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Long-term administration of morphine for the management of chronic pain will result in
tolerance to its analgesic effect and could even cause drug dependence. Numerous
studies have demonstrated significant redox alteration in morphine dependence and
addiction. Thioredoxin-1 (Trx-1) play important roles in controlling the cellular redox
balance. In recent years, several recent studies have demonstrated that Trx-1 may be a
promising novel therapeutic target for morphine addiction. In this article, we firstly review
the redox alteration in morphine addiction. We also summarize the expression and the
protective roles of Trx-1 in morphine dependence. We further highlight the protection of
geranylgeranylacetone (GGA), a noncytotoxic pharmacological inducer of Trx-1, in
morphine-induced conditioned place preference. In conclusion, Trx-1 may be very
promising for clinical therapy of morphine addiction in the future.
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INTRODUCTION

Morphine, the most effective opioid analgesic, is clinically used for severe acute and chronic pain.
An increasing number of studies have clarified that morphine could display beneficial protection.
Morphine at low concentrations promoted cell proliferation and suppressed nicotine-induced
cytotoxicity and cell death in PC12 cells (Amini et al., 2019). Low-dose morphine played a
neuroprotective role in cellular and animal models of Parkinson's disease through inhibiting
oxidative stress and endoplasmic reticulum stress, promoting autophagy activation, and improving
mitochondrial function (Wang et al., 2018). Acute administration with morphine alleviated 1-
methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced tremor symptoms in monkeys (Yan et al.,
2014). In addition, morphine protected PC12 cells against the cytotoxicity of 1-methyl-4-
phenylpyridinium through activating phosphatidylinositol 3-kinase (PI3K)/Akt pathway (Fan
et al., 2019). Some groups demonstrated that preconditioning with morphine alleviated cerebral
ischemia injury through activating the mTOR pathway (Arabian et al., 2018b) or mitochondrial
KATP channels (Arabian et al., 2018a). However, repeated use of morphine will lead to various side-
effects, such as antinociceptive tolerance, dependence, and addiction.
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MORPHINE ADDICTION

Long-term treatment with morphine for the management of
chronic pain will result in tolerance to the analgesic effect of
morphine. In order to overcome tolerance, a higher dose
of morphine is often required for the maintenance of
analgesia, which will result in the development of severe side-
effects, including respiratory depression, withdrawal
symptoms, and rewarding effects with a high risk of relapse
(Eidson and Murphy, 2019). Morphine addiction has become a
major public health issue. An increasing number of studies have
revealed that several brain regions, such as the ventral tegmental
area (VTA), nucleus accumbens (NAc), and hippocampus
(Hipp), are involved in morphine addiction (Kim et al., 2016).
Although mechanisms underlying morphine-mediated
processes remain the subject of much debate, morphine
stimulation activates G protein-coupled opioid receptors and
then induces significant molecular changes inside the cell, such
as an inhibition of adenylate cyclase activity, and activation of
potassium channels (Qu et al., 2017; Yang et al., 2019). In
addition, other signalling pathways, including mitogen-
activated kinases (MAPK), b-arrestin, phospholipase C,
protein kinase, PI3K, and extracellular signal-regulated kinase
(ERK) pathways, are also involved inmorphine activity (Bianchi
et al., 2010; Zhang and Pan, 2010; Dai et al., 2018; Shen et al.,
2018; de Freitas et al., 2019; Dekan et al., 2019; Listos et al.,
2019). Recently, the role of oxidative stress in morphine action
has been paid more attention.

Oxidative Stress in Morphine Addiction
A growing body of evidence has indicated that oxidative stress is
involved in the development of addiction with several addictive
drugs, including cocaine, methamphetamine, and morphine
(Kovacic, 2005; Cai et al., 2016; Jang et al., 2017). Morphine
could activate opioid receptors, and its treatment not only
promoted the generation of free radicals, including reactive
oxygen (ROS) or reactive nitrogen (RNS) species, but also
decreased the activities of antioxidants in target cells
(Skrabalova et al., 2013). Morphine could induce ROS
generation in a time- and concentration-dependent manner in
SH-SY5Y cells and excessive ROS subsequently affected
morphine addiction through involving µ-opioid receptors (Ma
et al., 2015). Systemic morphine use also led to oxidative stress in
animals. Oxidative stress levels were increased in the prefrontal
cortex and Hipp of morphine-dependent rats (Famitafreshi and
Karimian, 2018). Abdel-Zaher and coworkers reported that
glutamate levels and lipid peroxide malondialdehyde (MDA)
levels were progressively increased in the brain of morphine-
treated mice (Abdel-Zaher et al., 2013b). What's more, brain
intracellular reduced glutathione (GSH) levels and glutathione
peroxidase (GSH-Px) activity were decreased in mice (Abdel-
Zaher et al., 2013a). In rats, subcutaneous injection of morphine
also significantly increased lipid peroxidation, and decreased the
activities of SOD and GSH-Px (Motaghinejad et al., 2015a). GSH
levels were depleted in cerebrospinal fluid sampled from cancer
patients administrated with morphine intracerebroventricularly,
which might render the central nervous system vulnerable to
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damage from oxidative stress (Goudas et al., 1999). Morphine
could alter intracellular levels of GSH-based cellular redox status,
subsequently affect S-adenosylmethionine levels (Trivedi and
Deth, 2014), and finally induce global DNA methylation
changes (Trivedi et al., 2014).

In addition, morphine also affected other oxidative stress-
related proteins. Long-term treatment with morphine not only
increased the MDA level, but also decreased activities of SOD,
glutathione-s-transfrase (GST), and catalase (CAT) in the liver of
rats (Samarghandian et al., 2014). Morphine accelerated the
disease progression of HIV-infection in macaques due to the
deteriorated oxidative stress, including the 50% drop of CAT and
SOD (Perez-Casanova et al., 2007). In rat primary neuronal
striatal cells, three oxidative stress-related proteins -
glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
dihydrolipoyl dehydrogenase (DLDH), and aldehyde
dehydrogenase (ALDH) - were significantly upregulated after
morphine administration (Bodzon-Kulakowska et al., 2009).
Proteomic analysis demonstrated that oxidative stress-related
proteins, such as peroxiredoxin-2 and Heat shock protein 70
(Hsp70), were significantly decreased in the NAc of morphine-
dependent monkeys (Bu et al., 2012) (Table 1).
TABLE 1 | Morphine-induced oxidative stress in cells, rodents, non-human
primates and human.

Species Morphine treatment Effects References

human SH-
SY5Y cells

50 mM for 24 hour ↑ROS
generation

(Ma et al., 2015)

Rat primary
neuronal
striatal cells

10 mM for 5 days ↑GAPDH,
DLDH and
ALDH

(Bodzon-
Kulakowska
et al., 2009)

Rats 5 mg/kg for 14 days (i.p.) ↑MDA, ↓GSH (Famitafreshi
and Karimian,
2018)

Rats 4 mg/kg for 1st 10 days, 8 mg/
kg 2nd 10 days and 12 mg/kg
for 3rd 10 days (i.p.)

↑liver MDA and
nitric oxide,
↓liver SOD,
GST and CAT

(Samarghandian
et al., 2014)

Rats 45 mg/kg for 4 weeks (s.c.) ↑lipid
peroxidation,
↓SOD and
GSH-Px

(Motaghinejad
et al., 2015a)

Mice 5 mg/kg twice daily for 7 days
(s.c.)

↑MDA and
nitric oxide,
↓GSH and
GSH-Px

(Abdel-Zaher
et al., 2013a;
Abdel-Zaher
et al., 2013b)

Rhesus
monkeys

3 mg/kg (day 1–7), 6 mg/kg
(day 8–14), 9 mg/kg (day 15–
21), 12 mg/kg (day 22–28), 15
mg/kg (day 29–90) (s.c.)

↓peroxiredoxin-
2 and Hsp70

(Bu et al., 2012)

Macaques 5 mg/kg (TID) for 20 weeks
(i.m.)

↑MDA, ↓CAT
and SOD

(Perez-
Casanova et al.,
2007)

Cancer
patients

0.3 mg (icv.) ↓cerebrospinal
fluid GSH

(Goudas et al.,
1999)
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Maintaining Redox Balance Inhibits
Morphine Action
Given the redox alteration in morphine action, antioxidants may
provide a protective role in morphine addiction. SOD is an
important intracellular antioxidant. Repeated doses of morphine
in mice significantly decreased the activity of the mitochondrial
isoform of MnSOD in the dorsal horn of the spinal cord due to
the nitration of MnSOD by morphine (Muscoli et al., 2007).
SOD-mimetic-agent-injection attenuated the effects of morphine
on mitochondrial SOD activity (Motaghinejad et al., 2015b).
MnSOD overexpressed by recombinant herpes simplex virus in
the periaqueductal gray of morphine-withdrawn rats suppressed
the upregulated mitochondrial superoxide and the activation of
endoplasmic reticulum stress (Iida et al., 2017).

Numerous studies have demonstrated that exogenous agents
providing antioxidant activity could also inhibit the action of
morphine. The accepted antioxidant, N-acetyl-cysteine, reversed
the down-regulation of antioxidant genes (CAT and CuSOD) in
SH-SY5Y cells treated with morphine (Saify et al., 2016). The
antidepressant Venlafaxine prevented morphine antinociceptive
tolerance at least partly because of its antioxidative properties,
including the down-regulation of MDA and inhibition of total
thiol and GSH-Px levels in the brains of mice (Mansouri et al.,
2018). Fluoxetine, another prescribed antidepressant, also
seemed a promising adjuvant to opioid analgesics due to its
inhibition of morphine-induced changes in prooxidant-
antioxidant balance (Hamdy et al., 2018). Atorvastatin, a lipid-
lowering medication, could exhibit protective effects against both
tolerance to antinociceptive effects of morphine and withdrawal-
induced behaviors via normalizing the increased MDA in
withdrawn mice (Pajohanfar et al., 2017). The polyphenol
curcumin, the most abundant component of traditional
Chinese medicine Curcuma longa, has antioxidant, anti-
apoptotic, anti-inflammatory, immunomodulatory, anticancer,
and neuroprotective properties. Curcumin lowered the increased
lipid peroxidation and mitochondrial GSSG (oxidized GSH)
levels in morphine-treated rats (Motaghinejad et al., 2015a)
and attenuated morphine tolerance and dependence by
inhibiting the activity of Ca2+/calmodulin-dependent protein
kinase II a (Hu et al., 2015). These studies suggest that the
blocking effects of antioxidants to the action of morphine may
provide a promising therapeutic strategy.
THIOREDOXIN

The thioredoxin (Trx) system, comprising Trx, thioredoxin
reductase (TrxR), and coenzyme NADPH, plays a critical role
in maintaining the cellular environment in a reduced state in
both prokaryotes and eukaryotes (Holmgren and Lu, 2010).
Human Trx is a 12 kDa multifunctional protein with a
conserved redox catalytic site (-Cys-Gly-Pro-Cys-) (Bai et al.,
2003). The mutual transformation of dithiol and disulfide means
Trx plays a vital role in regulating cellular redox balance (Jia
et al., 2019). Trx-1, a major isoform located to cytoplasm, can
directly scavenge ROS induced by a wide variety of stressors,
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such as UV irradiation and viral infections. Trx-1 can also inhibit
cellular apoptosis (Zeng et al., 2015) because it acts as an
endogenous negative regulator of apoptosis signal-regulating
kinase 1 (ASK1) in the cytoplasm and inhibits ASK1-
dependent apoptotic pathway (Saitoh et al., 1998). It has been
reported that Trx-1 expression is enhanced in both chronic and
acute stress models and attenuate epinephrine stress-induced
DNA damage via the negative regulation of b-arrestin-1 (Jia
et al., 2014; Jia et al., 2016). Our previous studies have
demonstrated that Trx-1 shows a neuroprotective role in
central nervous system diseases, including Parkinson's disease
and cerebral ischemia (Zeng et al., 2014; Zeng et al., 2018).
Interestingly, Trx-1 is involved in the addiction of drugs,
including morphine (Luo et al., 2013; Guo et al., 2018).

The Increased Expression and the Role
of Trx-1 Upon Morphine Administration
So far, only a few studies have reported that Trx-1 expression is
increased upon morphine administration. Trx-1 was induced
through opioid receptors and the activation of PI3K and ERK
pathways in morphine-treated SH-SY5Y cells (Luo et al., 2012a).
Morphine exposure increased the expression of Trx-1 in dentate
gyrus (DG, a brain region involved in memory consolidation),
which was reversed by the pretreatment of a corticotropin-releasing
factor 1 receptor (CRF1R) antagonist, CP-154,526, with no changes
in the paraventricular nucleus (PVN) (Garcia-Carmona et al., 2015).
García-Carmona and coworkers found that phosphorylated cAMP-
responsive element-binding protein (p-CREB) positive neurons in
DG also expressed Trx-1 (Garcia-Carmona et al., 2015), suggesting
that Trx-1 could activate CREB and increase the rewarding effects of
morphine (Table 2). The results are consistent with another study
in which Trx-1 ameliorated the learning and memory deficits in a
mouse model of Parkinson's disease via the restoration of p-CREB
in the Hipp (Zhang et al., 2018).

Morphine also markedly increased the expression of Trx-1 in
the nucleus accumbens (NAc) of C57BL/6 mice (Luo et al., 2012b).
Interestingly, the Trx-1 expression showed a notable elevation in
the liver and kidney of morphine-treated mice (Luo et al., 2013).
TABLE 2 | The effects and molecular mechanisms of Trx-1 and GGA on
morphine addiction.

Brain areas Effects Mechanisms References

DG Morphine-induced
increase of Trx-1
enhanced the
rewarding effects

Activating CREB (Garcia-
Carmona
et al., 2015)

VTA and NAc Overexpression of
Trx-1 inhibited
morphine-induced
CPP

Upregulating the
endogenous concentration
of GABA and the
expression of GABAB

receptor

(Li et al.,
2018)

NAc Inhibiting CPP and
attenuating the
naloxone-induced
withdrawal syndrome

Suppressing the activation
of CREB, and the
expression of ΔFosB and
cyclin-dependent kinase 5

(Luo et al.,
2012b)

NAc and
hippocampus

Inhibiting morphine
reinstatement-
induced CPP

Attenuating the activation of
NR2B/p-CaMKII/p-ERK/p-
CREB pathway

(Guo et al.,
2018)
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Trx-1 expression was induced by morphine in the ventral
tegmental area (VTA) and NAc of mice (Li et al., 2018), two
brain regions involved in morphine-induced conditioned place
preference (CPP) for both opiates and psychostimulants
(Edwards et al., 2017; Zhang et al., 2019). Li et al. further
clarified that Trx-1 overexpression in transgenic mice inhibited
morphine-induced CPP through upregulating the endogenous
concentration of g-aminobutyric acid (GABA) and the expression
of GABAB receptor in the VTA and NAc (Li et al., 2018) (Table 2).
Considering the critical role of Trx-1 in maintaining the cellular
redox state, the increase of Trx-1 expression in morphine-induced
CPP might be a compensatory mechanism of stress systems for the
maintenance of neuroprotection.

The Effects of Geranylgeranylacetone
on Morphine Treatment
Geranylgeranylacetone (GGA) is a clinical drug, extensively used
for ulcer therapy (Ooie et al., 2001). Now GGA has become an
accepted pharmacological inducer of Trx-1 (Tanito et al., 2005).
Luo et al. demonstrated that pre-treatment with GGA
significantly reduced morphine-induced locomotion, inhibited
the CPP, and attenuated the naloxone-induced withdrawal
syndromes, such as jumping, forepaw tremor, and rearing,
through suppressing the activation of CREB, and inhibiting the
expressions of ΔFosB and cyclin-dependent kinase 5 in the NAc
of C57BL/6 mice (Luo et al., 2012b). Interestingly, the effect of
increased Trx-1 by GGA on the activation of CREB in the NAc is
contrary to that by CP-154,526 in DG (Garcia-Carmona et al.,
2015). In addition, GGA also inhibited reinstatement of
morphine-induced CPP through strengthening the expression
of Trx-1 and regulating the N-methyl d-aspartate receptor 2B
subunit (NR2B)/ERK pathway in the NAc and Hipp, a brain
region participating in associative processes such as declarative
memory (Guo et al., 2018) (Table 2), suggesting that GGA may
be a promising therapeutic drug for morphine-induced relapse.
These studies suggest that enhancement of Trx-1 expression in
the brain by using noncytotoxic pharmacological inducers may
provide a novel therapeutic strategy for morphine dependence.
CONCLUSION AND EXPECTATION

In summary, chronic morphine treatment has been shown to lead
to oxidative stress, which plays an important role in the
development of morphine tolerance and dependence. An
increasing number of studies have clarified that maintaining
redox balance through restoration of endogenous antioxidant
proteins or treatment with antioxidant agents inhibits the action
Frontiers in Pharmacology | www.frontiersin.org 4
of morphine. As an antioxidant protein, Trx-1 could effectively
inhibit the effects of morphine administration. In this article we
reviewed that overexpression of Trx-1 or enhancement of Trx-1
expression by GGA, the noncytotoxic pharmacological inducer of
Trx-1, inhibited morphine-induced CPP. At this stage, the studies
are extremely few and limited to focusing on the effects of Trx-1
on morphine addiction mainly in rodent models. Their effects on
morphine withdrawal and relapse should be investigated in future
research. Besides that, nonhuman primate models of morphine
addiction should be also developed to accelerate the clinical
application of Trx-1 in the future. Trx-1 will provide a novel
therapeutic strategy for morphine abuse.

Remarkably, GGA is also the pharmacological inducer of
Hsp70, a soluble intracellular chaperone protein (Lennikov et al.,
2013). Although GGA was reported to protect mice against
morphine-induced hyperlocomotion, rewarding effect, and
withdrawal syndromes, as well as morphine-induced hepatic
and renal damage (Luo et al., 2012b; Luo et al., 2013), GGA-
induced Hsp70 expression in the core of NAc promoted the
development of behavioral sensitization, an important
behavioral characteristic of drug-addicted animals, providing a
biological target for long-lasting adaptations with relevance to
morphine addiction (Wang et al., 2014).Recent research has
reported that pre-treatment with an Hsp70 transcriptional
inducer GGA promoted the development of morphine
analgesic tolerance (Qin et al., 2019), suggesting that GGA is
not clinically beneficial to the analgesic effect of morphine.
Regarding these effects of GGA, further studies are needed to
develop much more optimal pharmacological inducers of Trx-1.
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