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Background: Drug repositioning, development of new uses for marketed drugs, is an
effective way to discover new antitumor compounds. In this study, we used a new
method, filtering compounds via molecular docking to find key targets combination.

Methods: The data of gene expression in cancer and normal tissues of colorectal, breast,
and liver cancer were obtained from The Cancer Genome Atlas Project (TCGA). The key
targets combination was obtained from the protein-protein interaction network (PPI
network) and the correlation analysis of the targets. Molecular docking was used to
reposition the drugs which were obtained from DrugBank. MTT proliferation assay and
animal experiments were used to verify the activity of candidate compounds. Flow
cytometric analysis of proliferation, cell cycle and apoptosis, slice analysis, gene
regulatory network, and Western blot were performed to elucidate the mechanism of
drug action.

Results: CDK1 and AURKB were identified as a pair of key targets by the analysis of
different expression gene from TCGA. Three compounds, linagliptin, mupirocin, and
tobramycin, from 12 computationally predicted compounds, were verified to inhibit cell
viability in HCT116 (colorectal), MCF7 (breast), and HepG2 (liver) cancer cells. Linagliptin,
a hypoglycemic drug, was proved to inhibit cell proliferation by cell cycle arrest and induce
apoptosis in HCT116 cells, and suppress tumor growth in nude mice bearing HCT116
cells. Linagliptin reduced the tumor size and decreased the expression of Ki67, a nuclear
protein expressed in all proliferative cells. Gene regulatory network and Western blot
analysis suggested that linagliptin inhibited tumor cell proliferation and promoted cell
apoptosis through suppressing the expression and phosphorylation of Rb, plus down-
regulating the expression of Pro-caspase3 and Bcl-2, respectively.

Conclusion: The combination of key targets based on the protein-protein interaction
network that were built by the different gene expression of TCGA data to reposition the
marketed drugs turned out to be a new approach to discover new antitumor drugs.
Hypoglycemic drug linagliptin could potentially lead to novel therapeutics for the treatment
of tumors, especially for colorectal cancer. Gene regulatory network is a valuable method
for predicting and explaining the mechanism of drugs action.

Keywords: the oncology genome atlas project, drug repositioning, multi-target anti-tumor drug screening,
molecular docking, cell proliferation and apoptosis, xenograft tumor mice, gene regulatory network
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INTRODUCTION

World Health Organization (WHO) study showed that tumor
morbidity and mortality were still rising gradually in recent years
(Siegel et al., 2017). Therefore, the market for anti-tumor drugs is
huge. It is getting difficult to find new drugs using the traditional
methods, which drives the cost of new drugs research and
development increasing and the success rate decreasing year by
year (Yoonjeong et al., 2018). Drug repositioning, development of
new uses for marketed drugs, has been proved to be an effective
way to develop new anti-tumor drugs (Reddy and Zhang, 2013).

The Cancer Genome Atlas Project (TCGA, https://
cancergenome.nih.gov/) was an analytical study of tumor
molecular biology which was operated by the National Cancer
Institute (NCI) and the National Human Genome Research
Institute (NHGRI) in 2006 (Tomczak et al., 2015). TCGA uses
a large-scale sequencing-based genomic analysis technology to
clarify the molecular mechanism of cancer through extensive
cooperation, which improves scientific understanding of the
molecular biology of cancer, and enhance the ability to
diagnose and prevent cancer (Weinstein et al., 2013).

In present study, we analyzed the different gene expression in
cancer and their adjacent normal tissues of colorectal, breast, and
liver cancer, which obtained from TCGA. The key targets
combination was obtained according to the protein-protein
interaction network (PPI network) and the correlation of targets.
Molecular docking was used to reposition the drugs which were
obtained from DrugBank (Wishart et al., 2006; Wishart et al.,
2008) and 12 compounds were obtained. Three of the 12
compounds were tested on tumor cell viability in vitro, and the
traditional hypoglycemic drug linagliptin was chosen for further
study. The effects of linagliptin on tumor cell division, cell cycle,
and apoptosis was determined by flow cytometric analysis. The
gene regulatory network was used to predict and interpret the
mechanism of linagliptin, and the changes of key targets expression
in the possible signal pathways were analyzed by Western blot.
MATERIALS AND METHODS

The Combination of Key Targets
The data of gene expression of colorectal cancer, breast cancer,
liver cancer tissue, and normal tissues were obtained from
TCGA. The gene expression between tumor tissues and
normal tissues were compared by using Bioconductor. The
genes whose |LogFC| is more than 2 and p-value is less than
0.05 were defined as the different gene.

The protein-protein interaction networks of different gene
were constructed by STRING10.0 (Szklarczyk et al., 2015). The
information of PPI targets was obtained from STRING10.0,
which include physical and functional association interaction.
The interactions were evaluated by score. The higher the score,
the more reliable of the protein interactions it is. We selected
score which is more than 0.7 to ensure the reliability of data
(Zheng et al., 2016). The parameters of network nodes were
calculated by network analyzer, and we selected the degree
centrality more than 10 to filter the key targets. We analyzed
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the expression and correlation of the key targets to combine the
key targets.

Virtue Screening
The structures of targets were obtained from PDB (http://www.
rcsb.org) and were prepared by Discovery Studio 2.5 (DS2.5),
and the ligand file were prepared in the same manner.

The active site of targets was defined by the original ligand.
Then, Libdock, a method of semi-flexible molecular docking
based on hot matching were used to screen the marketed drugs.
Root mean square deviation (RMSD) were calculated to evaluate
the preferences and the binding pockets. The information of the
binding pockets was adjusted to make the RMSD score less than
2.0, which could perform a better binding mode between the
original ligand and the proteins, and the Libdock score was
recorded. The compounds with the score more than the
threshold, which was 80% of the original ligand Libdock score,
and the interaction pattern similar to the original ligand were
selected as candidate compounds (Yong et al., 2016; Yong
et al., 2018).

The Libdock scores of the selected compounds based on the
different target were summed and sorted. The 3% of approved
compounds before the score were selected with no antitumor
activity reported, which were defined as potential compounds.

Cell Lines and Reagents
The colorectal cancer cell lines, HCT 116, the liver cancer cell
line, HepG2, and the breast cancer cell line, MCF7, were obtained
from National Infrastructure of Cell Line Resource (NICLR) and
cultured in RPMI1640 medium (Gibco, Invitrogen, USA) with
10% FBS (Vistech, SE100-011 Fetal Bovine Serum, Qualified,
Uruguay), 100 U/ml penicillin (Gibco, Invitrogen, USA), and 100
mg/ml streptomycin (Gibco, Invitrogen, USA) in a humidified
atmosphere of 5% CO2 at 37°C. Linagliptin was obtained from
Macklin (Macklin, Shanghai, China), mupirocin from Yuanye
(Yuanye, Shanghai, China), and tobramycin from Hefeng
(Hefeng, Shanghai, China), respectively.

MTT Proliferation Assay
The MTT reagent (Amresco, USA) can be metabolized by active
cells to formazan, an insoluble purple dye that can be measured
in a spectrophotometer, and was used according to the
manufacturer ' s instruct ions . Cel l s were seeded in
quadruplicates in 96-well plates (1,600 per well). After 24-h
adhesion time, the cells were treated with the compounds
chosen, and anticancer product norcantharidin (NCTD)
(Sigma, USA) in positive group (Zimu and Zhenxiao, 2015). 0,
24, 48, and 72 h later, 100 ml of MTT reagent were added to each
well and the cells were again incubated for 4 h at 37°C and 5%
CO2. After incubation and 10 minutes shaking, the absorbance
was measured on a Genios Microplate Reader (Spectra Max190).
All experiments were performed in triplicates.

Flow Cytometric Analysis of Proliferation,
Cell Cycle, and Apoptosis
Flow cytometric assay was used for proliferation, cell cycle and
apoptosis assays. Briefly, for cell proliferation determination,
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equal numbers of HCT116 cells (4.8×104) were seeded in the per
well of 6-well plate and cell adherent growth, washed twice with
PBS, added CFSE with the final concentration 5 mM (Kaiming
et al., 2018). The cells were then incubated for 10 min in dark.
4~5 ml serum-containing pre-cooled medium was added to stop
the reaction on ice for 5 min and incubated with different
concentration of linagliptin (0, 100 mM) for 24 h. All
experiments were performed in triplicates.

For cell cycle determination (Chen et al., 2016), equal
numbers of HCT116 cells (4.8×104) were seeded in 6-well plate
per well and incubated with different concentration of linagliptin
(0, 50, 100 mM) for 48 h. The cells were washed with PBS and
then collected, and fixed in 70% ice cold ethanol, and storage at
4˚C for at least 8 h. Cells were then washed with PBS twice, and
centrifuged for 5 min at 1000 rpm and aspirate the supernatant,
and resuspended cells in 0.5 ml of PI/RNase staining buffer (BD
Pharmingen) for 60 min at 4˚C, and DNA content was
immediately analyzed using flow cytometry analysis. All
experiments were performed in triplecates.

For cell apoptosis determination (Ziyi et al., 2019), equal
numbers of HCT116 cells (4.8×104) were seeded in 6-well plate
per well and incubated with different concentration of linagliptin
(0, 100 mM) for 48 h. Cells were collected and cell apoptosis was
detected according to the instructions of the apoptosis assay kit
(KeyGen Biotech, Jiangsu, China). All experiments were
performed in triplicates.

Animal Experiments
All animal experiments strictly adhered to local regulations as well
as LAWER (Laboratory AnimalWelfare Ethics Review) guidelines
(Andersen andWinter, 2017; Herrmann and Flecknell, 2018), and
were approved by the local authorities before initiation.

1×106 tumor cells in 100 ml of PBS were injected into the back
of BALB/c-nu mice. When the tumors reached an average volume
of 40 mm3, mice were treated as follows for 14 days. The group
treated with PBS was designated as the control. The group treated
with cyclophosphamide (CTX) (20 mg/kg, three times per week)
was designated as the positive control. The tumor volume (tv) and
the body weight of BALB/c-nu mice were monitored three times
per week. The tv was calculated using the following formula: tv=
ab2/2, where a is the length of the tumor, and b is the width. The
tumors were separated and weight after mice euthanizing.

The treatment regimens were as follows:

Tumor-bearing control group: 200 ml PBS buffer i.p. daily. (n = 6)

Tumor-bearing positive group: 30 mg/kg body weight
(cyclophosphamide) i.p. daily, dissolved in 200 ml PBS in
the subcutaneous experiment. (n = 5)

Linagliptin low dose group: 50 mg/kg body weight p.o. daily,
dissolved in 200 ml PBS. (n = 5)

Linagliptin high dose group: 500 mg/kg body weight p.o. daily,
dissolved in 200 ml PBS. (n = 5)
Immunohistochemistry Analysis
Formalin-fixed tumor tissues were embedded in paraffin and cut into
4-µm sections. The sections were deparaffinized by heating in Tris-
Frontiers in Pharmacology | www.frontiersin.org 3
EDTA (pH 9.0) buffer. The slides were treated with 3% hydrogen
peroxide to block endogenous peroxidase activity and then incubated
with goat serum for 30min. Next, the slides were incubated overnight
at 4˚C with anti-Ki67 antibody (Abcam ab16667, 1:400 diluted in
TBST) and the rest of the steps were carried out according to the
manufacturer's instructions using SP (rabbit IgG)-POD Kit (Solarbio,
Beijing, CN). Immunohistochemically stained slides for Ki67
were scanned using microscope with a 40× objective. Ten
representative images selected from two groups were then
analyzed using Image J, which segmented cells with positive
and negative nuclei. The percentage of the area containing
positive cells was calculated as the brown area (positively
stained cells) divided by the sum of brown and blue areas
(negatively stained cells). The software interpretation was
manually verified by visual inspection of the digital images to
ensure accuracy.

Gene Regulatory Network Analysis for
Mechanism of Linagliptin
Gene regulatory network, a Boolean network model, was
constructed based on the Python 2.7. Numpy, Pandas,
networkx, matplotlib, and BooleanNet were used to construct a
Boolean network model for colorectal cancer gene regulation
(Albert et al., 2008; van der Walt et al., 2011; Fuchs et al., 2015;
Kadiyala and Kumar, 2017). The colorectal cancer gene
interactions in this model were derived from the KEGG
database (Kanehisa and Goto, 1999; Kanehisa et al., 2002)

According to the activation or inhibition of the target of
linagliptin, the nodes were set to “open” or “closed”, and the
other parameters are the same as default until the network state is
stable, and the expression of colorectal cancer gene after the
action of linagliptin is analyzed (Kauffman et al., 2003; Cheng
and Qi, 2010; Yue et al., 2018). Gene enrichment analysis was
used to analyze the different genes by ClueGo, which is a plugin
in Cytoscape (Shannon et al., 2003; Bindea et al., 2009).

Western Blot
Total protein from HCT116 cells were extracted using standard
methods (Feng et al., 2018) and protein concentrations were
determined by BCA protein assay kit (Thermo scientific, USA).
A total of 40 µg of protein were separated by SDS-PAGE.
Separated proteins were transferred onto a NC (nitrocellulose)
membrane at 200 mA for 2 h. After transfer, membranes
were blocked with 5% BSA in 1X PBST (phosphate-buffered
saline with 0.1% Tween 20) at room temperature for 4 h. The
membrane was probed with p53 (Zsbio, CN), Bcl-2 (Abcam,
USA), Pro-caspase3 (Cell Signaling Technology, USA), Rb (Cell
Signaling Technology, USA), pRbs780 (Cell Signaling
Technology, USA), pRbs807/811 (Cell Signaling Technology,
USA) or b-actin primary antibodies (Zsbio, CN) overnight at
4˚C and then secondary antibody at RT for 1 h according to
manufacturer's instructions.

Statistical Analysis
Student t-test was used to compare means. All analyses were two
tailed, and p < 0.05 was considered statistically significant (*, p <
0.05; **, p < 0.01; ***, p < 0.001).
March 2020 | Volume 11 | Article 187
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RESULTS

The Combination of Key Targets
PPI networks were constructed based on the different gene
expression between colorectal cancer, breast cancer, liver
cancer tissues, and normal tissues adjacent to cancer. All 10
nodes were obtained from protein-protein interaction analysis of
113 differential gene nodes in the protein interaction network
between liver cancer tissue and normal tissues adjacent to cancer,
which were defined as the key targets. Seventy-seven nodes were
considered as the key targets in the PPI network of breast cancer,
and 215 nodes were considered as the key targets in the PPI
network of colorectal cancer.

Six targets were obtained from the intersections of the key
targets, which were AURKB, BIRC5, CCNB2, CDC20, CCNB1,
and CDK1. According to the preliminary screening results, it was
found that the combination of double targets for drug screening
is better than the combination of single target, triple targets, and
all targets. Finally, CDK1 and AURKB were selected as the
combination of the key targets according to the expression and
correlation of the key targets.

Screening of Novel Drug Compounds for
CDK1 and AURKB
Molecular docking models were built based on the structures of
CDK1 (PDB code: 5HQ0) and AUKRB (PDB code: 4AF3)
(Elkins et al., 2012; Brown et al., 2015). Compounds which
were considered as the inhibitors of CDK1, the Libscores
should be more than 130.76 and the interaction pattern should
be similar to the original ligand, which could have interactions
with LYS33, LEU83, GLU51, and GLU81 (Figure 1A).
Compounds which were considered as the inhibitors of
AURKB, the Libscores should be more than 145.84 and the
interaction pattern should be similar to the original ligand, which
could have interactions with PHE88 (Figure 1B).

Twelve compounds were obtained from Drugbank, which
were considered as the inhibitors of CDK1 and AURKB,
which were 2-(carboxymethoxy)-5-[(2s)-2-({(2s)-2-[(3-
carboxypropanoyl)amino]-3-phenylpropanoyl}amino)-3-oxo-3-
(pentylamino)propyl]benzoic acid (DB04525), oleoyl estrone
(DB04870), glycerol phenylbutyrate (DB08909), lifitegrast
(DB11611), hexoprenaline (DB08957), mupirocin (DB00410),
netilmicin (DB00955), pralnacasan (DB04875), ceforanide
(DB00923), linagliptin (DB08882), tobramycin (DB00684),
and argatroban (DB00278). The structures of compounds were
showed in the Figure 1. Linagliptin, mupirocin, and tobramycin
were selected for in vitro experiments.

Candidates Compounds Inhibits Cell
Viability in a Dose- and Time-Dependent
Manner
To explore the cytotoxicity potential of linagliptin, mupirocin,
and tobramycin against colon cancer, liver cancer and breast
cancer, HCT116 cells, HepG2 cells, and MCF7 cells were treated
with linagliptin, mupirocin, and tobramycin at various
concentrations for 24, 48, and 72 h, which were shown in
Figure 2.
Frontiers in Pharmacology | www.frontiersin.org 4
Linagliptin inhibits HCT 116, MCF7, and HepG2 cell viability
in dose- and time-dependent manner (Figure 2A). With the
increase of linagliptin from 0 to 100 mM, cell viability decreased
from 100 to 44.52% in HCT116 cells, from 100 to 78.34% inMCF
7 cells, and 100 to 87.22% in HepG2 cells at 48 h. Meanwhile,
with the increase of time from 24 h to 72 h based on 100 mM
linagliptin, cell viability decreased from 66.54 to 20.26% in HCT
116 cells, from 89.94 to 30.32% in MCF7 cells and 96.42 to
41.11% in HepG2 cells.

The inhibitory effect of mupirocin and tobramycin on
HCT116 cells, HepG2 cells, and MCF7 cells were shown in
Figures 2B, C. HCT 116 cells were sensitive to mupirocin and
tobramycin, cell viability decreased from 100 to 65.95% with the
increase of mupirocin from 0 to 100 mM and decreased from 100
to 54.35% with the increase of tobramycin from 0 to 1000 mg/ml
at 48 h. Mupirocin inhibits the cell viability of MCF7 cells in a
dose- and time-dependent manner, and tobramycin had the
strongest inhibitory effect on MCF7 at 500 mg/ml after 48 h
treatment. HepG2 cells were not dramatically sensitive to the
candidate of compounds except linagliptin.

Linagliptin Inhibits Cell Proliferation
In Vitro
In order to reveal the anti-tumor mechanism of linagliptin in
HCT116 cells, we examined the effects of linagliptin on the
distribution of cell proliferation by flow cytometry analysis. As
shown in the Figures 3A–C, the fluorescence intensity of HCT
116 cells significantly increase upon linagliptin treatment.
Compared to control cells, linagliptin significantly inhibits cell
proliferation, with the fluorescence intensity from 142550.8 ±
7959.9 to 191519.1 ± 11222.8, which shown linagliptin could
inhibit HCT 116 cell proliferation significantly.

Linagliptin Induces Cell Cycle Arrest at
G2/M and S Phase
In order to investigate the anticancer mechanism which
linagliptin inhibits HCT116 cells proliferation, we determined
the effects of linagliptin on cell cycle distribution by flow
cytometry analysis. Linagliptin could induce cell cycle arrest at
G2/M phase in low dose, and induce cell cycle arrest at G2/M
and S phase in high dose (Figures 3D–F). Compared to control
cells (Figure 3D), low dose (50 mM) linagliptin significantly
increased percentage of G2/M phase from 19.97 ± 0.52 to 25.11 ±
0.77, which were shown in the Figure 3E, high dose (100 mM)
linagliptin significantly increased percentage of G2/M phase
from 19.97 ± 0.52 to 31.07 ± 0.56 and percentage of S phase
from 20.26 ± 1.64 to 45.17 ± 1.56, which were shown in the
Figure 3F.

Linagliptin Induces Apoptosis In Vitro
We observed obvious apoptotic peaks in flow cytometry analysis
cell cycle. To further elucidate the mechanism of cell death
induced by linagliptin in HCT116 cells, flow cytometry
analysis were used to further study the ability of linagliptin in
inducing apoptosis in HCT116 cells. As shown in Figure 3G–H,
we observed that the amount of Annexin V+/PI− (early
apoptosis) stained cells were increased significantly upon
March 2020 | Volume 11 | Article 187
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FIGURE 1 | The results of screening of novel drug compounds for CDK1 and AURKB (A): up: The comparison of conformations of the initial ligand before and after
docking with CDK1; below: The interactions between initial ligand and CDK1; (B): up: The comparison of conformations of the initial ligand before and after docking
with AURKB; below: the interactions between initial ligand and AURKB; (C) The structures of candidate compounds.
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linagliptin (100 mM). The rate of early and late apoptotic cells
was quantified and depicted in Figure 3G–H.

Linagliptin Reduces Tumor Growth in
Human Colorectal Cancer Cell HCT116-
Bearing Xenografted Mice
To evaluate the antitumor effects of linagliptin in vivo, we
examined the effects of low dose and high dose of linagliptin
(50 mg/kg vs. 500 mg/kg) by oral gavage on tumor growth in
human colorectal cancer cell HCT116-bearing xenografted mice.
Cyclophosphamide was used as positive control. Both lower dose
and higher dose of linagliptin inhibited the growth of HCT116
xenograft tumor dramatically (p < 0.05, Figure 4A). Tumor
volume were reduced significantly by linagliptin (Figure 4C).

Compared to control group, the body weight of linagliptin
treated mice did not change significantly, while the body weights
of Cyclophosphamide treated group decreased significantly 2
Frontiers in Pharmacology | www.frontiersin.org 6
weeks after injection (Figure 4B). In addition, no other adverse
effects such as skin ulcerations or toxic death were observed in
linagliptin groups. This result suggests that linagliptin may have
less toxicity to mice compared to cyclophosphamide.

Ki67 is an important cell nuclear proliferation marker (Kun
et al., 2017). The expression of Ki67 were markedly decreased in
linagliptin treated groups compared with control group (Figures
4D, E), indicating that linagliptin effectively inhibited
proliferation of HCT116 cells in human colon tumor-bearing
xenografted mice.

Linagliptin Inhibits Phosphorylation of Rb
and Expressions of Bcl-2 and p53
Gene regulatory network were used to analyze the mechanism of
linagliptin. There were 91 genes in the gene regulatory network
of colorectal cancer, 40 genes were down-regulated and 21 genes
were up-regulated which were shown in Supplementary
FIGURE 2 | Candidate compounds inhibit cell viability in HCT116 cells, MCF7 cells, and HepG2 cells (A): Linagliptin inhibits viability of HCT116 cells, MCF7 cells,
and HepG2 cells, a showed linagliptin inhibits cell viability in HCT 116 cell line, b showed linagliptin inhibits cell viability in MCF7 cell line, c showed linagliptin inhibits
cell viability in HepG2 cell line; (B): Mupirocin inhibits cell viability in HCT116 cells, MCF7 cells, and HepG2 cells, a showed mupirocin inhibits cell viability in HCT 116
cell line, b showed mupirocin inhibits cell viability in MCF7 cell line, c showed mupirocin inhibits cell viability in HepG2 cell line; (C): Tobramycin inhibits viability of
HCT116 cells, MCF7 cells and HepG2 cells, a showed tobramycin inhibits cell viability in HCT 116 cell line, b showed tobramycin inhibits cell viability in MCF7, c
showed tobramycin inhibits cell viability in HepG2 cell line.
March 2020 | Volume 11 | Article 187
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Material Table 1 (D > 0 means up regulated, and D < 0 means
down regulated). Linagliptin could inhibit expression of BCL2,
MDM2, and STAT3, which could inhibit JAK-STAT signaling
pathway, and active the expression of BAX, CASP9 and P53,
which could active the pathway of apoptosis according to gene
enrichment analysis, which were shown in the Figures 5A–D.
Linagliptin could inhibits the proliferation of colorectal cancer
cells and promotes apoptosis of colorectal cancer cells by acting
on the above pathways and functions.

To confirm this result, the expression levels of key proteins
such as p53, Bcl-2, Rb, and phosphorylation of Rb were
examined by Western blot. As shown in Figure 5E, Rb,
pRbs780, and pRbs807/811 were all significantly down-regulated
by linagliptin at 48 h. The expression of p53 were significantly
up-regulated by linagliptin at 24 h and 48 h. The expression of
Frontiers in Pharmacology | www.frontiersin.org 7
Bcl-2 and Pro-caspase3, which is related to cell apoptosis, were
significantly down-regulated by linagliptin at 48 h.
DISCUSSION

The combination of key targets, CDK1 and AURKB, was
obtained based on the different expression genes from TCGA,
which were used to operate molecular docking. AURKB is a
highly conserved serine-threonine protein kinase, which belongs
to the Aurora family, and plays an important role in the
regulation of mitosis (Lucenaaraujo et al., 2011). AURKB was
detected over-expressed in pleomorphic gliomas, malignant
mesothelioma, and hematological malignancies (Hall et al.,
FIGURE 3 | Linagliptin induces HCT 116 cell cycle arrest and apoptosis (A): Control fluorescence intensity of CFSE; (B): Fluorescence intensity of CFSE in linagliptin
treated group (HCT 116 cells were treated with 100 mM linagliptin for 24 h); (C): Statistical difference between control group and linagliptin treated group in A; D–F:
Cell cycle analysis by flow cytometry. (D): Cell cycle of control group; (E): 50 mM linagliptin induced cell cycle arrest at 48 h; (F): 100 mM linagliptin induced cell cycle
arrest at 48 h; (G, H): Apoptosis analysis by flow cytometry. (G): Control group; (H): 100 mM linagliptin induced HCT 116 cell apoptosis at 48 h.
March 2020 | Volume 11 | Article 187
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2009). Meanwhile, AURKB also over-expresses in colorectal
cancer, liver cancer, and breast cancer according to the data
from TCGA in this study. CDK1 could combined with cyclin A,
cyclin B1, cyclin B2, and cyclin B3, which play an important role
in the cell cycle (Chen et al., 2006). CDK1 could phosphorylate a
variety of substrate proteins, such as histones H1, laminin, and
Rb. Analyzing the expression and function of CDK1 and
AURKB, the selected compounds could block cell proliferation
and inhibit the growth of tumor. Then, we inferred the
hypoglycemic drug linagliptin could potentially lead to novel
therapeutics for the treatment of tumor, especially in
colorectal cancer.

Linagliptin could inhibit cell viability by inducing cell cycle
arrest at G2/M and S phase to block cell proliferation in HCT 116.
Linagliptin could inhibit tumor growth, with the decreasing
expression of Ki67 in colorectal cancer bearing xenografted mice,
which is the clinically most relevant model to examine the effects of
Frontiers in Pharmacology | www.frontiersin.org 8
a compound on the development of tumor. Linagliptin was also
detected to induce apoptosis in HCT 116 colorectal tumor cells.

Based on the result of gene regulatory network in systemic
pharmacology, linagliptin could induce the decreasing of JAK,
MDM2, BCL2, and induce the increasing of BAX, CASP9 to inhibit
JAK-STAT signal pathway, active p53 signal pathway and promote
apoptosis pathway. On the basis of the results of molecular
docking, the gene regulatory network and the result of Western
blot, we propose that the main mode of action of linagliptin to
inhibit cell proliferation and promote cell apoptosis is via the
inhibition of the phosphorylation of Rb and the expression of Bcl-
2, Pro-caspase3. Inhibition of JAK-STAT signal pathway and
activation of p53 signal pathway may be induced by inhibition
of CDK1 complex by linagliptin, whichmay be themain reason for
the decrease of expression and phosphorylation of Rb according to
the results of molecular docking (Johnson et al., 2016). The latest
report showed linagliptin could inhibit hepatocellular carcinoma
FIGURE 4 | Linagliptin inhibits tumor growth in HCT116 xenograft nude mice (A): Growth curve of tumor volume in nude mice; (B): Effect of linagliptin and
Cyclophosphamide treatment on body weight of nude mice; (C): Change of tumor volume from control, cyclophosphamide, 50 mg/kg and 500 mg/kg linagliptin
groups; (D): Linagliptin reduced cell proliferation markers, Ki67, as determined by immunohistochemical staining (40×) and the graphs of H&E staining; (E): The
statistical analysis of Ki67 in control and linagliptin treated group showed in (D).
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FIGURE 5 | The mechanism of linagliptin inhibits tumor growth in HCT116 (A): GO analysis of down-regulated genes from linagliptin effect gene regulatory network;
(B): KEGG analysis of down-regulated genes from linagliptin effect gene regulatory network; (C): GO analysis of up-regulated genes from linagliptin effect gene
regulatory network; (D): KEGG analysis of up-regulated genes from linagliptin effect gene regulatory network; (E): the expression levels of p53, Rb, pRbs780,
pRbs807/811, Pro-caspase3 and Bcl-2.
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cells though suppressing protein ADORA3 and induce cell
apoptosis at G2/M phase with increase in caspase3 levels (Ayoub
et al., 2018), which supports our study results.

This study tried to mine target combinations from gene
expression profiles and use the combination of key targets to
reposition marketed drugs for discovering new anti-tumor drugs.
Bioinformatics and molecular biology experiments were
combined to explore the molecular mechanism of linagliptin.
Target fishing combined with gene regulatory network was
provided to reveal molecular mechanism of drug, which will be
useful in systemic pharmacology in the future.
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