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Cardiovascular disease (CVD) is an important comorbidity in a number of chronic
inflammatory diseases. However, evidence in highly prevalent respiratory disease such
as asthma are still limited. Epidemiological and clinical data are not univocal in supporting
the hypothesis that asthma and CVD are linked and the mechanisms of this relationship
remain poorly defined. In this review, we explore the relationship between asthma and
cardiovascular disease, with a specific focus on cytokine contribution to vascular
dysfunction and atherosclerosis. This is important in the context of recent evidence
linking broad inflammatory signaling to cardiovascular events. However inflammatory
regulation in asthma is different to the one typically observed in atherosclerosis. We focus
on the contribution of cytokine networks encompassing IL-4, IL-6, IL-9, IL-17A, IL-33 but
also IFN-g and TNF-a to vascular dysfunction in atherosclerosis. In doing so we highlight
areas of unmet need and possible therapeutic implications.
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INTRODUCTION

Cardiovascular disease (CVD) is the underlying cause of around 30% of deaths worldwide,
approximately 80% of which stem from the underlying pathology of atherosclerosis causing the
clinical manifestations of myocardial infarction (MI) and ischemic stroke (WHO, 2011). It is well
established that inflammation and the immune system contribute to the development of
atherosclerosis, along with various other cardiovascular disorders (Harrison et al., 2011; Hu et
al., 2015; Welsh et al., 2017; MacRitchie et al., 2020). As a result, clinical research is now progressing
in this area pioneered by the CANTOS (Canakinumab Anti-Inflammatory Thrombosis Outcomes
Study) trial, the results of which were released in the last 2 years (Ridker et al., 2017). This trial found
that pharmacological inhibition of cytokine interleukin-1b (IL-1b) with the monoclonal antibody
Canakinumab significantly reduced subsequent cardiovascular events in people who had previously
suffered a MI. Furthermore, patients which responded best to this treatment were those which had
higher levels of circulating IL-6 and C-Reactive Protein (CRP), indicative of systemic inflammation
(Maffia and Guzik, 2019). CANTOS trial has been followed by the CIRT trial (Cardiovascular
Inflammation Reduction Trial), where treatment with low-dose methotrexate failed to lower
cardiovascular event rates in patients with previous multivessel coronary artery disease or
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MI and affected by metabolic syndrome or type 2 diabetes
(Ridker et al., 2019). These results confirmed that selective
targeting of proinflammatory cytokines in atherosclerosis could
be a beneficial addition to current treatments, which is
dominated by cholesterol lowering drugs.

In light of the important role immune-inflammatory
responses play in driving atherosclerosis it is unsurprising
that patients suffering from chronic inflammatory diseases are
more prone to CVD (Tseng et al., 2015; Liu C. et al., 2016;
Czesnikiewicz-Guzik et al., 2019; Ferguson et al., 2019).
However, the relationship between the highly prevalent
disorder asthma, reported to affect around 10–25% of the
population of Europe and more than 200 million people
world-wide (https://ginasthma.org/), and CVD still needs to
be fully elucidated. As such, further research in the area is
strongly required, given that asthmatic patients may represent a
large group of people at greater risk for developing CVD, a
clinical burden which is not currently addressed (To et al., 2012;
Strand et al., 2018).

The release of cytokines is central to almost every stage of the
immune response in asthma, and consequent systemic
dysregulation of inflammatory homeostasis may explain their
potential higher risk of developing CVD. It may be plausible that
targeting cytokines which are both highly expressed in asthma
and causative in cardiovascular pathology may represent a
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pharmacological strategy for the treatment of accelerated CVD
in asthma. Therefore, in this mini review, we will explore CVD
comorbidity in asthma, and we will discuss whether cytokines
may be potential pharmacological targets at the interface of these
two disorders (Figure 1).
ASTHMA PATHOLOGY AND
CARDIOVASCULAR COMORBIDITY

Asthma is a heterogeneous disease widely understood to be
associated with airway hyperresponsiveness and inflammation.
Pathological obstruction due to mucus production and structural
changes in the airways, due to epithelium thickening and
abnormal accumulation of airway smooth muscle cells, reduces
airways caliber to generate the characteristic asthmatic
symptoms (shortness of breath, coughing or wheezing, chest
tightness or pain) (Holgate et al., 1999). The best known
phenotype of asthma is allergic asthma, in which these
symptoms are caused by inhaled allergens such as house dust
mites, animal dander, fungi, and pollens (Kudo et al., 2013),
triggering an immunological response driven by T helper type 2
(Th2) cells and their associated cytokines IL-4, IL-5, and IL-13
(Lloyd and Hessel, 2010). However, alternative inflammatory
and non-inflammatory mechanisms for asthma have been
FIGURE 1 | Schematic representation of cytokine contributions at the interplay between asthma and atherosclerosis. Lung Image Credit: Patrick J. Lynch, medical
illustrator (Creative Commons Attribution CC BY 2.5) via Wikipedia.
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described and it is now accepted that there are multiple
phenotypes and endotypes of the pathology (Bossley et al.,
2012; Fahy, 2015). Whether these distinctions confer
suscept ibi l i ty or protect ion from developing CVD
remains unclear.

Asthma and atherosclerosis are both characterized by
accumulation of immune cells at the site of injury, increased
tissue and circulating levels of IgE, and activation of mast cells
and smooth muscle cells (Willems et al., 2013; Liu C. et al., 2016).
Asthma is also characterized by an elevation of circulating
proinflammatory and Th2 cytokines, indicating that the
vasculature is systemically exposed to the inflammation
generated in the lungs (Wong et al., 2001; Huang et al., 2016;
Zhu et al., 2016). Therefore, patients with asthma are exposed to
an inflammatory environment that may favor atherosclerosis
progression, even though, clinical data are not univocal in
supporting this hypothesis.

A prospective cohort study of 446,346 Taiwanese adults
showed that active asthma is associated with adverse
cardiovascular consequences (Strand et al . , 2018).
Atherosclerosis Risk in Communities (ARIC), a prospective
study on the etiology of atherosclerotic-related diseases,
demonstrated an association with increased carotid artery
intima–media thickness (IMT) (Onufrak et al., 2007) and
incidence of coronary heart disease (CHD) and stroke
(Onufrak et al., 2008) in women with late-onset asthma, but
not in those with child-onset asthma. Similar studies have also
reached the conclusion that late-onset asthma inferred a greater
risk of CVD (Lee et al., 2012; Tattersall et al., 2016). It was
speculated that this may be due to the large overlap between the
risk factors between late-onset asthma and CVD, few of which
are linked to inflammation such as obesity, stress, estrogen-
modulated inflammation, and increased numbers of eosinophils
(Wenzel, 2012). Other studies confirmed that both asthma and
allergy were independently associated with an increased risk of
CHD (Iribarren, 2004; Kim et al., 2010; Iribarren et al., 2012),
that asthma led to augmented vascular inflammation
(Vijayakumar et al., 2013), and that patients with allergic
rhinitis and asthma or chronic rhinosinusitis showed an
increase of carotid IMT (Knoflach et al., 2005; Elcioglu et al.,
2016). One study has shown there is a significant decrease in
endothelium dependent vasodilatation in asthmatic patients
(Yildiz et al., 2004), while other studies found they had
significantly increased arterial stiffness (Augusto et al., 2017;
Tuleta et al., 2017). Both are prognostic factors which are
independent predictors of cardiovascular events. Interestingly,
the latter study also included young asthmatic patients,
suggesting that the biological mechanisms pertaining to
cardiovascular comorbidity in asthma may also be present
in childhood.

On the contrary, a large study investigating the association of
self-reported, doctor diagnosed asthma and CVD in adults
followed over 14 years, showed that asthma and duration of
asthma did not associate with CHD (Schanen, 2005). Similarly,
patients with allergic rhinitis had lower incidence of acute MI
and cerebrovascular disease in a large retrospective, population-
Frontiers in Pharmacology | www.frontiersin.org 3
based, matched cohort study (Yoon et al., 2016); while another
study investigating 61,899 Taiwanese patients affected by rhinitis
and 123,798 age- and sex-matched controls, found they had
decreased risk of developing acute ischemic stroke (Tseng et al.,
2015). In summary, clinical and epidemiological data so far
are unresolved.

A confounding factor to be considered may be the long-term
use of asthmatic medication on the cardiovascular system. For
example, one large cohort study demonstrated that only asthma
patients using medications (particularly those on oral
corticosteroids alone or in combination) were at a greater risk
of developing CVD (Iribarren et al., 2012). On the contrary, a
combination of inhaled corticosteroid and long-acting b2-
agonist approved for the treatment of chronic obstructive
pulmonary disease (COPD) and asthma led to improved lung
function in subjects with COPD and comorbid CVD, without
increasing CVD risk (Covelli et al., 2016). Consequently, further
examination into the specific pathways which may be modulated
by chronic use of anti-asthmatic drugs should be explored in
relation to how they may contribute to the development of CVD.

A final consideration should be given to cigarette smoking, a
major risk factor for CVD (GBD 2015 Risk Factors
Collaborators, 2016). Compared with never-smokers with
asthma, asthma patients who smoke have worse symptoms,
increased chronic mucus hypersecretion, and more
exacerbations, as well as an impaired therapeutic response to
corticosteroids and a different inflammatory profile in sputum
and blood (Thomson et al., 2013). Smokers with asthma have
higher rates of cardiovascular comorbidities (Çolak et al., 2015).
The endotype of smokers with asthma is more pro-inflammatory
than the Th2 phenotype typically associated with atopic asthma
(Peters et al., 2014; Fahy, 2015; Lambrecht et al., 2019). This pro-
inflammatory phenotype may lead to increased CVD risk.
Statins, which exert pleiotropic anti-inflammatory effects,
reduced frequency of heart failure in the asthma–COPD
overlap syndrome (Yeh et al., 2019), suggesting that a
comparative study will be informative of communal
mechanisms leading to exacerbated CVD and asthma
in smokers.

In addition to controversial clinical observations linking
asthma to atherosclerosis, there is also insufficient basic
research in this area. One study which did explore this
relationship yielded very interesting results when utilizing the
ovalbumin (OVA)-alum sensitization/challenge model of allergic
pulmonary inflammation in atherosclerotic apolipoprotein-E
(apoE)−/− mice. In fact, asthmatic apoE−/− mice were found to
have significantly larger and more vulnerable plaques compared
to PBS-challenged apoE−/− shams (Wang et al., 2014). This was
attributed to elevated circulating Th2 and Th17 cells, along with
their associated cytokines IL-4 and IL-17A respectively, at both
early and advanced stages of pathology in the apoE−/− mice with
asthma. The group then assessed if suppressing the increased
serum levels of IL-4 and IL-17A, using neutralizing antibodies,
could attenuate disease progression in these mice. Remarkably,
lesion size was reduced by inhibition of either IL-4 or IL-17A
individually, but with an even greater effect observed when both
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were targeted in combination. Another study demonstrated that
both chronic and acute allergic lung inflammation, induced in
mice by ovalbumin sensitization and challenge, promoted
atheroma formation, regardless whether lung inflammation
occurred before, after, or at the same time as atherogenesis
(Liu C.L. et al., 2016). Therefore these studies not only may
support clinical data in finding that atherosclerosis pathology is
exacerbated by asthma, but also proposes a potential method for
clinical intervention, through targeting the proinflammatory
cytokines which act at the interface of these two pathologies
(Wang et al., 2014). However, it should be considered that the
OVA-alum protocol, while useful for modeling asthmatic
features and symptoms in mice, is likely not to be completely
reflective of the complex and heterogeneous human disease (Aun
et al., 2017). Consequently, further studies of this nature are
required to fully elucidate the mechanisms and key players
underpinning the potential accelerated development of
atherosclerosis in asthma.
TARGETING CYTOKINES

As discussed previously, the CANTOS trial has demonstrated
that targeting pro-inflammatory cytokines highly expressed in
CVD can significantly improve clinical outcomes in patients
(Ridker et al., 2017). Here we will discuss the cytokines of asthma
which act to disrupt inflammatory homeostasis and
consequently may exacerbate the progression of CVD.

The CANTOS trial utilized a monoclonal antibody to inhibit
the multifunctional pro-inflammatory cytokine IL-1b, often
referred to as the gatekeeper of inflammation due to its ability
to regulate numerous immune cascades (Libby, 2017; Panahi
et al., 2018). It is therefore unsurprising that IL-1b and some of
its downstream targets have been implicated in asthma,
particularly in the more severe forms of the disorder (Kim
et al., 2017; Lambrecht et al., 2019).

IL-1b is activated by the caspase-1/NLRP3 inflammasome
signaling which has been demonstrated to be causative in
pathogenesis in two different OVA-mediated murine models of
allergic pulmonary inflammation (Besnard et al., 2011; Kim et al.,
2017). Deficiency in NLRP3 or IL-1R1 in mice which were
subjected to airway sensitization and challenge of OVA
significantly reduced cell infiltration and mucus production in
the lung (Besnard et al., 2011). This model was performed
without the use of aluminum adjuvant in order to better reflect
naturally occurring disease, and the result determined to be due
to a loss of the Th2 inflammatory allergic response (IL-5, IL-13,
IL-33) which is classically associated with asthma. Similarly, Kim
et al. utilized a model of severe steroid-resistant asthma (SSRA)
and found that pharmacological inhibition of different members
of the NLRP3 inflammasome signaling pathway suppressed the
cardinal features of SSRA (Kim et al., 2017). In humans, both IL-
1 receptor and NLRP3 inflammasome are elevated in the sputum
of non-smoking adults with asthma (Simpson et al., 2014; Evans
et al., 2018). These findings paired with the recent success of the
CANTOS trial supports the notion that the NLRP3-IL-1b axis
Frontiers in Pharmacology | www.frontiersin.org 4
may be an appealing area for further investigation into a
targetable link between asthma pathology and the development
of CVD.

IL-33, another member of the IL-1 family, is found to be
significantly increased in the serum of asthmatic patients
(Momen et al., 2017; Ding et al., 2018). IL-33 functions as an
“alarmin” which is released by the lung epithelial cells following
stress or damage-induced necrosis, once released IL-33 promotes
activation of the Th2-branch of the immune response (Robinson
et al., 1992). Efficacy, safety, and tolerability of SAR440340 (anti-
IL-33 mAb) is currently under investigation in patients with
moderate-to-severe chronic obstructive pulmonary disease
(COPD) (ClinicalTrials.gov Identifier: NCT03546907).
However, the role of IL-33 in cardiovascular disease is
controversial. While a few reports have shown that IL-33
induced endothelial cell activation and increased angiogenesis
and vascular permeability, in contrast, others have demonstrated
that treatment with IL-33 reduced experimental atherosclerosis
(Miller et al., 2008; Choi et al., 2009; Aoki et al., 2010; Demyanets
et al., 2011; Altara et al., 2018).

The predominance of the Th2 response in asthma has
traditionally sparked controversy in relation to its association
with atherosclerosis-related CVD, classically Th1-dominated
pathologies. For example, IL-13, a prototypical Th2 cytokine,
has been shown to protect from experimental atherosclerosis
through the induction of alternatively activated macrophages
(Cardilo-Reis et al., 2012). However, there is evidence that Th2
cytokines may also play a detrimental role in the CVD (Liu C.
et al., 2016; Niccoli et al., 2018). Importantly, in the combined
murine model described by Wang et al. expression and
production of IL-4 was increased in the apoE−/− mice after
they were subject to allergic pulmonary inflammation, which
was demonstrated to be partially causative in increasing plaque
size and vulnerability (Wang et al., 2014). IL-4 is an important
therapeutic target in asthma. The alpha subunit of the IL-4
receptor (dupilumab), that blocks both IL-4 and IL-13 pathways,
has resulted in reduction of asthma morbidity, while the use of
the anti-IL-4R failed in phase II (Eger and Bel, 2019).
Mechanistically, IL-4 has been shown to increase endothelial
permeability and dysfunction via cytoskeleton remodeling
(Skaria et al., 2016). In addition, IL-4 can influence the activity
of pro-inflammatory IL-6, resulting in exacerbation of the
immune response via CD4+ T cel l act ivation and
inflammatory endothelium dysfunction (Rincón et al., 1997;
Lee et al., 2010).

Upon exposure to several environmental antigens which
trigger the Th2 response, IL-9 is also released and
overexpression can lead to inflammation and airway
hyperresponsiveness (Zhou et al., 2001). Elevated levels of IL-9
are observed in the sputum of asthmatic patients and expression
in the nasal mucosa has been observed to increase in response to
seasonal allergen changes (Zhou et al., 2001; Nouri-Aria et al.,
2005; Lloyd and Hessel, 2010). However, the first randomized
controlled trial to evaluate the effect of an anti-IL-9 monoclonal
antibody showed no effect in adults with uncontrolled asthma
(Oh et al., 2013). High levels of systemic IL-9 have been
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demonstrated to influence also atherosclerotic pathology,
wherein administration of recombinant IL-9 in apoE−/− mice
enhanced inflammatory cell infiltration into lesions via
modulation of VCAM-1 expression, resulting in enlarged
plaques (Zhang et al., 2015).

Th1 and Th17- type responses have also been shown to play a
role in asthma pathogenesis, and elevated levels of IFN-g, TNF-
a, and IL-17A can be found in the serum of asthmatic patients.
This is of particular interest as Th1 and Th17 type responses are
more characteristically associated with atherosclerosis (Sage and
Mallat, 2017). It should be noted, however, that several of these
mediators have also been shown to be produced by mast cells in
asthma (Kennedy et al., 2013).

The pleiotropic IL-6 is expressed at high levels in asthma
(Rincon and Irvin, 2012). Interestingly, IL-6 can translocate from
inflamed lung to the systemic circulation in mice, and was also
found to be elevated in the sputum of some patients with mild to
moderate asthma (Neveu et al., 2010; Kido et al., 2011). These
higher levels of IL-6 may contribute to driving CVD comorbidity in
asthma. Interestingly, genetic variants which lead to higher
circulating concentrations of IL-6 receptor (neutralizing IL-6 cell
signaling) appear protective against CHD (Interleukin-6 Receptor
Mendelian Randomisation Analysis (IL6R MR) Consortium et al.,
2012). Interestingly, IL-6 trans-signaling is associated to risk of
future cardiovascular events (Ziegler et al., 2019) and recently,
epithelial IL-6 trans-signaling has been shown to define a new
asthma phenotype with increased airway inflammation (Jevnikar
et al., 2019). In experimental atherosclerosis, IL-6mRNA expression
was found in the atherosclerotic plaques of apoE−/− mice (Sukovich
et al., 1998). Further to this, the balance between IL-6 and anti-
inflammatory IL-10 is believed to influence lipid homeostasis,
plaque formation, and plaque morphology in mice (Schieffer
et al., 2004). IL-6 is also well associated with abdominal aortic
aneurysm (AAA) pathogenesis, primarily through modulating cell
migration and infiltration (Nishihara et al., 2017). To date, however,
IL-6 targeting has not been tested in secondary prevention of
atherosclerosis and a phase 2a study, designed to evaluate the
effects of sirukumab (human anti IL-6 monoclonal antibody) in
subjects with severe poorly controlled asthma, was withdrawn
(ClinicalTrials.gov Identifier: NCT02794519). In a recent small
proof-of-concept clinical trial, a single dose of tocilizumab (IL-6
receptor blocker) was unable to prevent allergen-induced
bronchoconstriction (Revez et al., 2019) (Australian New Zealand
Clinical Trials Registry: ACTRN12614000123640).

Tumor necrosis factor-a (TNF-a), another cytokine
implicated in both asthma and cardiovascular disease, at first
appears to be a promising target for further research in targeting
shared dysregulation in these two pathologies (Brightling et al.,
2008; Welsh et al., 2017). Pharmacological inhibition of TNF-a
activity with the monoclonal antibody infliximab, suppressed IL-
4 production, adhesion molecule expression, and eosinophil
infiltration in a mouse experimental model of allergic rhinitis,
the pathology of which is similar to asthma (Mo et al., 2011).
However, initial clinical trials performed to test this drug in
asthma yielded underwhelming results, with no clinical benefits
Frontiers in Pharmacology | www.frontiersin.org 5
observed (Edwards and Polosa, 2007; Matera et al., 2010). On the
contrary, etanercept, in a small cohort of 39 patients with severe
corticosteroid refractory asthma, caused a small but significant
improvement in asthma control (Morjaria et al., 2008) but using
golimumab there was no favorable risk–benefit profile in patients
with severe persistent asthma (Wenzel et al., 2009). No clear
efficacy of anti-TNF treatments has been shown to date in CVD.
One of the main limitations, is the fact that randomized
controlled trials in chronic inflammatory diseases have been
powered to demonstrate improvements in disease activity rather
than in CVD endpoints (Welsh et al., 2017). However, meta-
analysis of observational studies in patients affected by chronic
inflammation suggest that those receiving TNF-a blockers are at
lower risk of CVD (Roubille et al., 2015). More recently, the
ENTRACE trial results demonstrated cardiovascular safety of
tocilizumab (IL-6 receptor blocker) and etanercept (TNF-a
blocker) in rheumatoid arthritis patients. Assessment of
clinical efficacy, however, will require the enrolment of a much
larger sample size (Giles et al., 2019).

In asthmatic hyperlipidemic apoE−/− mice, T-regulatory cells
(Tregs) were found to be decreased in the early stages of the
pathology (Wang et al., 2014). Over the last decade, the anti-
inflammatory cytokine IL-10, mainly produced by Tregs, has
been under the spotlight in regards to its role in a variety of
allergic diseases (Hawrylowicz, 2005). IL-10 is expressed on
epithelial and endothelial cells of nasal mucosa in patients
affected by allergic rhinitis and IL-10 serum levels are observed
to be significantly lower in asthmatic patients compared to
healthy controls (Muller et al., 2014; Raeiszadeh Jahromi et al.,
2014). It is believed that enhancing IL-10 activity in allergic
diseases such as asthma could be beneficial to pathology, and in
CVD there is evidence that also supports this hypothesis. IL-10
deficiency significantly augments the development of
atherosclerotic lesions in hyperlipidemic low-density
lipoprotein receptor (LdlR)−/− mice and also accelerates
neointimal formation in hypercholesteremic ApoE*3-Liden
mice (Potteaux et al., 2004; Eefting et al., 2007). Similarly,
Tregs have been shown to be clearly protective in experimental
atherosclerosis (Sage and Mallat, 2017), and two clinical trials are
currently investigating the possibility to promote Treg expansion
in patients with small abdominal aortic aneurysms (VIVAAA;
ClinicalTrials.gov Identifier: NCT02846883), or with stable
ischemic heart disease and acute coronary syndromes
(LILACS; ClinicalTrials.gov Identifier: NCT03113773).

Another anti-inflammatory cytokine IL-37 expression was
significantly reduced in the sputum of asthmatic children
(Charrad et al., 2016), and was shown to be a key suppressor
of asthma mediated mast cells (Conti et al., 2017) and airway
inflammation and remodeling (Huang et al., 2018; Meng et al.,
2019). IL-37 has also been found to exert athero-protective
effects via the modulation of dendritic cell maturation,
macrophage activation and by inducing Treg responses (Chai
et al., 2015; Ji et al., 2017; McCurdy et al., 2017; Liu et al., 2018).
Enhancing the activity of anti-inflammatory cytokines such as
IL-10 and IL-37, which have protective roles in both disease
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states could be another potential avenue for pharmacological
intervention for asthmatic patients who develop or are at high
risk for developing CVD as a comorbidity.
CONCLUSION

To date the clinical evidence supporting the hypothesis that
asthma confers high risk of various cardiovascular pathologies to
patients is not univocal, and the specific biological mechanisms
which may facilitate the development of cardiovascular
comorbidity remain to be fully determined for potential
pharmacological intervention to be explored. As inflammation
plays a pivotal role in both atherosclerosis and asthma, potential
targets for this research are cytokines whose dysregulation have
notable effects in both diseases.
Frontiers in Pharmacology | www.frontiersin.org 6
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