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Colorectal cancer (CRC) is among the most common cancer worldwide, a challenge for
research, and a model for studying the molecular mechanisms involved in its
development. Previously, bulk transcriptomics analyses were utilized to classify CRC
based on its distinct molecular and clinicopathological features for prognosis and
diagnosis of patients. The introduction of single-cell transcriptomics completely turned
the table by enabling the examination of the expression levels of individual cancer cell
within a single tumor. In this review, we highlighted the importance of these single-cell
transcriptomics analyses as well as suggesting circulating tumor cells (CTCs) as the main
focus of single-cell RNA sequencing. Characterization of these cells might reveal the
intratumoral heterogeneity present in CRC while providing critical insights into cancer
metastasis. To summarize, we believed the analysis of gene expression patterns of CTC
from CRC at single-cell resolution holds the potential to provide key information for
identification of prognostic and diagnostic markers as well as the development of precise
and personalized cancer treatment.

Keywords: single-cell RNA sequencing, colorectal cancer, metastasis, chemoresistance, tumor heterogeneity,
circulating tumor cells

INTRODUCTION

Colorectal cancer (CRC) is among major cancer worldwide in terms of incidence and mortality,
with increasing trend, particularly in developing countries (Granados-Romero et al., 2017).
According to global cancer statistics 2018, CRC was the third most commonly diagnosed cancer
(10.2% of total cases) and ranked second for cancer-related deaths (9.2% of the total cancer deaths)

Abbreviations: CRC, Colorectal cancer; CTC, Circulating tumor cell; DNA, Deoxyribonucleic acid; ITH, Intratumoral
heterogeneity; mCRC, Metastatic colorectal cancer; RNA, Ribonucleic acid; scDNA-seq, Single cell DNA sequencing; scRNA-
seq, Single cell RNA sequencing; scTrio-seq, Single-cell triple omics sequencing.
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(Bray et al., 2018). Approximately 30 to 50% of newly diagnosed
patients will progress into metastatic CRC (mCRC) with 5-year
survival rate of 50 to 60% (Arvelo, 2015; Engstrand et al., 2018).
Despite the advancement in cancer detection tools and treatment
options, metastasis remains a hindrance for effective treatment
(Chakraborty and Rahman, 2012). Over the years, several
mechanisms have been proposed to explain the metastatic
progression in CRC, mainly via disturbance of cellular
processes, epigenetic modifications, and genomic alterations
(Herceg and Hainaut, 2007; Wong et al, 2007; Kanwal and
Gupta, 2012; Arvelo, 2015). Aside from conventional treatment,
in particular, chemotherapy (5-Fluorouracil, Oxaliplatin,
Irinotecan and Capecitabine), many new targeted agents are
also available for metastatic CRC (mCRC), including vascular
endothelial growth factor (VEGF)-targeted therapy
(Bevacizumab) and anti-epidermal growth factor receptor
(EGFR)-targeted therapy (Cetuximab and Panitumumab)
(Rithimiki et al., 2016; Burz et al., 2018). Nevertheless,
metastasis remains a challenge in treating CRC, and among the
main reasons are mostly attributable to intratumoral
heterogeneity (ITH) and the presence of circulating tumor cells
(CTCs) (Worthley and Leggett, 2010; Séronie-Vivien, 2014).
Intratumoral heterogeneity (ITH) refers to the differences in
genetic and molecular characteristics between cancer cells within a
single tumor or due to the various degrees of cellular
differentiation (Punt et al, 2017), whereas precision treatment,
often called personalized treatment, exploits patient’s as well as
cancer-specific molecular and pathologic signatures to target
cancerous cells (Xue and Wilcox, 2016). However, in an actual
scenario, not only did these precision therapies remain
unresponsive to a significant amount of patients, but also
promote acquired drug resistance if inhibitors were added to
maximize cancer cell death at initial stage, resulting in the rapid
outgrowth of resistant clones and reoccurrence of CRC (Molinari
et al,, 2011). One plausible explanation to this matter was that
current precision medicine was tailored based on transcriptome
analyses, which utilized bulk tumor data but lacked the ability to
capture ITH (Valdes-Mora et al., 2018). The presence of ITH, in
turn, obscured precision cancer treatment (Hutchinson, 2014;
Seoane and De Mattos-Arruda, 2014). Hence, studying the
cancerous cells in single-cell resolution, at molecular level, in
order to understand ITH, is necessary for precision therapy and
the prediction of therapeutic efficacy (Punt et al., 2017). With the
recent development of high-throughput single-cell RNA
sequencing (scRNA-seq), scientists now have the power to
dissect the diverse cellular populations of cancers (Bagnoli et al.,
2019). In the future, it is possible that the scRNA-seq technique is
applied to guide the selection of targeted combination therapies
and assist in determining the enrolment criteria for clinical trials.

SINGLE CELL TRANSCRIPTOME
ANALYSIS IN CRC

At present, transcriptome analyses have been intensively applied
to understand the heterogeneity of tumors via examining the

gene expression level (mRNA) present in bulk tumor cell
populations (Marisa et al., 2013; Sadanandam et al., 2013;
Sadanandam et al., 2014). The two most recent advances in
molecular pathological classification systems for CRC are The
Cancer Genome Atlas (TCGA) (The Cancer Genome Atlas
Network, 2012) and Consensus Molecular Subtypes (Guinney
et al,, 2015). The classification systems are capable of classifying
tumors into subgroups with distinct molecular and establishing
signatures/clinical features to predict treatment response and
patient outcomes (Budinska et al., 2013; Roepman et al., 2014).
Nonetheless, the overall progress is still largely hindered because
of the limitation of these bulk profiling technologies in capturing
ITH (Seoane and De Mattos-Arruda, 2014). Therefore, there has
been rising attention in the study of single-cell transcriptomics
which is capable of examining the expression levels of individual
cells within a given population.

Single-cell sequencing is a powerful technology for
investigating ITH by identifying genomic alterations and
distinct transcriptomic states in single tumor cells (Patel et al.,
2014). To date there are only a few published studies on single-
cell transcriptomes of CRC. One of the first studies was published
in 2017 by Li and his colleagues, which includes 11 primary
CRCs (375 cells) and matched normal mucosa (215 cells) (Li
et al,, 2017). Single-cell RNA sequencing was performed on 969
resected primary tumor cells from 11 CRC patients, and 622
single cells from the nearby normal mucosa of seven of the
patients. The authors developed a novel clustering method,
named reference component analysis (RCA) and obtained
seven distinct cell clusters, which were annotated as epithelial
cells, fibroblasts, endothelial cells, B cells, T cells, mast cells and
myeloid cells. Interestingly, although the differentially expressed
genes identified by scRNA-seq and bulk analyses were
significantly concordant, the majority of differentially
expressed genes from scRNA-seq were undetected in bulk
analysis. Epithelial-mesenchymal transition (EMT)-related
genes were upregulated only in the cancer-associated fibroblast
subpopulation of CRC samples. Their results indicated that via
projecting bulk-tumor transcriptomes onto single-cell
transcriptomes, existing CRC classification system could be
further refined.

In another attempt to reveal CRC tumor heterogeneity, Ono
and her coworkers combined single-cell DNA and RNA
sequencing technologies with a mouse CRC model, ideal for
time-series analysis (Ono et al., 2019). Single-cell exome and
transcriptome sequencing of 200 cells were performed to identify
ITH from one single cell. The authors demonstrated that mouse
cancer cells, after undergoing alteration in transcriptional and
genetic ITH, can adapt to the drastic environmental changes of
allograft into a mouse. During this process, new subpopulations
of cells, showing mesenchymal-epithelial transformation (MET),
were generated. In addition, human CRC data from TCGA
revealed a remarkable trend of metastasis in a fraction of
human patients whose expression patterns were similar to
those of the mouse-cell subpopulations. In a nutshell, their
study revealed an evolutionary pattern of single-cell RNA and
DNA changes in cancer progression and a superior CRC
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classification based on its ITH. Table 1 summarizes the recent
findings from single-cell transcriptome studies in CRC.

THE NECESSITY OF SINGLE-CELL
TRANSCRIPTOME ANALYSIS IN
METASTATIC CRC

Majority of CRC-related deaths were related to metastatic
progression (Riihimaki et al., 2016). The high metastatic rate of
CRC (approximately 30 to 50%) exacerbated the situation
(Engstrand et al.,, 2018). In this context, there is an uprising
interest in the discovery of new target agents for cytotoxic drugs.
However, there are limited approved targeted therapy for
treating mCRC, and some of these examples are EGFR
monoclonal antibodies (mAbs), VEGF mAbs, anti-VEGF
receptor-2 mAbs, recombinant fusion protein (Zivaflibercept)
and oral multikinase inhibitor (Regorafenib). The former is
available for RAS wild-type patients, while the remaining are
effective for those with RAS mutation (Martini et al., 2017).
Unfortunately, all these treatments are unresponsive towards
CRC with alterations in genes such as BRAF and PIK3CA, posing
a greater risk to patients with these subtypes (Sartore-Bianchi
et al., 2009; De Roock et al., 2010; Tamborero et al., 2018). Thus,
new targets for drug development and techniques in identifying
the complex molecular heterogeneity of mCRC, in particular, are
urgently needed (Lim et al., 2019).

Single-cell transcriptomics is most likely to contribute more
specific diagnostic and prognostic markers, and actionable

therapeutic targets for personalized cancer medicine than bulk
transcriptomics (Zhang et al., 2014). However, it was limited in
terms of characterization of multiple layers of molecular features
in each genetic lineage. Therefore in the year 2018, a powerful
scTrio-seq (single-cell triple omics sequencing) technique was
established, which was capable of examining mutations,
transcriptome, and methylome simultaneously from a single
cell. CRC tumors and metastases from 10 individual patients
(stage III or IV) were subjected to scTrio-seq, and their analysis
provided insights into tumor evolution linked DNA methylation
to genetic lineages and confirmed that DNA methylation levels
were consistent within lineages but can differ substantially
among clones (Bian et al., 2018). To summarize, all recently
conducted research converged to the necessity to tailor
individualized cancer treatment based on the analysis of gene
expression patterns at single-cell resolution, which hold the
potential to shed light on a key mechanism behind the
development of metastasis.

POSSIBLE SOLUTION TO CRC
CHEMORESISTANCE

Existing advances in cancer treatment fall short of offering an
adequate solution to chemoresistance, especially among patients
at the advanced stages of CRC (Hammond et al, 2016). The
formation of chemoresistant cells is frequently attributed to the
presence of rare drug-resistant clones in the tumor before or after
treatment (Shi et al, 2018). In general, these chemoresistant

TABLE 1 | Summary of recent findings of single-cell RNA-seq and bulk analysis of CTCs in CRC.

Transcriptome Type Sample
Single cell Primary CRC  Primary CRC cells from CRC patients
analysis
Organoids from primary CRC human tumors
(stage 1)
2824 primary CRC cells from a CRC patient
Metastatic Metastatic single cells from CRC patients
CRC (stage Il or IV)
CRC mouse model and metastatic mouse
cancer cells
Samples of liver metastasis cancer tissue and
adjacent tissue from CRC patients
CRC cell line  Secondary cell line (HCT116 cells)
Bulk analysis Metastatic EpCAM-based immunoisolation of CTC from 6
CRC mCRC patients

CTC lines from the blood of 3 advanced
mCRC patients

Finding

Development of reference component analysis (RCA) which

Citation

(Liet al., 2017)

obtained seven distinct cell clusters (epithelial cells, fibroblasts,
endothelial cells, B cells, T cells, mast cells and myeloid cells).

Detection of four newly emerged chemoresistant cell subtypes

(Chen et al., 2018)

(c29, ¢80, ¢31, and c32) after Oxaliplatin treatment with

different drug responses.
Detection of five distinct cell clusters from a

CRC patient with ~ (Dai et al., 2019)

clear sign of heterogeneity, where each cluster consisted of

specific cell markers with different functions.

Confirmation of the feasibility of genetic lineages reconstruction

(Bian et al., 2018)

together with their epigenomic and transcriptomic dynamics.

Validation of the dynamics of ITH in mouse CRC models and

(Ono et al., 2019)

relate to CRC in humans via comparison with TCGA data.

Identification of a total of 12 clusters corresponding to 6 cell

(Zhang et al., 2019)

types, including cancer cells, T cells, myeloid cells, endothelial
cells, fibroblasts and B cells from patient sample of CRC liver

metastasis.
Identification of multiple adaptive resistance

mechanisms to (Sathe et al., 2019)

regorafenib in CRC via single cell RNA sequencing.

Identification of 410 genes related to cell movement and
adhesion, cell death and proliferation, and cell signaling and

interaction via cONA microarray.

Validation of genetically and phenotypically heterogeneity in

(Barbazan et al.,
2012)

(Grillet et al., 2017)

CTC lines. Identification of gene subset commonly enriched in
cultured CTC and CTCs from colon and other cancers. CTC
lines expressed high levels of drug metabolism genes and were

resistant to conventional therapies.
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subtypes of CRC attain the ability to disrupt drug transport,
dysregulate cellular processes, alter drug sensitivity (via genetic or
epigenetic modifications) and targets of therapy, that subsequently
limit the efficacy of existing anti-cancer therapies (Holohan et al,
2013; Panczyk, 2014; Hu et al,, 2016; Zhang and Wang, 2017; Hon
et al,, 2018; Abu et al., 2019). Since there are hints that metastasis
and chemoresistance can be interconnected (Zheng, 2017;
Durinikova et al,, 2018), the previous can be prevented if
chemoresistant subtypes are identified early for optimal or more
aggressive treatment. Unfortunately, the mechanisms responsible
for chemotherapy resistance by CRC have not been clearly
identified. Moreover, current chemotherapy does not possess the
strength to fully eradicate solid tumors, resulting in secondary
tumor and relapse. Owing to this, numerous efforts have been
made to dissect the chemoresistant cancer cells based on the genes
expressions, epigenetics, pathways signatures and therapeutic
responses (Datta et al., 2016; Baharudin et al,, 2017; Abu et al,
2019; Li et al., 2019).

Although bulk transcriptomics is adequate to study the
average gene expression signatures related to chemoresistance,
they generally involve bulk tissue with assumption that all the
cells obtained are of homogeneous material, thereby ignoring the
stochasticity of gene expression (Raj and van Oudenaarden,
2008; Stegle et al., 2015). Single-cell transcriptomics analyses,
on the other hand, are capable of studying the transcriptomes of
individual cells and are more preferable for cell-specific precision
therapies. For instance, a recent research by Chen et al. (2018)
confirmed the capability of scRNA-seq in characterizing four
different types of cellular subtypes from organoids, including

drug-induced group (c29, ¢30, c31, and ¢32), drug insensitive
group (c2, c5, ¢6, ¢7, c13, 22, c21, c24, c27, and c28), drug-
sensitive group (c1, ¢3, c4, ¢8, ¢9, c11, c15, c19, 25, and ¢26), and
drug ultrasensitive group (c10, c12, c14, c16, c17, c18, 20, c23),
after treatment of Oxaliplatin. The first group displayed
chemoresistance properties and appeared only after treatment.
Studying of these subtypes would enable further detailed
categorization based on the differential responses, genes and
pathways involved, leading towards better therapeutic selection
for CRC patients who might or already displayed
chemoresistance before or after chemotherapy. Hence, scRNA-
seq is foreseen to be applied to guide the selection of anticancer
therapies and even in the prevention of chemoresistance in
the future.

CTC CHARACTERISTICS AS A SNAPSHOT
OF TUMOR HETEROGENEITY

Circulating tumor cells (CTCs) are rare metastatic cells shed from
the primary tumor into the circulatory system, forming secondary
tumor at distant tissues (Ferreira et al., 2016) (Figure 1). According
to the ‘seed and soil” hypothesis by Stephen Paget in 1889, a seed (in
this case, CTC) have the ability to form metastasis only in a location
suited for this process (organs like liver, lungs), whereas the
mechanistic theory based on the direction of blood flow from
tumor proposed by James Ewing in 1920 assumes that potential of
metastasis is dependent on drainage anatomy from the primary
tumor. Both these two complementary hypotheses point out the

Primary tumor cells

A\

Circulating tumor cell

TGFB1 genes)

Cell migration and invasion
(VCL, ITGB5, BMP6 and

|

N\
G

Cellular adhesion

(TLN1, ITGBS, LIMS1,

RSUT and CD9 genes) Expression of cancer stem
cells phenotypes (ALDH1A1,
CD133, EpCAM, and FGFR3
genes)

FIGURE 1 | Figure representing mechanisms of distant metastatic colonization of CTCs and the genes involved in CRC (Barbazan et al., 2012; Crillet et al., 2017).

Drug resistance
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potential of CTCs in causing metastasis during the progression of
CRC. Since then, there have been several examples of validated
clinical applications for CTC detection, proving its existence in CRC
(Bork et al., 2015) and mCRC (Cohen et al., 2008), and also as a
prognostic and predictive marker in CRC patients (Huang et al,
2014). As such, single-cell analyses of these CTCs are believed to
provide critical insights into CRC cancer metastasis (Pantel and
Alix-Panabiéres, 2012; Pantel and Speicher, 2016). However,
characterization of CTCs from CRC, at the single-cell level, are as
yet unknown. At present, there are only a few published papers on
the bulk RNA sequencing analysis in CTCs.

As presumptive founders in the metastasis formation, CTC is
becoming a field of interest, and the understanding of their
biology may open new perspectives in oncology (Lim et al.,
2019). In 2012, a group of Spain researchers performed
molecular characterization of CTCs in human mCRC. Their
objective was to investigate the biology of CTCs and improving
their clinical utility in the CRC patients’ management (Barbazan
et al., 2012). For this, EpCAM-based immunoisolation of CTC
from six mCRC patients was combined with whole-
transcriptome microarrays, revealing 410 genes related to cell
movement and adhesion, cell death and proliferation, and cell
signaling and interaction. All these genes characterized the CTC
populations. Their study suggested CTCs as the diagnostic and
prognostic biomarkers, which represented an innovative and
promising approach in the clinical management of CRC patients
in the foreseeable future.

Although CTCs have attracted a broad interest as potential
markers of tumor progression and treatment response, the lack
of functional characterization of these cells has become a
bottleneck in taking these observations to the clinic. In
addition, in vitro CTC models are lacking. Following this,
Grillet and her coworkers generated several CTC lines from
the blood of three advanced mCRC patients (Grillet et al., 2017).
Characterization of these cells verified the presence of
multipotent cells responsible for genetic and phenotypic
heterogeneity, endowing them with strong metastatic potential.
In addition, six genes (AGR2, CEACAMS5, CLDN3, KRT1IS,
EpCAM and FGFR3) were detected as differentially expressed
in the generated CTC cell lines, which was similar to primary
CRC cells grown under similar conditions (Smirnov et al., 2005;
Mostert et al., 2015; Onstenk et al., 2015). The CTC lines also
displayed enhanced drug/xenobiotics metabolizing activity, in
particular via cytochrome P450 pathway, suggesting resistance to
conventional therapies. To sum up, their study was the first
experimental demonstration that CTCs isolated from mCRC
patient could be used to determine drug sensitivity which aided
in the formulation of personalized cancer medicine, even though
the heterogeneity of CTCs was not investigated in single-cell
resolution at molecular level.

CHALLENGES AND FUTURE DIRECTIONS

Colon is a relatively large organ, categorized into four parts (the
ascending colon, the transverse colon, the descending colon and

the sigmoid colon) and is composed of multiple different cells
(epithelial cells, stroma, muscle cells, fat, etc.). In order to obtain
a single-cell suspension, the bulk tissue has to undergo
mechanical or enzymatic dissociation. Isolating the single-cell
suspension containing ‘healthy’ and contamination-free viable
cells are indeed a challenge for scRNA-seq studies. Moreover,
there are several technical limitations in scRNA-seq like the
number of cells that can be studied at a time and the depth of
sequencing required. The higher the number of cells, the higher
the sequencing depth needed, hence increasing the overall cost of
scRNA-seq experiment. If the number of cells must be limited to
a certain amount, then the overall representative of the single-cell
transcriptome will be questioned. Therefore, CTCs are believed
to be the versatile components which warrant a spotlight in CRC
research in order to identify biomarkers that will benefit the
metastatic or chemoresistant CRC patients, while providing
representative data. Also, scRNA-seq requires the cells to be
intact after sorting or enrichment, prior to library preparation to
prevent RNA degradation. The ability of CTCs to survive from
harsh environments in the bloodstream makes them the ‘tough’
cells and the best candidate for scRNA-seq in studying CRC
(Steinert et al., 2014).

At present, various technologies are developed for CTCs
isolation, however, they are mainly used for research purposes
rather than clinical applications (Banko et al., 2019). Among the
obstacles are the presence of ITH (Levitin et al., 2018; Lim et al.,
2019), limited knowledge on CTCs mechanism of action in cancer
progression (shedding from the primary/metastasis tumor, survival
in bloodstream, avoidance of apoptosis, colonization potentials and
settlement in distant organs), the rarity of CTCs (0 to 10 CTCs/ml
whole blood in 30% to 50% mCRC patients) (Zieglschmid et al.,
2005), various sizes of CTCs and the lack of clinical validation
(Millner et al., 2013; Rejniak, 2016; Kowalik et al., 2017; Bankd et al.,
2019). In addition, there are only a few studies relating to CTCs
pharmacogenomics and underlying survival mechanisms (Wang
et al.,, 2018) as well as the cell-cell interactions in CRC
microenvironment (Krog and Henry, 2018), and majority of
them are based on experimental and theoretical extrapolations
(Burz et al,, 2018). For instance, Yu et al. (2014) suggested that
pharmacogenomic profiling of invasive CTCs could predict
chemotherapy response and resistance, whereas Steinert et al.
(2014) identified upregulation of CD47 in concordance with the
mark down-regulation of calreticulin, which were believed to
mediate immune escape and survival mechanisms of CTCs in
CRC. In 2016, Ning et al. (2018) proposed CTCs as a clinically
useful prognostic marker in mCRC patients as they displayed Akt-2
expression that mediated epithelial mesenchymal transition.
Although CTCs demonstrated potential as a predictive marker
(Yap et al, 2014) and matched most of the cancer hallmarks
described by Hanahan and Weinberg (Hanahan and Weinberg,
2011; Hanahan and Weinberg, 2017; Fouad and Aanei, 2017),
current understanding about their pharmacological and clinical
knowledge is still limited. Therefore, we anticipate that, in the near
future, with the advancement of single cell technologies, CTCs
could be proven useful in CRC management and a routine
screening for cancer patients.
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Another bottleneck in scRNAseq is the bioinformatics data
analysis. Various algorithms have been developed to infer cell
types by clustering scRNAseq profiles, however, a robust
algorithm is yet to be developed due to high noise levels,
technical variability and batch effects (Gao, 2018; Chen et al,
2019; Choi and Kim, 2019). To date, gene expression in such
tumors has been profiled using bulk transcriptome methods,
providing a single transcriptome measure that represents many
cell types (Barbazdn et al., 2012; Grillet et al., 2017). By
employing single-cell transcriptomic technology, it is now
possible to deconstruct a tumor into its component cell-type
parts and therefore gain a better understanding of the underlying
biology. In conclusion, the analysis of gene expression patterns of
CTCs from CRC at single-cell resolution holds the potential to
provide key information for identification of prognostic and
diagnostic markers as well as the development of precise and
personalized cancer treatment.
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