzymesatbirth relative toadult; ndenotes anexponentwhich
is analogous to the Hill coefficient; PNA and PNA50 are postnatal
age and the maturation half-life in years, respectively.

The ontogeny function derived for a1-acid glycoprotein (AAG)
as shown in Eq. 4 and Figure 2Bwas based on a limited set of data
compiled from previously published reports (Johnson et al., 2006)
and as an update of McNamara and Alcorn’s linear equation
(McNamara and Alcorn, 2002). Interestingly, this sigmoidal Emax

model is very similar to the one generated recently from a larger
meta-analysis in healthy people (Maharaj et al., 2018). Unbound
Frontiers in Pharmacology | www.frontiersin.org 6
fraction of imatinib in paediatrics (fuped) was then estimated based
on the ratio of plasma concentrations of AAG to that in the adult
population (Eq. 5). Developmental changes in organ blood flow (as
percent cardiac output todifferent organs) andorgan size have been
detailed previously (Johnson et al., 2006). The changes in liver size
with body surface area (BSA) are specified in Eq. 6 (Johnson et al.,
2005), where BSA (m2) was estimated frombodyweight and height
of each individual (DuBois and DuBois, 1916). The associated
changes in liver size based on age and sex are depicted inFigure 2C.

AAG   g=Lð Þ =  
0:887� 365� PNAð Þ0:38
8:890:38 + 365� PNAð Þ0:38 (4)

fuped =
1

1 +
AAGped

AAGadult
: 1−fuadultð Þ

fuadult

  (5)

Liver volume (L) =  0:722� BSA1:176 (6)
FIGURE 2 | Ontogeny profiles of drug-metabolising enzymes responsible for imatinib metabolism (A) and age-related changes in plasma concentration of a1-acid
glycoprotein (B) and liver volume (C).
TABLE 3 | Parameters used in sigmoidal Emax functions to describe the
maturation of drug-metabolising enzymes involved in imatinib metabolism.

Parameter Hepatic CYP3A4 Intestinal CYP3A4 Hepatic CYP2C8

Adultmax 1.06 1.06 1.00
PNA50 (years) 0.64 2.36 0.02
Fbirth 0.11 0.42 0.30
n 1.91 1.00 1.00
January 2020 | Volum
Adultmax, maximum fractional level of expression in adults; CYP, cytochrome P450, Fbirth,
fraction of CYP enzymes at birth relative to adult; n, the Hill coefficient; PNA50, time to
reach half of adultmax.
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where PNA denotes postnatal age in years; AAGadult and AAGped

are plasma concentrations of AAG in adult and paediatric
population, respectively; and fuadult is the unbound fraction of
imatinib in adults (mean value of 0.05).

Given the importance of ABCB1 and ABCG2 transporters on
biliary excretion of imatinib (Barratt and Somogyi, 2017), the
maturation rates of these drug transporters need to be considered.
Theexpressionofhepatic and intestinalABCG2transporterwasnot
affected by age (Prasad et al., 2016; Cheung et al., 2019), while there
are conflictingdataondevelopmental changes inprotein expression
ofhepatobiliaryABCB1 transporter (Mooij et al., 2014; Prasad et al.,
2016). However, the clinical pharmacokinetic data and PBPK
simulations of digoxin, a probe drug for ABCB1, suggest a rapid
maturation and attainment of adult levels of expression within first
few months after birth (Johnson et al., 2016). Therefore, no age-
related change was assumed for ABCB1 transporter and the adult
values,whichisthedefaultsettinginSimcypSimulator,wereapplied.

The PBPK model in paediatrics was verified using published,
clinical pharmacokinetic data following single- and multiple-
dosing regimens of imatinib. Simulations were performed (10
virtual trials for each simulation) with a trial design similar to the
corresponding clinical studies as presented in Table 2. It is worth
mentioning that the age range of participants in a number of
clinical studies overlaps with that of young adults (Petain et al.,
2008; Menon-Andersen et al., 2009). However, this was
acceptable since all ontogeny functions employed in the model
followed a clear trajectory until adult age (Figure 2).

PBPK Simulation to Evaluate Optimal
Dosing Regimens for Imatinib in Paediatrics
The paediatric population was categorised into several age groups:
preschool (2–5 years) and school-age children (6–11 years), and
adolescents (12–17 years) (Batchelor and Marriott, 2013). PBPK
simulations of imatinib were performed using hypothetical
multiple-dosing regimens given for 14 days (steady-state was
assumed to be achieved within this time frame) with n = 100 (40%
offemale) for eachagegroup.Themale-to-female ratiowasbasedon
the value observed in paediatric patients, in which boys had an
approximately 1.3-fold higher risk to be diagnosed with CML
(Coebergh et al., 2006). BSA-normalized doses of imatinib of 170,
230, 340, and 460 mg in paediatrics corresponded to fixed doses of
300,400,600,and800mginadults, respectively.Thetotaldailydoses
of imatinib (in mg) for each age band were rounded to the closest
50 mg, a half-size of the smallest commercially available imatinib
tablet as recommended in the clinical setting (Suttorp et al., 2018a)
and were capped at the equivalent adult doses. Potential differences
of imatinib Cmin across age bands were evaluated by a one-way
analysis of variance (ANOVA) with Tukey post hoc test using
GraphPad Prism version 7.02 (GraphPad Software, La Jolla,
CA, USA).

PBPKModel Prediction of Drug Interactions
With a Range of CYP3AModulators
Verification of Paediatric PBPK Models
for Carbamazepine, Ketoconazole, and Rifampicin
The default PBPK models for carbamazepine, ketoconazole, and
rifampicin in Simcyp Simulator were used (Almond et al., 2016;
Frontiers in Pharmacology | www.frontiersin.org 7
Liu et al., 2017). The predictive performance of the PBPK models
in paediatric population need to be verified prior to their further
use, since the original models were developed in adults. PBPK
simulations for the three CYP3A modulators were carried out
across different dosing regimens and age groups as detailed in
Table 4, with a total of 10 virtual trials for each of the
simulations. The predicted fold-differences of pharmacokinetic
parameters for each compound, expressed as PBPK model
prediction over the values reported in clinical studies
were determined.

Evaluation of PBPK Model Prediction of Interaction
With Carbamazepine
PBPK simulations were performed to predict the extent of
interaction between carbamazepine and imatinib in adults (n =
63, age ranging from 19 to 69 years) (Pursche et al., 2008) and
paediatrics (a 12-year old male) (Taguchi et al., 2014). Designs of
the clinical studies were replicated in the PBPK simulations,
except for the latter which was carried out in a total of 100
subjects with age range of 11–13 years. This was necessary since
the Simcyp Simulator does not allow the assignment of a single
age value in a trial design. The goodness-of-fit of the PBPK
predictions was evaluated via a visual inspection of the simulated
pharmacokinetic profiles which were overlaid to imatinib
concentrations observed in the clinical studies.

Implementation of PBPK Modeling Approach to
Evaluate Drug Interactions With CYP3A Modulators
Across Different Age Bands
To investigate the age-related changes in liability to CYP
modulation, PBPK prediction of imatinib interactions with a
set of CYP3A modulators, exemplified by carbamazepine,
ketoconazole and rifampicin were conducted in adult and
paediatric populations. The verified PBPK models in
paediatrics were used, with the addition of CYP2C8 induction
to the rifampicin model (maximum fold of induction (Indmax) =
6.27 and concentration that provides half of Indmax (IndC50) =
0.1 μmol/L) (Raucy et al., 2002). CYP2C8 induction was also
incorporated to carbamazepine and its active metabolite,
carbamazepine-10,11-epoxide with IndC50 and Indmax for both
compounds of 22 μmol/L and 3.5, respectively (Zhang et al.,
2015). The induction of CYP3A and CYP2C8 was modeled by an
increase in protein synthesis (turnover) rate constant in
hepatocytes and enterocytes according to an enzyme turnover
model (Almond et al., 2016). Ketoconazole inhibits CYP3A4 and
CYP2C8 competitively with an inhibitory constant (Kiu) of
15 nmol/L (Liu et al., 2017) and 2.2 μmol/L, respectively.
PBPK simulations were carried out with n = 50 (40% of
female) for each age band. Imatinib was given for 14 days with
and without carbamazepine, ketoconazole or rifampicin.
Imatinib was administered at a daily dose of 230 mg/m2 and
400 mg for paediatrics and adults, respectively. The typical
maintenance dosing regimens were assigned for each CYP3A
modulator based on age ranges. Potential changes in area under
the plasma concentration-time curve (AUC) of imatinib for each
age group on the last day was predicted.
January 2020 | Volume 10 | Article 1672
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RESULTS

Development and Verification of a PBPK
Model for Imatinib in Adults
The PBPK model was successfully predicted pharmacokinetic of
imatinib following single- and multiple-dosing regimens in
adults (Figures 3A–E). Clinically observed concentrations of
imatinib fell within 5th to 95th percentiles of the PBPK model
simulated pharmacokinetic profiles. Interestingly, PBPK
simulation of the study by Petain et al. were in close agreement
with those predicted using a population pharmacokinetic
approach (Petain et al., 2008) as shown in Figures 3B, C.
However, the observed interindividual variability of imatinib
concentrations on day 1 appears to be underestimated
(Figure 3B). All the key pharmacokinetic parameters of
imatinib were predicted within a 1.25-fold difference (range:
0.84–1.05).

Extrapolation of the PBPK Model of
Imatinib to Paediatric Population
PBPK model predictions in paediatrics (2–18 years) were
consistent with clinically observed pharmacokinetic data
Frontiers in Pharmacology | www.frontiersin.org 8
(Figures 3F–N), although the interindividual variability of
imatinib concentrations following single-doses of 300
(Marangon et al., 2009), 340 (Petain et al., 2008) and 440 mg/m2

(Menon-Andersen et al., 2009) appeared to be underpredicted.
A number of the clinical pharmacokinetic data came from
studies with sparse sampling points, e.g. restricted to imatinib
Cmin (Suttorp et al., 2018a) or only 1–2 samples from few
children (Baruchel et al., 2009). However, PBPK simulations were
able to capture the overall trend observed in the corresponding
clinical studies (Figures 3J, M, N). All simulated pharmacokinetic
parameters fell within 1.25-fold of those reported in clinical
pharmacokinetic studies (Table 2) , except for peak
concentrations of imatinib at steady-state (Css,max) in the study
by Marangon et al (2009).

PBPK Simulation to Evaluate Optimal
Dosing Regimens for Imatinib in
Paediatrics
The Cmin targets of at least 1,000 ng/ml (Larson et al., 2008;
Verheijen et al., 2017) and more strictly, between 1,000 and 3,200
ng/ml (Lankheet et al., 2017) were used for the simulations.
PBPK simulations indicated that the variability of the attained
TABLE 4 | Comparison of physiologically based pharmacokinetic (PBPK) model prediction and clinically observed values for pharmacokinetic parameters of
carbamazepine, ketoconazole, and rifampicin in paediatric population.

Dosing regimens Population Age range
(years)

Pharmacokinetic
parameter

PBPK model
prediction

a)

Clinically
observed
value

Prediction
fold-difference

Reference

Carbamazepine
300 mg bid, multiple-dose Patients with epilepsy (n = 52;

21 girls)
2–21 CL/F (L/h) 3.8 3.6

b)

1.06 (Carlsson et al.,
2005)CV of CL/F (%) 54 52

c)

9.5 mg/kg bid, multiple-dose Patients with epilepsy (n = 21;
10 girls)

4–13 Css,max (µmol/L) 40.2 39.8 ± 10.0 1.01 (Eeg-Olofsson
et al., 1990)Cmin (µmol/L) 19.0 21.5 ± 5.8 0.88

AUC24 (µmol.h/L) 742.3 762.5 ± 163.2 0.97
Carbamazepine-10,11-epoxide
9.5 mg/kg bid of
carbamazepine, multiple-
dose

Patients with epilepsy (n = 21;
10 girls)

4–13 Css,max (µmol/L) 5.5 6.0 ± 2.3 0.92 (Eeg-Olofsson
et al., 1990)Cmin (µmol/L) 4.5 4.0 ± 1.6 1.13

AUC24 (µmol.h/L) 121.4 138.0 ± 48.9 0.88
Ketoconazole
5 mg/kg, single-dose Patients with oral candidiasis

(n = 12; 5 girls)
2–12.5 AUC6 (µg.h/ml) 17.5 15.3 ± 2.7 1.14 (Ginsburg

et al., 1983)
4.8 mg/kg bid, multiple-dose Patients with candidiasis

(n = 7; 3 girls)
1–14 Css,max (µg/ml) 4.6 3.5 ± 0.9 1.31 (Bardare et al.,

1984)
AUC12 (µg.h/ml) 19.9 13.6 ± 2.4 1.46

8.7 mg/kg/d, multiple-dose Patients with candidiasis
(n = 4; 1 girl)

1–12 Css,max (µg/ml) 8.1 6.3 ± 1.7 1.29 (Bardare et al.,
1984)

AUC24 (µg.h/ml) 34.9 40.7 ± 8.7 0.86
Rifampicin
10 mg/kg, single-dose Patients with impetigo or

cellulitis (n = 21; 10 girls)
0.5–5 AUC8 (µg.h/ml) 47 56 0.84 (McCracken

et al., 1980)
300 mg/m2 (30-min i.v.
infusion), single-dose

Patients with H. influenzae
infections (n = 20; 9 girls)

0.25–3 Cmax (µg/ml) 30.8 27.4 ± 12.1 1.12 (Koup et al.,
1986a)

CLi.v. (L/h/m
2) 4.1 3.7 ± 1.3 1.11

300 mg/m2 tid (30-min i.v.
infusion), multiple-dose

Patients with staphylococcal
infections (n = 12; 5 girls)

0.25–13 Css,max (µg/ml) 28.4 25.9 ± 1.3 1.10 (Koup et al.,
1986b)

CLi.v. (L/h/m
2) 4.3 4.0 ± 1.5 1.08
January
 2020 | Volume 1
AUC6, AUC8, AUC12, AUC24, area under the plasma concentration-time curve during 6, 8, 12 and 24 h after dose, respectively; bid, twice daily; Cmax, peak plasma concentration; Cmin,
trough concentration; Css,max, peak plasma concentration at steady-state; CLi.v., clearance after intravenous administration; CL/F, apparent clearance; CV, coefficient of variation; tid, three
times a day; i.v., intravenous.
a)Reported as geometric mean values of PBPK model prediction.
b)Typical population value.
c)Based on w (standard deviation of eta, interindividual variability) of apparent clearance.
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Cmin of imatinib was higher in the paediatric population at age 2
to 5 years and middle-aged adults compared to other age groups
(Figure 4). The mean Cmin after a daily dose of 340 mg/m2 were
predicted to be above the target concentration of 1,000 ng/ml
irrespective of the age group. At a lower dose (230 mg/m2),
imatinib Cmin values were predicted to be lower than the
Frontiers in Pharmacology | www.frontiersin.org 9
predefined target concentration in a large subset of children
above 5 years of age (Figure 4). Statistical analysis of Cmin of
imatinib given at a daily dose of 230 and 340 mg/m2 in
paediatrics (corresponded to 400 and 600 mg in adults,
respectively) indicated that there was no significant difference
among different age bands (p > 0.01).
FIGURE 4 | Simulated trough concentrations (Cmin) of imatinib stratified by age bands following various dosing regimens. Simulated data are shown as mean
(symbols) with whiskers correspond to standard deviations. The lower and upper limits of target Cmin (1,000–3,200 ng/ml) are indicated by dashed black lines.
FIGURE 3 | Comparison of physiologically based pharmacokinetic (PBPK) model prediction and clinically observed concentrations of imatinib in adult (A–E) and
paediatric populations (F–N). PBPK simulations are presented as mean simulated concentrations (blue line) with their 5th to 95th percentiles (grey area) in linear scale
with the corresponding semi-logarithmic plots as insets. Dashed and dotted black lines represent maximum and minimum simulated concentrations, respectively.
Clinical pharmacokinetic data (circles) are depicted as either individual data (B–L, N) or mean concentrations with whiskers as corresponding standard deviations
(A, M). Population pharmacokinetic predictions of imatinib concentration are shown by red line (B, C). Bid, twice a day.
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PBPKModel Prediction of Drug Interactions
With a Range of CYP3AModulators
Comparisons of the prediction interval (mean concentrations
and 5th to 95th percentiles) with the clinically observed
pharmacokinetic data for carbamazepine, rifampicin, and
ketoconazole at various dosing regimens in paediatrics are
presented in Figure 5. Carbamazepine is primarily metabolised
by CYP3A and CYP2C8 enzymes and thus, induces its own
metabolism (Thorn et al., 2011). Interestingly, accounting for
CYP2C8 induction in the PBPK model of carbamazepine and its
active metabolite (carbamazepine-10,11-epoxide) in paediatrics
improved the predictions (Figures 5A–C; PBPK simulations
without CYP2C8 induction are not shown). Prediction
differences for pharmacokinetic parameters of carbamazepine
and its metabolite in the presence and absence of CYP2C8
Frontiers in Pharmacology | www.frontiersin.org 10
autoinduction were within 1.25-fold (range: 0.88–1.13) and
1.5-fold (range: 0.89–1.45), respectively (Table S2). In line with
that, the decrease of imatinib Cmin when coadministered with
carbamazepine (Figure 6A) was better predicted by the PBPK
model that incorporates CYP2C8 induction [Cmin ratio of 0.38
vs. 0.47, compared to the clinically reported value of 0.34
(Pursche et al., 2008)]. Clinical pharmacokinetic data for the
corresponding interaction in paediatrics are sparse, limited to
imatinib concentrations from a child on day 1 and at steady-state
in the presence of multiple-doses of carbamazepine (Taguchi
et al., 2014). Despite that, the verified PBPK model of imatinib in
paediatric population described the clinical interaction data with
a good accuracy, as shown in Figures 6B, C.

In addition to carbamazepine, the PBPK model was also
implemented for prediction of interactions with ketoconazole
FIGURE 5 | Predicted pharmacokinetic profiles of carbamazepine (A–B) and its metabolite, carbamazepine-10,11-epoxide (C), ketoconazole (D–F); and rifampicin
(G–I) in paediatrics. The predictions are depicted in linear scale with the corresponding semi-logarithmic plots as insets (blue line: mean, grey area: 5th to 95th

percentiles). Clinically observed concentrations (circles) are presented either as individual data (A), mean (C) or mean with the associated standard deviations
(B, D–I). Tid, three times a day.
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and rifampicin across different age groups (2–65 years).
Predicted AUC ratios of imatinib in the presence and
absence of each of the modulators are summarized in
Figure 7. It is noteworthy that the administration CYP3A
modulators at their typical maintenance dosing regimens
according to age bands yielded Css,max that were comparable
across all groups, except for rifampicin, where Css,max was
around 30% lower in middle-aged adults compared to children
less than 18 years (Figure 7). This was important to evaluate
the extent of interactions among different age groups without
being confounded by steady-state concentrations of the
modulators. Further statistical analysis suggested that there
were no significant differences in the extent of interactions
between different age bands (one-way ANOVA followed by a
Tukey post-hoc analysis, p > 0.01).
DISCUSSION

We developed a PBPK model for imatinib in adult populations
and extrapolated its use to paediatrics. The PBPK model was able
to describe imatinib pharmacokinetics in both populations and
Frontiers in Pharmacology | www.frontiersin.org 11
had a capability to predict drug interactions with a range of
CYP3A modulators.

A paediatric PBPK model for imatinib has been reported
previously in a regulatory document submitted to European
Medicines Agency (2013). Unfortunately, a lack of details
regarding this PBPK model’s structure and parameters limits
its further use and interpretation. The PBPK model in the
current study was verified to a larger set of clinically published
pharmacokinetic data and its implementation was extended to
predict drug interactions in paediatrics.

Scaling drug doses from adults to children is far from a
straightforward process (Johnson, 2008). Both population
pharmacokinetic and PBPK approaches have been used
independently or in combination to guide drug dosing in
paediatr ic pat ients (Johnson, 2005) . A populat ion
pharmacokinetic model incorporating body weight as a
primary covariate with an allometric exponent, e.g. ¾ for
clearance, often does not perform well in infants and young
children due to maturation of drug eliminating processes
(Germovsek et al., 2017). In most cases, the predictions are
improved by employing a sigmoidal ontogeny function driven by
postmenstrual age (Anderson and Holford, 2011). However, the
FIGURE 6 | Physiologically based pharmacokinetic (PBPK) model prediction of imatinib concentrations in the presence (blue line) and absence of carbamazepine
(red line) in adults (A) and paediatric (B, C). Prediction intervals (5th to 95th percentiles) for imatinib concentrations with and without carbamazepine are represented
by light blue and pink area, respectively. Clinically observed data are represented by mean concentrations of imatinib alone (triangle) or with carbamazepine (circles)
with whiskers as corresponding standard deviations.
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maturation half-life and Hill coefficient which parameterise the
function vary across different drugs (Holford et al., 2013;
Germovsek et al., 2017) and thus, sufficient number of
individuals with age around the maturation half-life is
necessary for precise parameter estimation. PBPK modeling
and simulation offers an alternative approach to evaluate an
optimal dosing regimen in the paediatric population. It
integrates drug-specific inputs and system-related parameters,
the latter of which encompass developmental changes in
physiology and maturational rates of drug-metabolising
enzymes and proteins involved in drug disposition (Maharaj
and Edginton, 2014). This approach enables extrapolation from
adults or between age groups within paediatric populations and
increases the mechanistic understanding of potential sources of
interindividual variability in systemic exposure to a drug.
Frontiers in Pharmacology | www.frontiersin.org 12
The ontogeny profiles of key CYP enzymes responsible for
imatinib metabolism (Figure 2) are based on a meta-analysis
of in vitro CYP activity in post-mortem livers of donors from
different ages (Johnson et al., 2006). The maturation functions
tend to underestimate the apparent clearance of CYP3A
substrates in neonates and infants (Salem et al., 2014). Two
in vivo-derived algorithms have been proposed to improve the
prediction (Salem et al., 2014; Upreti and Wahlstrom, 2016).
The Upreti and Wahlstrom model for CYP3A4 maturation has
been shown to perform better with less underprediction of
clearance (Johnson et al., 2019). However, as expected, the
PBPK simulations that implemented this ontogeny for
children older than 2 years of age yielded a similar result to
that of in vitro maturation function (results not shown).
Therefore, the latter, which is incorporated in the Simcyp
FIGURE 7 | Physiologically based pharmacokinetic (PBPK) prediction of imatinib interactions with a set of CYP3A modulators (carbamazepine, ketoconazole, and
rifampicin) at steady-state across different age bands. Imatinib at daily doses of 400 mg and 230 mg/m2 was administered to adult and paediatric populations,
respectively along with CYP3A modulators for 14 days. The extent of interactions was evaluated based on AUC ratio metric (ratio of area under the plasma
concentration-time curve of imatinib in the presence and absence of CYP3A modulators). Symbols represent median simulated AUC ratio with whiskers crossing
from 5th to 95th percentiles. Css,max, peak concentration at steady-state. AUC ratio of 1 (dotted black line) indicates absence of drug interactions with imatinib.
Typical dosing regimens and the attained Css,max of the modulators for each age band in the PBPK simulations are also detailed.
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Simulator (version 17) by default, was utilized throughout the
simulations. Developmental changes in organ size, particularly
liver volume were also incorporated in the PBPK model. Liver
volume was most parsimoniously described by a nonlinear
regression against BSA as shown in Eq. 6 (Johnson et al., 2005).
Interestingly, this equation was in concordance with an
allometric weight model with an exponent of ¾ in estimating
liver volume from infants to adolescents (Fanta et al., 2007).
The correlation between liver volume and BSA alone was
superior than that with other covariates (Johnson et al.,
2005), in agreement with the findings of a nonlinear mixed
effect modeling approach (Small et al., 2017). All the ontogeny
equations used in the current study were driven by postnatal
age. Postmenstrual age is more useful if preterm neonates are
included in PBPK simulations (Abduljalil et al., 2019;
Germovsek et al., 2019).

It is noteworthy that the PBPK models may overestimate
clinically observed peak plasma concentrations (Cmax) since they
report predicted concentrations at the central venous
compartment rather than the peripheral vein from which
blood (plasma) samples were collected. This is particularly
important for intravenous (i.v.) administration routes where a
substantial amount of drug is delivered to central venous
compartment directly and equilibration to the peripheral
venous sites may not be instantaneous (Musther et al., 2015).
A PBPK model prediction of drug concentrations at a peripheral
sampling site based on contributions from surrounding tissues
(e.g., adipose, muscle, and skin) as proposed by Musther et al
(2015) has proven to be useful to correct the PBPK predictions at
initial time following i.v. administrations. As depicted in Figure
S1, implementation of this strategy within the Simcyp Simulator
improved the PBPK model predictions of Cmax following a 1-h
infusion of imatinib (100 mg) (Peng et al., 2004) compared to
that of central venous compartment (prediction differences of
imatinib Cmax of 0.99 vs. 1.42). Prediction differences for other
pharmacokinetic parameters of imatinib were similar between
the two strategies (results not shown). Conversely, the peripheral
sampling site model has little to no effect on PBPK predictions of
Cmax of imatinib given orally (results not shown). Unlike i.v.
administration over a short period of time, oral administrations
of drugs are likely to give sufficient time for central venous
compartment (pooled venous return) and peripheral vein in the
arm to equilibrate (Musther et al., 2015).

The observed interindividual variability of imatinib
concentrations in children on day 1 appeared to be higher
than that at steady-state from the corresponding patient cohort
(Figures 3F–I). The reason for this trend was not clear, but may
be related to a lower between individual variability in CYP3A4
activity due to the autoinhibition by imatinib following chronic
exposure (Filppula et al., 2012; Filppula et al., 2013a). PBPK
simulations also highlighted a higher interindividual variability
of imatinib concentrations at a fixed daily dose compared to a
BSA-normalized dosing regimen (Figures 3M, N vs. 3F–L). A
daily dose administered on a mg/m2 basis in paediatric
populations is usually preferred to body weight-based and flat-
fixed dosing regimens owing to more favorable pharmacokinetic
Frontiers in Pharmacology | www.frontiersin.org 13
variability, particularly over a wide age range (Bartelink et al.,
2006; Hempel and Boos, 2007).

A clear exposure-response relationship for imatinib has not
been established in younger patients with CML. Thus, the
proposed targets in children and adolescents were based on the
concentration known to be safe and efficacious in adults (Cmin

ranging from 1,000 to 3,200 ng/ml (Lankheet et al., 2017)). This
was further supported by the similar biological and clinical
features of CML observed in adult and younger patients (Barr,
2010), with only a slight difference, particularly a higher
leukocyte count presented in the latter (Millot et al., 2005).
Paediatric and adult patients also had comparable response
and safety profiles (e.g., occurrence of grade 3/4 haematological
toxicities and musculoskeletal adverse events) to an equivalent
dose of imatinib (Millot et al., 2011). This was not the case for
solid tumours harboring mutations in the gene that encodes
tyrosine kinase KIT (e.g. GIST). Imatinib exerted minor
anticancer activity in children with GIST compared to the
adult cohort, despite similar systemic concentrations (Geoerger
et al., 2009).

The observed trend of a higher interindividual variability of
simulated Cmin in children aged between 2 and 5 years and
middle-aged adults compared to other age groups (Figure 4) was
likely attributed to a higher variability within these age bands due
to maturational changes of CYP enzymes that have not attained
adult levels of expression (Johnson et al., 2006) and a reduction
of total hepatic clearance related to a decrease of liver weight and
scaling factor (e.g., microsomal protein per gram of liver/
MPPGL) (Barter et al., 2007; Chetty et al., 2018), respectively.

PBPK simulations suggested a similar Cmin following imatinib
doses of 230 and 340 mg/m2/d in paediatrics and 400 and 600
mg/d in adult population, respectively (p > 0.01). This was in
agreement with the finding in clinical studies in children with Ph+
leukaemias or GIST which indicated a similar systemic exposure of
imatinib at daily doses of 230 and 340 mg/m2 compared to those
of adult patients treated with 400 and 600 mg/d of imatinib,
respectively (Champagne et al., 2004; Geoerger et al., 2009). The
Cmin target of 1,000 ng/ml was predicted to be attainable by a 230
mg/m2/d dose in paediatric age groups (similar to an adult dose of
400 mg/d), albeit with a large subset of the population below the
target. Due to this variability, a higher dose of 340 mg/m2/d
(corresponds to an adult dose of 600 mg/d) might be needed. This
was in line with the recommendation for the treatment of CML in
children with the recommended initial doses of 260–300 mg/m2/d
and 400 mg/m2/d for chronic and accelerated phases, respectively
(de la Fuente et al., 2014).

There was a good agreement between PBPK model prediction
and clinically observed changes in imatinib concentrations due
to the coadministration of carbamazepine in adult and paediatric
populations (Figure 6). It should be noted that clinical
pharmacokinetic data in the latter came from one Japanese
paediatric patient (a case study) (Taguchi et al., 2014). PBPK
simulations in paediatrics refer to European ancestry, from
which the ontogeny functions for drug-metabolising enzymes
and AAG were derived (Johnson et al., 2006). However, our
previous simulation study suggested little to no difference in
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imatinib pharmacokinetic between people from Japanese and
European ancestry (unpublished).

Clinical drug-drug interaction (DDI) data in adults may not
be suitable for extrapolation across all paediatric age bands
(Salem et al., 2013b; Salerno et al., 2019). The magnitudes of
enzyme-based DDI are dictated by the level of contribution (fm)
and maturational rates of corresponding CYP enzymes (Salem
et al., 2013a). In this study, a PBPK modeling approach was
utilized to evaluate drug interactions with imatinib in paediatrics.
The trend and extent of interactions between imatinib and
CYP3A modulators (carbamazepine, rifampicin and
ketoconazole) were predicted to be similar between paediatric
and adult populations, despite a slight difference in the simulated
means and interindividual variabilities (Figure 7). Imatinib
inhibits its own CYP3A4-mediated metabolism following
multiple-dosing regimen (Filppula et al., 2012). Thus, the effect
of CYP3A modulators on imatinib metabolism was likely to be
diminished following a long-term use of imatinib, as observed in
a clinical interaction study between imatinib and ritonavir (van
Erp et al., 2007). The extent of modulation by CYP3A inhibitors,
either direct (reversible) or mechanism-based inhibitors, e.g.,
ketoconazole and ritonavir, respectively was predicted to be
more affected following repeated-dose administration of
imatinib, compared to that observed with CYP3A inducers
(e.g., rifampicin and carbamazepine). This was due to limited
residual CYP3A activity which can further be inhibited in the
former. Since imatinib undergoes little to no metabolism in the
enterocytes (Barratt and Somogyi, 2017), inducers of CYP3A
confined to intestinal enzymes (e.g., hyperforin in St John’s wort)
are unlikely to affect steady-state CL/F of imatinib (Adiwidjaja
et al., 2019).

The limitation of this study is a lack of specific maturation
functions for children with cancer implemented in the PBPK
model. The trend of developmental changes in organ size, CYP
enzymes and plasma proteins observed in healthy children may
not hold true for the paediatric cancer population (Thai et al.,
2015). A further limitation to this study is the exclusion of
children less than 2 years of age from the simulations (Figures 4
and 7) due to a paucity of clinical pharmacokinetic data for this
age group (CML is exceptionally rare in very young children (de
la Fuente et al., 2014)). Moreover, there is a high uncertainty in
the maturation pattern of CYP3A4 in this challenging age group
(Johnson et al., 2019), which is further complicated by the
potential presence of CYP3A7 enzyme. The latter is absent in
adults, but expressed at a high level during foetal life and
decreases progressively throughout the first 2 years after birth
(Allegaert and van den Anker, 2019). A further study to elucidate
Frontiers in Pharmacology | www.frontiersin.org 14
CYP3A7 contribution to imatinib metabolism is necessary in
order to perform a PBPK prediction with confidence in children
less than 2 years.

In conclusion, a PBPK model for imatinib was successfully
developed in adults and extrapolated to the paediatric population.
ThePBPKmodelwas able todescribe clinical pharmacokinetic data
frompublished studies observed inadults, childrenandadolescents.
PBPK simulation suggested an optimal dosing regimen range for
imatinib of 230–340 mg/m2/d in paediatrics, in concordance
with the recommended initial dose for treatment of childhood
CML. The simulations also highlighted that children and adults
being treated with imatinib have similar vulnerability to drug
interactions that modulate drug metabolising enzyme activity.
These findings suggest that at steady-state, imatinib is more
susceptible to hepatic induction compared to inhibition of
CYP3A enzymes.
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