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Although often overlooked in our daily lives, saliva performs a host of necessary
physiological functions, including lubricating and protecting the oral cavity, facilitating
taste sensation and digestion and maintaining tooth enamel. Therefore, salivary gland
dysfunction and hyposalivation, often resulting from pathogenesis of the autoimmune
disease Sjögren’s syndrome or from radiotherapy of the head and neck region during
cancer treatment, severely reduce the quality of life of afflicted patients and can
lead to dental caries, periodontitis, digestive disorders, loss of taste and difficulty
speaking. Since their initial discovery in the 1970s, P2 purinergic receptors for
extracellular nucleotides, including ATP-gated ion channel P2X and G protein-coupled
P2Y receptors, have been shown to mediate physiological processes in numerous
tissues, including the salivary glands where P2 receptors represent a link between
canonical and non-canonical saliva secretion. Additionally, extracellular nucleotides
released during periods of cellular stress and inflammation act as a tissue alarmin to
coordinate immunological and tissue repair responses through P2 receptor activation.
Accordingly, P2 receptors have gained widespread clinical interest with agonists and
antagonists either currently undergoing clinical trials or already approved for human use.
Here, we review the contributions of P2 receptors to salivary gland function and describe
their role in salivary gland dysfunction. We further consider their potential as therapeutic
targets to promote physiological saliva flow, prevent salivary gland inflammation and
enhance tissue regeneration.

Keywords: purinergic receptors, saliva, salivary gland dysfunction, Sjögren’s syndrome, extracellular nucleotides,
head and neck cancer

INTRODUCTION

Salivary gland dysfunction and the associated hyposalivation are serious clinical problems that
impact millions of people (Atkinson et al., 2005; Qin et al., 2015; Siddiqui and Movsas, 2017).
Saliva plays a crucial role in maintaining oral homeostasis by aiding in taste perception and
digestion, protecting and lubricating oral tissues, maintaining the integrity of tooth enamel and
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sustaining the oral microbiome (Dawes et al., 2015). In addition
to its physiological roles, saliva contains a plethora of biomarkers
and is easy to access allowing clinicians to utilize saliva as
a non-invasive diagnostic material to monitor patient health
(Chojnowska et al., 2018). Human saliva is increasingly being
used to perform screening and risk assessment for systemic
diseases, such as HIV, cancer, infections and cardiovascular
disorders, demonstrating saliva’s extensive clinical potential
(Nunes et al., 2015). Adequate saliva production is essential for
maintaining quality of life and salivary gland dysfunction leads to
dry mouth, oral bacterial and yeast infections, dental caries and
speech problems (Chambers et al., 2004; Meijer et al., 2009).

Hyposalivation and xerostomia (i.e., dry mouth) can
present in an iatrogenic manner as side effects of over
400 medications, including antidepressants, antipsychotics,
opioids, antihistamines, and others (Furness et al., 2011).
Although often transient and reversible, iatrogenic xerostomia
contributes to patient non-adherence to medication regimens
leaving underlying pathologies untreated. Two common
pathophysiological causes of salivary gland dysfunction in
humans are Sjögren’s syndrome (SS), an autoimmune disease
characterized by xerostomia, autoantibody production and
chronic lymphocytic infiltration of the salivary glands (i.e.,
sialadenitis), and radiotherapy-induced dysfunction where
salivary glands sustain collateral damage following γ-radiation
to treat head and neck tumors (Pinna et al., 2015; Mariette
and Criswell, 2018). In both cases, damage to the salivary
parenchyma and the failure to repair saliva-producing salivary
acinar epithelium contribute to glandular dysfunction. Current
therapies for salivary gland dysfunction are primarily focused on
symptom management using muscarinic receptor agonists (i.e.,
pilocarpine or cevimeline) to stimulate saliva flow from residual
salivary epithelium or through the topical use of artificial saliva
(Ramos-Casals et al., 2010). While these treatments can provide
some relief to patients, they are relatively ineffective because
of their transient nature and failure to address the underlying
inflammatory and degenerative processes that initiate and sustain
glandular tissue damage. Therefore, a better understanding of
the pathophysiology of salivary gland dysfunction is crucial
to developing novel therapeutic approaches for this serious
medical problem.

Purinergic receptors for extracellular nucleosides (i.e.,
adenosine) or nucleotides (i.e., ATP, ADP, UTP, UDP, and UDP-
glucose) mediate numerous physiological processes, including
platelet aggregation, neurotransmission, bone remodeling, and
inflammatory, and immune responses (Dorsam and Kunapuli,
2004; Orriss et al., 2010; Idzko et al., 2014; Mutafova-Yambolieva
and Durnin, 2014; Verkhratsky and Burnstock, 2014). In
exocrine tissues, such as salivary gland, lacrimal gland and
pancreas, purinergic receptor-mediated ion fluxes and cross-talk
with muscarinic receptor signaling have been suggested to
modulate secretory function (Novak et al., 2010; Burnstock and
Novak, 2012; Hodges and Dartt, 2016). Whereas intracellular
nucleotides are well-known for their role in metabolism and
enzyme function, it wasn’t until the 1970s that plasma membrane
receptors were postulated to respond to extracellular nucleotides,
including ATP and ADP, and were suggested to be responsible for

non-cholinergic, non-adrenergic neurotransmission (Burnstock
et al., 1972; Burnstock, 1976). Under normal conditions,
extracellular nucleotides are present at minute concentrations
due to the presence of ectonucleotidases (Robson et al., 2006;
Zimmermann et al., 2012). However, under pathological
conditions nucleotides can accumulate in the extracellular space
at abnormally high concentrations, whereupon they activate
local purinergic receptors in an autocrine or paracrine manner
(Deaglio and Robson, 2011). The purinergic receptor family is
subclassified into P1 adenosine receptors (i.e., A1, A2A, A2B,
and A3) (Piirainen et al., 2011) or P2 nucleotide receptors. The
P2 receptor family is further classified into metabotropic P2Y
receptors (i.e., P2Y1,2,4,6,11−14) and ionotropic P2X receptors
(i.e., P2X1-7) (Abbracchio et al., 2006; Habermacher et al., 2016).

Pharmacological agonists and antagonists targeting purinergic
receptors have gained widespread clinical interest and undergone
clinical trials (Burnstock, 2017). P2X7 receptor (P2X7R)
antagonists have been previously investigated in phase 2 clinical
trials for treatment of inflammatory and autoimmune diseases,
including chronic obstructive pulmonary disorder, rheumatoid
arthritis and Crohn’s disease (Arulkumaran et al., 2011; Keystone
et al., 2012). Recent advances in the development of neuro-
permeable P2X7R antagonists have stimulated interest in the
use of these compounds to treat neuroinflammatory and
neuropsychiatric disorders (Chrovian et al., 2014; Burnstock
and Knight, 2018; Bhattacharya and Ceusters, 2019). The P2X3
receptor (P2X3R) contributes to hypersensitivity of lung afferent
sensory fibers that mediate cough initiation and phase 2 clinical
trials have demonstrated that the P2X3R antagonist gefapixant
(AF-219) reduces refractory chronic cough in afflicted patients
by 75% (Weigand et al., 2012; Abdulqawi et al., 2015). Follow-
up phase 3 clinical trials are currently underway to validate
the use of gefapixant for treatment of refractory chronic cough
(Muccino and Green, 2019).

Due to its ability to stimulate water transport across epithelial
cell membranes following activation of calcium-dependent
chloride channels, the P2Y2 receptor (P2Y2R) agonist diquafosol
has undergone human clinical trials for the treatment of dry eye
disease (DED) and is currently approved for human use in Japan
and South Korea under the trade name Diquas (Tauber et al.,
2004; Takamura et al., 2012; Koh, 2015). A similar P2Y2R agonist,
denufosol, improved lung function relative to placebo in cystic
fibrosis patients during phase 2 clinical trials, but failed to achieve
its primary endpoints during phase 3 follow-up trials (Accurso
et al., 2011). Notably, the FDA-approved anti-coagulant Plavix
(clopidogrel), a P2Y12 receptor (P2Y12R) antagonist, was the 2nd

most prescribed drug in the world in 2010 and is currently on the
World Health Organization’s List of Essential Medicines (Topol
and Schork, 2011; Kishore et al., 2018). However, the therapeutic
potential of targeting purinergic receptors has not been well-
investigated in the context of human salivary dysfunction. In
the salivary glands, several purinergic receptors are expressed
and upregulated under pathological conditions, including SS
(Schrader et al., 2005; Baldini et al., 2013), where their activation
mediates inflammatory and immune responses (Baker et al.,
2008; Khalafalla M.G. et al., 2017), as well as cell repair
mechanisms (El-Sayed et al., 2014). In this review, we summarize
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the role of purinergic receptors in salivary gland function and
highlight their potential as novel therapeutic targets to treat
salivary gland dysfunction.

THE ROLE OF P2 RECEPTORS IN
SALIVARY GLAND FUNCTION

The importance of saliva, as noted above, is clearly exemplified
in individuals suffering from salivary gland hypofunction
(Chambers et al., 2004; Atkinson et al., 2005; Meijer et al.,
2009). In humans, whole unstimulated saliva is formed from
the combined secretions of three pairs of major salivary glands,
the submandibular (∼65%), parotid (∼20%) and sublingual
(∼7%), along with numerous minor glands spread throughout
the oral cavity that produce the remainder of saliva (<10%)
(Humphrey and Williamson, 2001; de Almeida Pdel et al.,
2008; Proctor, 2016). Upon stimulation, the parotid glands
contribute the majority of total salivary secretions (Humphrey
and Williamson, 2001; de Almeida Pdel et al., 2008; Proctor,
2016). Three basic cell types comprise the salivary glands:
acinar epithelial cells that secrete the majority of the water and
electrolytes in saliva, ductal cells that modify the electrolyte
concentrations in the primary fluid and myoepithelial cells that
provide contractile support for acinar cells (Martinez, 1987;
Melvin et al., 2005; de Almeida Pdel et al., 2008; Proctor,
2016). Salivary acinar cells are either serous or mucous, whereas
ductal cells are classified as intercalated, striated or excretory
and the distribution of these cell types is dependent on species
and type of gland (Melvin et al., 2005; de Almeida Pdel
et al., 2008; Proctor, 2016). Along with the formation and
modification of saliva, acinar and ductal cells also secrete
important proteins, e.g., amylase and mucins from acinar cells
(Boehlke et al., 2015; Frenkel and Ribbeck, 2015), kallikrein
from ductal cells (Wong et al., 1983) and growth factors from
both cell types (Masahiko et al., 2008), that are integral in
maintaining the health of the oral cavity (Proctor, 2016). As
shown in Figure 1, saliva formation is initiated in acinar
cells by agonist-induced increases in intracellular Ca2+ levels,
[Ca2+]i, that induce the opening of apical Ca2+-dependent Cl−
channels and basolateral Ca2+-dependent potassium channels,
allowing Cl− efflux into the luminal compartment and K+
efflux into the basolateral compartment to maintain membrane
potential. The negative electrochemical gradient generated by
increased luminal Cl− levels is compensated by the influx of
Na+ ions across tight junctions into the lumen leading to
Na+Cl− accumulation followed by water movement through
water channels, predominately aquaporin-5 (Ma et al., 1999),
thus forming saliva in its primary isotonic form. As saliva
flows through the salivary gland ducts, electrolyte modification
occurs, where Na+ and Cl− ions are exchanged for K+
and HCO−3 ions by ductal cells, creating saliva in its final
hypotonic form (Martinez, 1987; Melvin et al., 2005; Lee
et al., 2012; Ambudkar, 2014; Proctor, 2016). Several types of
Ca2+ mobilizing receptors are expressed on acinar cells (i.e.,
muscarinic, α-adrenergic, substance P), however, stimulation
of the Gq protein-coupled M3 muscarinic receptor (M3R)

subtype by acetylcholine is accepted as the main receptor
signaling pathway that promotes the increases in [Ca2+]i
necessary to enhance fluid secretion. Protein secretion from
acinar and ductal cells is predominately mediated by activation
of the β-adrenergic receptor (β-AR) and subsequent increases
in cAMP (Melvin et al., 2005; Proctor, 2016). In addition
to the canonical M3R and β-AR pathways, a mechanism of
non-cholinergic, non-adrenergic-mediated salivary flow exists
(Ekström et al., 1988; Ekström, 1999; Melvin et al., 2005).
Because purinergic receptor activation can result in an increase
in [Ca2+]i in salivary gland cells, purinergic receptor-mediated
saliva production may contribute to this non-canonical pathway
(Turner et al., 1998b; Melvin et al., 2005; Aure et al., 2010;
Bhattacharya et al., 2015).

In other exocrine tissues, purinergic receptor signaling has
been shown to modulate secretory function of acinar and
ductal cells through the induction of cellular ion fluxes and
cross-talk with cholinergic signaling pathways (Burnstock and
Novak, 2012; Hodges and Dartt, 2016). In the pancreas,
acinar cells have little functional response to exogenously
applied nucleotides (Novak et al., 2002), whereas ductal cells
that secrete bicarbonate and isotonic fluid express numerous
functional P2X and P2Y receptors (Hede et al., 1999). In
response to stimulation by acetylcholine or secretin, pancreatic
ductal cell secretion is mediated by the opening of luminal
Cl− channels, including Ca2+-activated Cl− channels, as
well as basolateral K+ channels to maintain driving force
for ion transport (Novak, 2008). Therefore, the finding that
extracellular ATP and UTP induce increases in [Ca2+]i and
modulate whole cell Cl− and K+ conductance suggests a role
for purinergic receptors in secretory regulation of pancreatic
ductal cells (Christoffersen et al., 1998; Hede et al., 1999;
Zsembery et al., 2000). Furthermore, studies have shown that
cholinergic agonists induce ATP release from pancreatic acinar
cells (Sorensen and Novak, 2001), as well as parotid and
lacrimal gland cell preparations (Novak et al., 2010; Dartt
and Hodges, 2011a), further supporting a role for purinergic
signaling in the regulation of exocrine secretory function. In
rat lacrimal gland acinar cells, extracellular nucleotide-induced
protein secretion and [Ca2+]i increases were inhibited by the
cholinergic antagonist atropine (Dartt and Hodges, 2011a)
whereas in rat parotid acinar cells extracellular nucleotides
attenuated acetylcholine-induced [Ca2+]i increases (Jorgensen
et al., 1995; Fukushi, 1999). Although the nature of purinergic and
cholinergic signaling interaction differs between exocrine tissues,
these studies highlight the likely regulatory role of purinergic
receptors in exocrine secretory function.

Ten years prior to the initial cloning and identification of P2
receptors, Gallacher (1982) presented the first evidence of P2
receptor activation in salivary glands. His studies demonstrated
that ATP evoked a marked increase in membrane conductance,
K+ efflux and amylase secretion in the mouse parotid gland,
events similar to cholinergic- and adrenergic-mediated saliva
secretion (Melvin et al., 2005; Proctor, 2016). McMillian et al.
(1987) showed that high extracellular ATP concentrations
increased [Ca2+]i in rat parotid acinar cells, the signaling
response that promotes saliva production (Melvin et al., 2005).
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FIGURE 1 | Salivary gland acinar and ductal cells contribute to saliva formation. (A) Activation of type 3 muscarinic receptors (M3R) by acetylcholine (Ach) increases
release of calcium from intracellular stores and subsequent opening of the apical Ca2+-dependent chloride channel transmembrane member 16A (TMEM16A; also
known as anoctamin-1) and the basolateral Ca2+-dependent potassium channels MaxiK (Kcnma1) and IK1 (Kcnn4), allowing Cl− efflux into the luminal
compartment and K+ efflux into the basolateral compartment to maintain membrane potential. The combined actions of the Na+/K+/2 Cl− cotransporter NKCC1,
the Na+/H+ exchanger NHE1 and the Cl−/HCO−3 anion exchanger AE2 maintain the pool of intracellular Cl− whereas the Na+/K+ ATPase generates the cellular
Na+ and K+ gradients. Sodium influx down the negative electrochemical gradient into the luminal compartment is followed by water through aquaporin 5 (AQP5)
water channels generating primary isotonic saliva. Modification of saliva by ductal cells involves exchanging sodium and chloride for potassium and bicarbonate
through the combined actions of epithelial Na+ channels (ENaC), cystic fibrosis transmembrane conductance regulator (CFTR) channels, MaxiK channels and
perhaps Cl−/HCO−3 exchangers. The resulting hypotonic saliva is then secreted through ducts into the oral cavity. Functional P2X4, P2X7, P2Y1, and P2Y2 receptor
expression has been demonstrated in both acinar and ductal cells where they may regulate secretory functions through nucleotide-induced Ca2+ signaling and
modulation of membrane ion conductance. Available evidence suggests that P2X7 and P2Y2 receptors exist on both apical and basolateral membranes while P2X4
receptors are restricted to the basolateral compartment and P2Y1 receptor localization is undetermined. Importantly, P2 receptor expression in salivary gland tissue
varies depending on species, isolation/culture methods and the presence of inflammatory stimuli, making definitive localization inexact. (B) Acinar (white) and ductal
(yellow) cells outlined in a hematoxylin and eosin-stained section of a female C57BL/6 mouse submandibular gland.
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Additional studies by the same group and others determined
that the large ATP-induced rise in [Ca2+]i was due to the influx
of extracellular Ca2+ through a non-selective cation channel
activated by the fully ionized form of ATP (i.e., ATP4−) (Soltoff
et al., 1990; Dehaye, 1993; McMillian et al., 1993). The order
of agonist potency for channel activation in these studies was
determined to be BzATP > ATP > ATPγS = 2MeSATP; thus,
the receptor was classified as P2Z, now known as the P2X7
receptor (P2X7R) (Soltoff et al., 1990; Dehaye, 1993; McMillian
et al., 1993). Thus, a physiological role for ATP in the Ca2+-
dependent formation of saliva was proposed, particularly since
ATP was known to be released as a co-transmitter from activated
sympathetic and parasympathetic nerve fibers (von Kugelgen
et al., 1994; Novak, 2003). During the ensuing years, especially
following the cloning, expression and identification of cDNAs for
a variety of P2 receptors in the early 1990s (Lustig et al., 1993;
Webb et al., 1993; Nguyen et al., 1995; Surprenant et al., 1996),
several groups confirmed the expression of P2X7R in salivary
gland cells and also identified and functionally characterized
the ionotropic P2X4 receptor (P2X4R) and metabotropic P2Y
receptors, P2Y1R and P2Y2R, in these cells (Turner et al., 1999).

The P2X7R is a 595 amino acid protein that includes
two transmembrane domains, intracellular carboxy and amino
termini and a bulky hydrophilic extracellular loop with a
cysteine rich region that forms disulfide bridges (McCarthy
et al., 2019). It shares 40–50% amino acid homology with
the other P2X receptors, but is structurally distinct in that its
C-terminal tail extends for an additional 100–200 amino acids
(North, 2002; Adinolfi et al., 2005; Sluyter, 2017). The P2X7R
is activated by high extracellular ATP (eATP) concentrations
(>100 µM) with brief stimulation (10–30 s) causing the
depolarization of the plasma membrane due to the opening
of a membrane cation channel that promotes the influx of
Na+ and Ca2+ and the efflux of K+ (Weisman et al., 1984,
1989; Adinolfi et al., 2005). Sustained P2X7R activation induces
the opening of a pore permeable to hydrophilic molecules
up to 900 Da, and promotes production of reactive oxygen
species (ROS), NLRP3 inflammasome-dependent IL-1β release,
extensive plasma membrane blebbing and ultimately cell death
(Weisman et al., 1984, 1989; Woods et al., 2012; Di Virgilio
et al., 2017; Giuliani et al., 2017; Khalafalla M.G. et al., 2017).
The P2X7R is widely expressed in diverse tissues, including
hematopoietic cells (Feng et al., 2016), neurons (Miras-Portugal
et al., 2017), glia (Stokes et al., 2015; Kaczmarek-Hajek et al.,
2018), bone (Agrawal and Gartland, 2015), muscle (Fabbrizio
et al., 2019), endothelium (Green et al., 2018), epithelium
(Woods et al., 2012), and immune cells (Ferrari et al., 1997).
In the exocrine pancreas, P2X7Rs have been shown to be
primarily expressed in pancreatic ductal cells where they may
contribute to secretory regulation through induction of cation
fluxes and interaction with cholinergic signaling (Novak et al.,
2010; Burnstock and Novak, 2012). Similarly, in lacrimal glands
P2X7Rs mediate [Ca2+]i increases, ERK1/2 activation, protein
secretion and modulate both cholinergic and adrenergic receptor
signaling pathways (Hodges et al., 2009; Dartt and Hodges,
2011a,b). After its initial characterization in rat parotid acinar
cells (McMillian et al., 1987; Gibbons et al., 2001), P2X7R

expression and function were reported to promote increases
in [Ca2+]i in rat submandibular acinar cells (Lee et al., 1997;
Alzola et al., 2001), murine parotid (Li et al., 2003; Reyes
et al., 2008; Bhattacharya et al., 2012) and submandibular acinar
cells (Nakamoto et al., 2009) and human parotid acinar cells
(Brown et al., 2004).

In addition to numerous studies defining its role in mediating
inflammatory and immune responses in disease models (Savio
et al., 2018; Cao et al., 2019; Zeng et al., 2019), including those
pertaining to salivary glands (Woods et al., 2012; Khalafalla
M.G. et al., 2017), there is evidence that P2X7Rs regulate
salivary secretory function (Nakamoto et al., 2009; Novak et al.,
2010; Pochet et al., 2013). Along with its ability to increase
[Ca2+]i due to calcium influx, P2X7R activation has been
shown to inhibit mobilization of intracellular Ca2+ induced by
muscarinic or substance P receptor agonists in rat submandibular
acinar cells (Hurley et al., 1993; Metioui et al., 1996) and
cholinergic mobilization of [Ca2+]i was significantly increased
in parotid acinar cells prepared from P2X7R-null (P2X7R−/−)
mice (Novak et al., 2010). The mechanism of this inhibition is
still unclear, but it does not appear to be due to interference
with binding of the autonomic agonists to their receptors (Hurley
et al., 1993). This observation was corroborated in an ex vivo
murine submandibular gland (SMG) preparation, where co-
stimulation with ATP and muscarinic receptor agonists had an
inhibitory effect on the gland’s saliva production (Nakamoto
et al., 2009). Further, in glands prepared from P2X7R−/− mice
the inhibitory effect of ATP on carbachol-induced saliva secretion
was abolished, suggesting an inhibitory role for P2X7Rs in saliva
production (Nakamoto et al., 2009). However, in this same study
ATP or BzATP alone evoked fluid secretion in a time-dependent
manner that was greatly reduced in glands from P2X7R−/−
mice, whereas carbachol alone induced similar saliva secretion in
wild type and P2X7R−/− glands. Similarly, another study found
no significant difference in cholinergic-mediated whole saliva
secretion in P2X7R−/−mice compared to wild type (Pochet et al.,
2007). In contrast, Novak et al. (2010) found that cholinergic-
mediated whole saliva secretion was significantly decreased in
P2X7R−/− mice, as compared to wild type mice, and this was
particularly evident in male mice. While the reasons for the
disparities among these studies are unclear, they may be due
to differences in the type of saliva collected (i.e., whole saliva
vs. saliva from specific glands), methods of induction of saliva
secretion, tissue specificity, sex, or mouse strain.

The P2X7R is also expressed in rat (Lee et al., 1997; Alzola
et al., 1998) and mouse salivary ductal cells (Li et al., 2003; Pochet
et al., 2007; Nakamoto et al., 2009), suggesting participation in the
modification of the electrolyte content of saliva. Studies indicate
no difference in [Na+] or [Cl−] in muscarinic agonist-induced
whole saliva secreted in wild type compared to P2X7R−/− mice,
however the [K+] was elevated in P2X7R−/− mouse whole
saliva (Pochet et al., 2007). Since the majority of the K+ in
saliva originates from ductal cells, it has been hypothesized
that ATP released from acinar cells during exocytosis stimulates
ductal P2X7Rs that regulate the activity of K+ channels located
on the apical membrane (Liu et al., 1999; Bhattacharya et al.,
2015). In addition to K+ modification, activation of P2X7Rs in
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ductal cells increases phospholipase A2-dependent secretion of
arachidonic acid, a precursor of prostaglandin E2 (PGE2), and
kallikrein (Alzola et al., 1998) into saliva (Pantano et al., 2019).
Interestingly, cell lines of salivary origin exhibit low expression
and function of P2X7R, which are enhanced following DNA
demethylation (Shin et al., 2015).

Another P2X ionotropic receptor expressed in salivary acinar
and ductal cells is the P2X4R (Turner et al., 1998b). Unlike the
P2X7R’s requirement for activation by high eATP concentrations,
P2X4Rs have nanomolar affinity for ATP (North, 2016; Suurvali
et al., 2017) and were initially found to regulate the biphasic
response to ATP in rat parotid gland cells (McMillian et al.,
1993). The P2X4R is widely expressed in a variety of cell
types, e.g., neurons and microglia (Ho et al., 2014), epithelium
(Casas-Pruneda et al., 2009), and endothelium (Lv et al., 2015),
and P2X4R expression in microglia is notable for the key
role it plays in mediating neuropathic pain (Inoue, 2019).
Although RT-PCR analysis has identified P2X4R expression in
pancreatic acinar and ductal cells (Luo et al., 1999; Novak
et al., 2002) and lacrimal gland acinar cells (Hodges et al.,
2011; Kamada et al., 2012), its functional role in exocrine
tissues remains largely unexplored. Physical interactions between
P2X4Rs and P2X7Rs have been demonstrated, although the
nature of this interaction remains controversial (Kopp et al.,
2019). Some studies suggest that P2X4R and P2X7R subunits
form heteromeric channels (Guo et al., 2007; Schneider et al.,
2017), while others conclude that P2X4 and P2X7 receptors
interact in their respective homotrimeric form (Nicke, 2008;
Boumechache et al., 2009; Antonio et al., 2011). Furthermore,
P2X4R expression has been localized to lysosomal membranes,
whereas P2X7Rs primarily reside at the plasma membrane (Guo
et al., 2007; Huang et al., 2014). Nevertheless, studies have also
demonstrated functional evidence for P2X4R/P2X7R interactions
(Guo et al., 2007; Kawano et al., 2012; Perez-Flores et al., 2015). In
salivary epithelium, P2X4Rs modulate P2X7R-mediated ion flow
and ethidium bromide dye uptake (Casas-Pruneda et al., 2009),
suggesting a functional interaction that regulates physiological
processes, including plasma membrane ion channel function and
pore formation. Importantly, the interaction between these two
purinergic receptors results in a decreased sensitivity to ATP,
as compared to the P2X4R or P2X7R alone, suggesting the
formation of heteromeric channels with novel functional and
pharmacological properties (Casas-Pruneda et al., 2009).

While the contribution of P2X4R activation to physiological
saliva production has not been explored, ex vivo murine SMG
preparations from P2X7R−/− mice exhibit weak ATP-induced
saliva secretion that could be attributed to P2X4R activation
(Nakamoto et al., 2009). As seen previously with muscarinic
or adrenergic receptor activation (Baldys-Waligorska et al.,
1987; Yoshimura and Hiramatsu, 1998; Tanimura et al., 1999;
Bruce et al., 2002), co-stimulation of β-adrenergic receptors and
P2X7Rs or P2X4Rs enhanced the influx of Ca2+ in mouse parotid
acinar cells, as compared to activation of either receptor alone
(Bhattacharya et al., 2015). In contrast, studies using human
parotid acinar cells found this co-stimulatory effect only between
the P2X4R and β-adrenergic receptor (Brown et al., 2004).
Taken together, the expression of both P2X7Rs and P2X4Rs

in salivary glands supports the idea that they are involved in
the interplay between canonical and non-canonical signaling
pathways that regulate saliva flow and composition and their
involvement is likely dependent on their tissue localization (i.e.,
basal vs. apical) in polarized acinar and/or ductal epithelial cells
(Bhattacharya et al., 2012, 2015).

The metabotropic P2Y1 receptor (P2Y1R), formerly known
as the P2T receptor, has been identified and cloned (Webb
et al., 1993; Baranska et al., 2017) and has features typical of G
protein-coupled receptors, i.e., an extracellular N-terminus and
an intracellular C-terminus, seven hydrophobic transmembrane
regions, three extracellular loops and three intracellular loops
(von Kugelgen and Hoffmann, 2016). The P2Y1R has a
distinctive rank order of agonist potencies (i.e., 2-methylthio-
ADP > ADP > ATP) and its activation induces canonical Gαq
signaling leading to phospholipase C activation and generation
of the second messengers inositol 1, 4, 5-trisphosphate (IP3)
and diacylglycerol that increase [Ca2+]i and protein kinase
C (PKC) activity, respectively (von Kugelgen and Wetter,
2000; Abbracchio et al., 2006; Baranska et al., 2017; von
Kugelgen, 2019). Additionally, P2Y1R activation stimulates
metalloprotease-dependent transactivation of the epidermal
growth factor receptor (EGFR) (Buvinic et al., 2007) and
mitogen-activated protein kinase (MAPK) activity through
activation of phosphatidylinositol 3-kinase, Src kinase and PKC
(Sellers et al., 2001; Baranska et al., 2017). The P2Y1R is
widely distributed in mammalian tissues and is involved in
many physiological and biochemical responses, such as platelet
aggregation (Fabre et al., 1999), pain sensation (Barragan-
Iglesias et al., 2015), vasodilation (Zerr et al., 2011), bone
remodeling (Orriss et al., 2011), and osmotic volume regulation
(Grosche et al., 2013). In exocrine tissues, immunofluorescence
and RT-PCR analyses provide evidence of P2Y1R expression
in pancreatic ductal cells where P2Y1R agonists also induce
[Ca2+]i increases (Luo et al., 1999; Coutinho-Silva et al.,
2001). However, the role of P2Y1Rs in exocrine pancreas
function has been unexplored. Likewise, P2Y1R expression has
been demonstrated in lacrimal acinar cells and myoepithelial
cells by RT-PCR, immunofluorescence and measurement of
P2Y1R agonist-induced [Ca2+]i increases, but further functional
analyses are lacking (Ohtomo et al., 2011). Interestingly, the
P2Y1R has been used as a surrogate cell-surface marker for the
nuclear protein pancreatic duodenal homeobox 1 (PDX1) to
isolate progenitor-like ductal cells from human pancreatic tissues,
although no functional role for P2Y1Rs was investigated (Qadir
et al., 2018). In contrast, studies on endocrine pancreas function
suggest a role for P2Y1Rs in mediating insulin secretion from
β cells (Leon et al., 2005; Petit et al., 2009). The P2Y1R is also
involved in tissue development, as was first described in chick
embryos (Meyer et al., 1999; Meyer et al., 2001) and more recently
in the developing brain (Huang et al., 2019). In the developing
rat salivary gland, it was observed that acinar cells prepared from
immature glands of 1 day-old pups had a robust [Ca2+]i response
to P2Y1R agonists, whereas acini prepared from adult rat
salivary glands had no response (Park et al., 1997). Interestingly,
P2Y1R mRNA expression remained the same at all ages in
rats, suggesting that the loss of the P2Y1R-mediated [Ca2+]i
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response may be due to age-dependent alterations in intracellular
G protein coupling (Park et al., 1997). A subsequent study using
rat SMG acinar and ductal cell preparations confirmed the age-
dependent reduction in P2Y1R-mediated increases in [Ca2+]i
and, similarly, found unchanged P2Y1R expression levels at all
ages (Baker et al., 2006). This study further demonstrated that
P2Y1R-mediated activation of the MAPKs, extracellular signal-
regulated kinases 1 and 2 (ERK1/2), was consistent in rats of
all ages, indicating that ERK1/2 activation is independent of
P2Y1R-mediated changes in [Ca2+]i. Western analysis and assays
of GTPγ35S binding to G proteins determined that the age-
dependent decrease in P2Y1R activity in rat SMG cells was
due to both decreased expression of the 52 kDa Gα14 protein
and differential coupling of P2Y1Rs to Gαq/11 with age (Baker
et al., 2006). These studies suggest that P2Y1Rs use diverse
mechanisms for coupling to multiple G proteins that regulate a
variety of physiological responses during development. To date,
these findings have not been confirmed in salivary glands of
mice, but with the availability of P2Y1R-null mice, it would be
of interest to assess the role of this receptor in salivary gland
morphology and function during development.

The P2Y2R (formerly known as the P2U receptor),
equipotently activated by ATP or UTP (EC50 ∼ 2 µM),
is the only other known Gαq-coupled purinergic receptor
identified in salivary glands (Turner et al., 1998b, 1999) and
has been cloned and functionally characterized in mice and
humans (Erb et al., 1993; Lustig et al., 1993; Parr et al., 1994).
Similar to the P2Y1R, P2Y2R activation induces canonical Gαq
signaling leading to increases in [Ca2+]i and PKC activation,
and the P2Y2R is expressed in numerous cell and tissue types,
e.g., neurons (Peterson et al., 2013), epithelium (Shishikura
et al., 2016; Wu et al., 2017), endothelium (Seye et al., 2003)
and immune cells (Idzko et al., 2014; Woods et al., 2018),
where it modulates a variety of cellular responses, including
neurotransmission (Zhang and Li, 2019), proliferation (Shen
et al., 2004), cell migration (Bagchi et al., 2005), cytoskeletal
rearrangements (Liao et al., 2007), and ion fluxes (Murakami
et al., 2004). The diversity of cellular responses mediated by
P2Y2Rs is due, in part, to unique structural features enabling
activation of multiple signal transduction pathways. In addition
to canonical Gαq signaling (Parr et al., 1994), the P2Y2R contains
a motif typically found in extracellular matrix proteins, i.e.,
an Arg-Gly-Asp (RGD)-sequence, in its first extracellular loop
that binds to αvβ3/β5 integrins to activate Go and G12 proteins,
enhance MAPK (ERK1/2) phosphorylation and regulate ATP-
and UTP-induced cell chemokinesis and chemotaxis (Erb
et al., 2001; Bagchi et al., 2005; Wang et al., 2005; Liao et al.,
2007). Within the intracellular C-terminus of the P2Y2R,
Src-homology-3 (SH3) binding domains (PXXP) enable the
P2Y2R to bind and activate the tyrosine kinase Src, enabling
nucleotide-induced, Src-dependent transactivation of growth
factor receptors and downstream MAPKs that regulate cell
proliferation and migration (Liu et al., 2004; Seye et al., 2004).
Additionally, interaction of the P2Y2R C-terminus with the
actin-binding protein filamin-A contributes to cell migration
and Rho GTPase-mediated cytokine release (Yu et al., 2008; Seye
et al., 2012). The P2Y2R also mediates the proprotein convertase

furin-dependent activation of metalloproteases, i.e., a disintegrin
and metalloproteinase 10 and 17 (ADAM10/17), to cleave
transmembrane proteins (Camden et al., 2005), thereby releasing
EGFR/ERB ligands that promote Src-independent EGFR
activation (Ratchford et al., 2010). These diverse P2Y2R signaling
pathways have been implicated in a number of pathologies,
including Alzheimer’s disease (Ajit et al., 2014), cardiovascular
disease (Chen et al., 2017), cancer (Hu et al., 2019), SS (Woods
et al., 2018), and hantavirus cardiopulmonary syndrome (Bondu
et al., 2018), as well as processes such as wound healing (Jin et al.,
2014) and tissue regeneration (El-Sayed et al., 2014).

In exocrine tissues such as the lacrimal gland, RT-PCR and
immunohistochemical analyses have identified P2Y2R expression
in acinar and ductal cells (Kamada et al., 2012; Tanioka et al.,
2014). While no functional response to the P2Y2R agonist UTP
was observed in lacrimal acinar cells (Kamada et al., 2012),
cultured lacrimal gland myoepithelial cells do exhibit increased
[Ca2+]i in response to extracellular UTP suggesting the presence
of P2Y2 or P2Y4 receptors (Ohtomo et al., 2011). In the exocrine
pancreas, RT-PCR and immunohistochemical analyses indicate
that P2Y2Rs are expressed in both pancreatic acini (Novak et al.,
2002) and ductal cells (Hede et al., 1999; Luo et al., 1999;
Coutinho-Silva et al., 2001), although very few pancreatic acinar
cells show functional responses to extracellular ATP or UTP
(Novak et al., 2002). In pancreatic ductal cells, P2Y2R-mediated
increases in [Ca2+]i altered whole-cell K+ conductance (Hede
et al., 1999), likely through modulation of Ca2+-activated K+
channels (Hede et al., 2005), suggesting a role in the regulation of
ductal fluid flow and Cl−/HCO−3 levels. Studies with pancreatic
ductal cell lines have also shown that the P2Y2R agonists ATP
and UTP increase membrane Cl− conductance through the
opening of Ca2+-dependent Cl− channels (Galietta et al., 1994;
Chan et al., 1996; Zsembery et al., 2000). The ability of P2Y2Rs
to induce chloride secretion and subsequent fluid flow across
epithelial cell membranes led to investigation of the P2Y2R as
a therapeutic target for cystic fibrosis (Weisman et al., 1998;
Kellerman et al., 2002; Lazarowski and Boucher, 2009). By
stimulating Ca2+-dependent Cl− secretion, topical application
of the selective P2Y2R agonist diquafosol has been shown to
promote tear secretion and is currently being used to treat DED
(Jacobson and Civan, 2016).

In 1991, the P2Y2R was first identified in a cell line of salivary
gland origin, human salivary gland (HSG) cells, where it was
shown to mediate UTP-induced IP3 production and increases in
[Ca2+]i and plasma membrane K+ transport (Yu and Turner,
1991). A subsequent study determined that exposure of HSG cells
to UTP potentiated a regulatory volume decrease (RVD) after
hypotonic stress, suggesting that activation of P2Y2Rs provides
the driving force for net Cl− efflux that enables the cells to
rapidly restore their volume (Kim et al., 1996), a response that
occurs during salivary secretion (Melvin et al., 2005). In 1998,
it was shown that simian virus 40-transformed salivary cell lines
from rat SMG and parotid glands (Quissell et al., 1998), unlike
HSG cells, were suitable for Ussing chamber studies due to their
ability to form polarized cell monolayers (Turner et al., 1998a).
Using the polarized rat parotid cell line Par-C10 in a Ussing
chamber, transepithelial resistance measurements determined
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that functional P2Y2R expression was localized to the apical
membrane, consistent with its localization in other epithelium
(Hwang et al., 1996; Chan et al., 1997; Yang et al., 2009),
and its activation by UTP increased an anion (Cl−/HCO−3 )-
dependent change in short-circuit current (Isc) (Chan et al.,
1996, 1997; Clarke et al., 1999). Taken together, these results
suggest that expression of P2Y2Rs on salivary gland epithelium
may contribute to saliva secretion; however, subsequent studies
with freshly isolated salivary acinar cells showed little evidence
of P2Y2R expression or activity under steady-state conditions
(Turner et al., 1997; Ahn et al., 2000; Schrader et al., 2005).
Moreover, carbachol-stimulated whole saliva secretion in P2Y2R-
null mice (P2Y2R−/−) is unchanged compared to wild type mice
(Woods et al., 2018), suggesting that P2Y2Rs do not contribute
to overall fluid secretion. Earlier studies demonstrated UTP-
induced Cl− fluxes in rat salivary duct cells (Lee et al., 1997; Zeng
et al., 1997) with one study suggesting that P2Y2R expression
on striated ducts regulates CFTR activity (Ishibashi et al., 2008),
thereby possibly modifying the ionic content of saliva.

THE ROLE OF P2 RECEPTORS IN
SALIVARY GLAND INFLAMMATION

The contribution of P2 receptors to physiological salivary gland
function is predicated on the presence of endogenous agonists
(i.e., extracellular nucleotides) in sufficient concentrations to
activate their cognate receptors, as is the case when ATP
is co-released with neurotransmitters from sympathetic and
parasympathetic nerves (von Kugelgen et al., 1994; Novak, 2003).
In exocrine tissues such as the pancreas and lacrimal glands,
ATP is released in response to stimulation by physiological
agonists such as acetylcholine and cholecystokinin-8 (Sorensen
and Novak, 2001; Yegutkin et al., 2006; Novak et al.,
2010; Dartt and Hodges, 2011a). Additionally, measurable
amounts of ATP are present in rat saliva induced by
intraperitoneal pilocarpine administration (Ishibashi et al., 2008).
However, the concentration of extracellular nucleotides is tightly
regulated under physiological conditions and maintained in
the low µM range by ectonucleotidases (Pellegatti et al.,
2008; Di Virgilio et al., 2018), such as the nucleoside
triphosphate diphosphohydrolase ENTPD1 (CD39) and related
family members (Deaglio and Robson, 2011; Zimmermann
et al., 2012). Using conventional luciferin/luciferase luminescence
measurements or cell-based biosensors, the concentration of
extracellular ATP released from pancreatic acinar or β cells has
been measured at ∼10–25 µM (Hazama et al., 1998; Sorensen
and Novak, 2001), although in vivo measurement of absolute
extracellular nucleotide concentrations is an active area of
research (De Marchi et al., 2020). However, during periods of
inflammation or other cellular stresses, such as hypoxia in the
tumor microenvironment, extracellular ATP levels have been
shown to exceed 100 µM and are likely much higher in the
context of the confined pericellular space (Pellegatti et al., 2008;
Joo et al., 2014; Di Virgilio et al., 2018; De Marchi et al.,
2019). Immune and apoptotic cells release ATP through connexin
and pannexin hemichannels during inflammatory responses and

uncontrolled release of intracellular ATP pools can also occur
during cell necrosis (Eltzschig et al., 2006; Chekeni et al., 2010).
Mounting evidence also suggests that connexin 43-mediated
ATP release from γ-irradiated cells causes the radiation-induced
bystander effect where adjacent, non-irradiated cells exhibit
physiological responses mediated by P2 receptors (Tsukimoto
et al., 2010; Ohshima et al., 2012; Tsukimoto, 2015; Kojima
et al., 2017). Interestingly, the ionotropic P2X7 receptor also
has been shown to mediate ATP release (Suadicani et al., 2006;
Ohshima et al., 2010), likely through its sustained activation that
leads to membrane depolarization and pore formation (Dahlquist
et al., 1974; Weisman et al., 1984; Buisman et al., 1988), and
P2X7R blockade has been shown to attenuate ionizing radiation
(IR)-induced ATP release from salivary acinar cells (Gilman
et al., 2019). Recognizing that salivary gland inflammation and
radiation exposure, two common sources of salivary gland
dysfunction, promote the release of extracellular nucleotides
and subsequent P2 receptor activation, defining the role of P2
receptors in salivary gland pathophysiology has been an area of
intense interest.

In addition to its role as an ion channel, activation of
the P2X7R initiates signaling cascades that produce pro-
inflammatory cytokines (e.g., IL-1β, IL-18, IL-6, IL-8, and
TNF-α) to enable antigen-presenting cells to initiate innate
immune responses (Ferrari et al., 1997; Solini et al., 1999;
Mehta et al., 2001; Lister et al., 2007; Shieh et al., 2014). In
salivary epithelium, our group has shown that P2X7R activation
with ATP or BzATP triggers apoptotic and pro-inflammatory
cell responses, including increases in caspase-1 and caspase-3
activity and immune cell infiltration into wild type, but not
P2X7R−/−, mouse SMGs (Woods et al., 2012). Also, P2X7R
activation in salivary epithelium was found to induce the
assembly of the NLRP3 inflammasome multiprotein complex and
the subsequent release of IL-1β, a response that was dependent
on K+ efflux, production of ROS and functional heat shock
protein 90 (Khalafalla M.G. et al., 2017). P2X7R activation also
has been shown to mediate the protease-dependent release of
α-fodrin (Woods et al., 2012), a putative autoantigen associated
with SS (Miyazaki et al., 2005), through a mechanism that
requires caspase-3 and calpain enzymatic activities (Hwang et al.,
2009b). P2X7R activation induces membrane blebbing, an early
indicator of cell apoptosis, in salivary epithelial cells isolated from
wild type, but not P2X7R−/−, mice (Woods et al., 2012). The
mechanism of P2X7R-mediated membrane blebbing was shown
to require sustained elevation of [Ca2+]i, activation of the ROCK
I signaling pathway and phosphorylation of myosin light chain,
but does not involve caspase-3 activation (Hwang et al., 2009a).

There are increasing lines of evidence that P2X7R-induced
pro-inflammatory responses are modulated by the P2X4R as
well. In immune cells, P2X4Rs have been shown to modulate
P2X7R-induced IL-1β release and dye uptake through interaction
with the P2X7R C-terminus and P2X4R antagonism abolished
P2X7R-induced Ca2+ influx and IL-1β and IL-18 release (Sakaki
et al., 2013). In gingival epithelial cells, P2X7Rs, P2X4Rs and
pannexin-1 hemichannels were all required for ATP-induced
ROS production, NLRP3 inflammasome activation and IL-1β

release (Hung et al., 2013). These cellular mechanisms may also
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be important in IL-1β release from salivary epithelium, where
P2X4Rs have been shown to modulate P2X7R-mediated ion flow
and pore formation (Casas-Pruneda et al., 2009).

In rodent salivary glands, P2Y2R expression is negligible under
physiological conditions. Interestingly, freshly dispersed salivary
epithelial cells significantly upregulated P2Y2R expression and
activity as a function of time when placed in culture (Turner
et al., 1997; El-Sayed et al., 2014), consistent with a possible role
for P2Y2R in the cellular response to stress. P2Y2R upregulation
also occurs in the in vivo ductal ligation model of salivary
gland inflammation and fibrosis (Ahn et al., 2000) and has
been similarly seen in other in vivo models of stress and
inflammation, i.e., intestinal inflammation (Grbic et al., 2008),
rat vascular neointima formation after balloon angioplasty (Seye
et al., 1997), collared rabbit carotid arteries (Seye et al., 2002),
glomerulonephritis (Rennert et al., 2018), myocardium of rats
with congestive heart failure (Granado et al., 2015) and mouse
models of the autoimmune disease SS (Schrader et al., 2005;
Woods et al., 2018). IL-1β has been previously shown to induce
P2Y2R upregulation (Kong et al., 2009; Peterson et al., 2013),
likely through binding of NF-κB p65 to the P2Y2R promoter
region that has been demonstrated to mediate inflammation-
induced P2Y2R upregulation in human intestinal epithelial cells
(Degagne et al., 2009). Taken together, these studies suggest that
ATP released from stressed cells during inflammation activates
P2X7Rs to induce the release of IL-1β and other cytokines.
Subsequent activation of IL-1 receptors by IL-1β in surrounding
cells induces P2Y2R upregulation and further downstream
responses to ATP and UTP. In this way, the release of a single
alarmin (e.g., ATP or UTP) in response to cellular stress can
locally modulate a wide range of signaling pathways to fine-tune
the tissue response to inflammatory stimuli.

In HSG cells, UTP-induced activation of P2Y2Rs has been
shown to regulate localized immune responses and the binding
of immune cells through the upregulation of the cell adhesion
molecule VCAM-1 via an EGFR-dependent mechanism (Baker
et al., 2008). Furthermore, P2Y2R activation has been shown
to stimulate the production and secretion of pro-inflammatory
lymphotoxin-α (LT-α), a member of the tumor necrosis factor
family of cytokines that is required for the development of
lymphoid tissues and mediates interactions between immune
cells (Shen et al., 2010, 2013), suggesting multiple mechanisms
whereby P2Y2Rs regulate localized immune responses relevant to
salivary gland inflammation (Seye et al., 2012; Qian et al., 2016;
Woods et al., 2018).

P2 RECEPTORS IN SJÖGREN’S
SYNDROME

A number of autoimmune inflammatory diseases are reported
to impact the function of salivary glands, including rheumatoid
arthritis (Nagler et al., 2003; Helenius et al., 2005; Zalewska et al.,
2011), systemic lupus erythematosus (SLE) (Leite et al., 2015) and
diabetes mellitus (Moore et al., 2001). One of the major causes
of salivary gland dysfunction is chronic inflammation associated
with the autoimmune disease SS, the 2nd most common

autoimmune rheumatic disease in the U.S., in which unresolved
inflammation of the salivary and lacrimal glands contributes to
tissue degeneration and subsequent loss of function (Helmick
et al., 2008; Vivino, 2017). Clinical classification criteria for
primary SS (pSS) in the absence of other autoimmune diseases
include the presence in blood serum of anti-Ro/SSA and anti-
La/SSB autoantibodies to their intracellular antigens, increased
corneal staining using fluorescein dye (ocular staining score≥ 5),
decreased tear (Schirmer’s test ≤ 1 mm/min) and saliva
(≤ 0.1 ml/min) flow rates and the presence of focal lymphocytic
sialadenitis (focus score ≥ 1 foci/4 mm2) in minor salivary
gland biopsies (Shiboski et al., 2017). During SS pathogenesis,
T and B cells (van Woerkom et al., 2005; Daridon et al.,
2006), dendritic cells (Ozaki et al., 2010; Zhao et al., 2016),
and macrophages (Manoussakis et al., 2007) accumulate in the
salivary glands where, along with salivary gland epithelial cells,
they produce numerous pro-inflammatory cytokines, including
IFN-γ, B cell-activating factor, TNF-α, IL-1β, IL-6 and IL-
18, which initiate pro-inflammatory immune responses that
ultimately degenerate the salivary glands (Hulkkonen et al., 2001;
Willeke et al., 2003; Daridon et al., 2007; Sakai et al., 2008; Nezos
et al., 2015). Additionally, SS patients produce high levels of
immunoglobulins and autoantibodies besides anti-Ro/SSA and
anti-La/SSB (Nardi et al., 2006; Suresh et al., 2015), including
anti-α-fodrin (Watanabe et al., 1999; Miyazaki et al., 2005), RF
(rheumatoid factor) (Müller et al., 1989; Huo et al., 2010) and
other autoantibodies (Ramos-Casals et al., 2006; Shen et al., 2014;
Suresh et al., 2015) that have been previously reported to activate
intrinsic and extrinsic apoptotic pathways in salivary gland cells
(Sisto et al., 2006; Lisi et al., 2007). Furthermore, anti-muscarinic
receptor-3 autoantibodies that inhibit saliva production and
aquaporin translocation to the plasma membrane (Bacman et al.,
1996; Dawson et al., 2006) have been identified in the blood
serum of SS patients. Taken together, these data suggest that
chronic auto-inflammatory responses along with autoantibody-
induced reductions in saliva and tear production and increased
salivary acinar cell apoptosis contribute to pSS pathogenesis that
ultimately leads to salivary gland dysfunction and fibrosis as
well as systemic pathologies (i.e., chronic fatigue, lymphoma
development, and secondary autoimmune manifestations).

Previous studies have demonstrated that the expression of
P2X7R, caspase-1, IL-1β , IL-18 and components of the NLRP3
inflammasome multiprotein complex are significantly increased
in labial salivary gland biopsies from SS patients, which positively
correlates with salivary gland focus score (# of mononuclear cell
foci/4 mm2 tissue area) (Baldini et al., 2013, 2017). Furthermore,
these studies found that when SS patients were stratified based
on the presence of anti-Ro/SSA autoantibodies, the increased
expression of P2X7R and NLRP3 inflammasome components
was even more pronounced in seropositive cohorts compared
to seronegative cohorts (Baldini et al., 2013, 2017). Subsequent
immunofluorescence analysis indicated that P2X7R expression in
SS salivary gland biopsies co-localized with the acinar epithelial
cell marker aquaporin 5, rather than immune cell markers,
suggesting that P2X7Rs on salivary gland epithelium contribute
to SS pathogenesis through a process termed autoimmune
epithelitis (Mitsias et al., 2006; Baldini et al., 2017). Additionally,

Frontiers in Pharmacology | www.frontiersin.org 9 March 2020 | Volume 11 | Article 222

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-11-00222 March 12, 2020 Time: 14:35 # 10

Khalafalla et al. P2 Receptors in Salivary Glands

this prospective study of 147 SS patients over ∼5 years
found that those who eventually developed mucosa-associated
lymphoid tissue non-Hodgkin lymphoma (MALT NHL), a
serious complication of SS, had significantly higher labial salivary
gland P2X7R expression at the time of SS diagnosis compared
to non-lymphoma SS patients, suggesting that P2X7R expression
may be a useful biomarker for MALT NHL development (Baldini
et al., 2017). In an analysis of P2X7R functional polymorphisms in
114 SS patients and 136 non-SS controls, the frequency of a single
nucleotide polymorphism in exon 13 (A1405G, rs2230912) was
significantly increased in seropositive SS patients, as compared
to control subjects (Lester et al., 2013). As determined by ATP-
induced ethidium bromide uptake to detect P2X7R activation
in isolated peripheral blood lymphocytes, the P2X7R A1405G
polymorphism was found to be a gain-of-function mutation
that was suggested to be a risk factor for seropositive SS in the
absence of other SS-associated human leukocyte antigen risk
alleles. However, this A1405G association failed to be replicated
in a larger patient cohort (Lester et al., 2013).

Antagonism of the P2X7R, whose encoding gene is located
within a mapped SLE susceptibility region on chromosome
12 (Elliott et al., 2005), has been investigated as a potential
treatment for several inflammatory diseases, including SLE
(Turner et al., 2007; Taylor et al., 2009), rheumatoid arthritis
(Arulkumaran et al., 2011) and chronic obstructive pulmonary
disease (Lucattelli et al., 2011). Due to its increased expression
in salivary gland biopsies from SS patients (Baldini et al., 2013)
and its reported role in the activation of pro-inflammatory
responses in salivary epithelium (Woods et al., 2012), the
P2X7R has emerged as an appealing therapeutic target to treat
SS. Our group reported that in vivo inhibition of P2X7Rs
using the competitive antagonist A-438079 significantly reduced
sialadenitis and improved carbachol-induced saliva flow in
the NOD.H-2h4, CD28−/−, IFNγ−/− murine model of SS-
like salivary gland autoimmune exocrinopathy (Khalafalla M.G.
et al., 2017). P2X7R antagonism also significantly reduced
salivary gland expression of immunoactive molecules known
to be upregulated in salivary gland biopsies isolated from SS
patients, including IL-1β, ICAM, VCAM, E-selectin, CD80, and
CD86 (Tsunawaki et al., 2002; Khalafalla M.G. et al., 2017).
Taken together, these studies suggest that the P2X7R represents
a promising target for therapeutic intervention in salivary
gland inflammation.

Previous studies have demonstrated that the P2Y2R is
upregulated in major salivary glands of several mouse models of
SS, including NOD.B10 (Schrader et al., 2005), IL-14α transgenic
(IL-14αTG) (Woods et al., 2018) and C57BL/6-NOD.Aec1Aec2
mice (unpublished observations). It was recently reported by
our group that P2Y2R expression was increased in both SMG
epithelium and SMG-infiltrating B cells in aged IL-14αTG mice
with SS-like disease and genetic deletion of the P2Y2R attenuated
both B and T cell infiltration of the salivary glands (Woods et al.,
2018). Additionally, attenuated sialadenitis following P2Y2R
deletion correlated with significantly reduced levels of LT-α
in salivary gland epithelial cells and infiltrating immune cells,
suggesting that P2Y2R-mediated LT-α expression contributes to
salivary gland inflammation in IL-14αTG mice (Woods et al.,

2018). Interestingly, LT-α levels are increased in the saliva,
serum and salivary glands of SS patients, as compared to healthy
individuals (Shen et al., 2010; Teos et al., 2015), and blockade
of the LT-α receptor has been shown to reduce sialadenitis and
improve the secretory function of the salivary gland in the IL-
14αTG and NOD mouse models of SS (Gatumu et al., 2009;
Shen et al., 2013). Lastly, unpublished observations from our lab
indicate that expression of the P2Y2R is increased in salivary
gland-infiltrating B cells in NOD.H-2h4, CD28−/−, IFNγ−/−

mice, as compared to B cells isolated from salivary glands
of C57BL/6 control mice, and intraperitoneal administration
of the selective P2Y2R antagonist AR-C118925 significantly
attenuates sialadenitis and restores salivary gland function. In
summary, these studies highlight the significant contributions
of purinergic receptors to salivary gland inflammation and
demonstrate their therapeutic potential for the treatment of
human pro-inflammatory autoimmune diseases.

P2 RECEPTORS IN
RADIATION-INDUCED HYPOSALIVATION

Radiation-induced salivary gland dysfunction is a common
unintended side effect of radiotherapy in head and neck
cancer patients, which causes xerostomia and hyposalivation that
affects> 95% of these patients,> 73% of whom continue to suffer
from months to years after completion of the radiotherapy (PDQ
Supportive and Palliative Care Editorial Board, 2002; Dirix et al.,
2006; Jensen et al., 2010; Pinna et al., 2015). Head and neck cancer
patients routinely receive fractionated radiation treatment where
the tumor region receives high radiation doses while salivary
gland sparing techniques attempt to limit the radiation dose to
2 Gy/day (Eisbruch et al., 1999; Grundmann et al., 2009; Pfister
et al., 2015). It is estimated that the tolerance dose for a 50%
complications rate (TD50) for the parotid and submandibular
glands is 28.4 and 39 Gy, respectively (Eisbruch et al., 1999; Li
et al., 2007; Murdoch-Kinch et al., 2008). A number of factors
including tumor grade, lymph node involvement and location
of the tumor create scenarios where salivary gland sparing is
not feasible and the tissue is exposed to higher radiation doses.
Consequently, chronic hyposalivation and changes in the saliva
electrolyte composition occur along with a reduction in pH that
leads to alterations in oral microbial flora, increased incidence of
dental carries and oral infections and difficulties with swallowing,
digestion, and speech (Hu et al., 2013; Pinna et al., 2015).

Several groups have utilized rodent models to demonstrate
that acute hyposalivation occurs immediately after IR, before the
onset of overt gland damage, which is associated with sustained
increases in the [Ca2+]i (Coppes et al., 2005; Liu et al., 2013,
2017; Ambudkar, 2018). In contrast, chronic IR-induced salivary
dysfunction results from ROS production, increased caspase-
3 activity, disruption of store-operated Ca2+ entry (SOCE),
cytoskeletal rearrangements, acinar cell apoptosis, sialadenitis
and replacement of normal parenchyma with fibrotic tissue
(Coppes et al., 2001; Radfar and Sirois, 2003; Teymoortash et al.,
2005; Muhvic-Urek et al., 2006; Avila et al., 2009; Liu et al.,
2013, 2017; Wong et al., 2018). One of the early responses to IR
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is impairment of muscarinic receptor signaling (Coppes et al.,
2000, 2005; Konings et al., 2005) required for saliva formation
and aquaporin channel activity required for fluid secretion
(Takagi et al., 2003). Furthermore, Avila et al. (2009), have
demonstrated that radiation also causes a significant reduction
in saliva-secreting acinar cells due to p53-dependent apoptosis.
Thus, the overall mechanism of radiation-induced salivary
gland hypofunction likely involves perturbations in muscarinic
receptor signaling, apoptosis of saliva-producing acinar cells and
irreversible tissue damage.

The P2X7R is highly expressed in salivary epithelium where
its activation induces responses associated with IR-induced
hyposalivation, including ROS production, caspase-3 activity,
prostaglandin E2 and ATP release, NLRP3 inflammasome
activation with IL-1β release and salivary gland cell apoptosis
(Woods et al., 2012; Khalafalla M.G. et al., 2017; Gilman et al.,
2019). Thus, we recently explored the role of P2X7R activation
in γ-radiation-induced hyposalivation. IR exposure induced ATP
release from wild type mouse parotid gland epithelial cells
(PGECs) that was attenuated by the P2X7R antagonist A-438079
and in PGECs isolated from P2X7R−/− compared to wild type
mice (Gilman et al., 2019). Furthermore, systemic administration
of A-438079 in γ-irradiated wild type mice conferred significant
radioprotection to salivary glands and maintained saliva flow
rates similar to non-irradiated mice at 3 and 30 days post-IR.
This study also demonstrated that PGE2 is secreted from wild
type PGECs following γ-radiation that was reduced in P2X7R−/−
PGECs or following A-438079 pretreatment of wild type PGECs
(Gilman et al., 2019). Prostaglandins modulate inflammatory
responses by altering cytokine production and secretion in
macrophages (Ricciotti and Fitzgerald, 2011; Aoki and Narumiya,
2012). The signaling pathway downstream of cyclooxygenase-2
(COX-2), the rate-limiting enzyme that converts arachidonic acid
into prostaglandins (Chandrasekharan and Simmons, 2004), has
been shown to contribute to the IR-induced bystander effect in
other cell types (Zhou et al., 2005; Chai et al., 2013; Kobayashi and
Konishi, 2018) and P2X7R activation has been shown to induce
arachidonic acid release from rat SMG ductal cells (Alzola et al.,
1998). These findings suggest that P2X7R antagonists provide
radioprotection by attenuating the damaging tissue response to
IR-induced release of alarmins, including ATP and PGE2.

P2 RECEPTORS IN SALIVARY GLAND
REGENERATION

While most current treatments for salivary gland dysfunction
target expansion of residual salivary acinar cells to repair
damaged tissue, regenerative therapy with stem cells is a novel
and promising therapeutic approach to replace damaged salivary
glands (Carpenter and Cotroneo, 2010; Lombaert et al., 2017;
Ogawa and Tsuji, 2017). Several studies have identified and
characterized subsets of endogenous salivary progenitor cells that
can be exploited to promote tissue regeneration (Lombaert et al.,
2008; Chibly et al., 2014, 2018; Pringle et al., 2016; Emmerson
et al., 2018; Weng et al., 2018). The use of modified fibrin
hydrogels (Nam et al., 2019a), layered sheets of isolated salivary

gland cells released from thermoresponsive culture dishes (Nam
et al., 2019b) and salivary organoid cultures generated from
embryonic pluripotent stem cells (Tanaka et al., 2018) have been
explored as regenerative therapies for damaged salivary glands.
Tissue engineering of 3-dimensional (3-D) primary HSG cultures
for transplantation into afflicted patients represents another
regenerative strategy to restore salivary gland function (Lombaert
et al., 2017). Because primary human salivary gland cells undergo
loss of cell-specific protein expression and biological function
when cultured in a monolayer (Jang et al., 2015), development
of 3-D culture strategies using Matrigel (Feng et al., 2009; Maria
et al., 2011), collagen-Matrigel (Joraku et al., 2007; Pringle et al.,
2016), hyaluronic acid-based hydrogels (Pradhan-Bhatt et al.,
2013) and magnetic 3-D levitation (Ferreira et al., 2019) has
been explored to maintain salivary gland cell function in culture.
Indeed, transplantation of 3-D cultured, primary human salivary
gland cells has been shown to ameliorate radiation-induced
salivary gland dysfunction in mice (Pringle et al., 2016).

Rodent salivary glands have been shown to possess a high
capacity to regenerate following the ligation or obstruction of
the main excretory ducts of the gland, where ligated salivary
glands initially become inflamed before glandular atrophy
occurs through TGF-β-induced fibrosis and Fas ligand-induced
epithelial cell apoptosis (Burford-Mason et al., 1993; Ahn et al.,
2000; Takahashi et al., 2004, 2005, 2007; Carpenter et al.,
2007; Woods et al., 2015). Following de-ligation, residual cells
in damaged salivary glands can regenerate the gland through
proliferation, migration and self-organization (Takahashi et al.,
1998; Man et al., 2001; Kishi et al., 2006; Aure et al., 2015), thereby
restoring salivary gland function, i.e., increasing the secretion
rate of saliva with a normal ion and protein composition (Scott
et al., 1999; Osailan et al., 2006). Concurrent with these glandular
changes, functional P2Y2R expression, which is very low under
homeostatic conditions, is robustly increased in salivary epithelial
cells in response to ductal ligation and P2Y2R expression returns
to basal low levels following de-ligation and subsequent recovery
of the salivary gland (Ahn et al., 2000; El-Sayed et al., 2014). These
findings are in agreement with previous studies demonstrating
P2Y2R upregulation in epithelial cells in response to tissue
damage and inflammation (Turner et al., 1997; Schrader et al.,
2005; Degagne et al., 2009; Woods et al., 2018), suggesting that the
P2Y2R is an important component in the repair and regeneration
of damaged salivary glands.

Previous studies have demonstrated a role for the P2Y2R in
corneal epithelial wound healing by increasing cell migration
(Boucher et al., 2010), in liver regeneration by stimulating
hepatocyte proliferation (Tackett et al., 2014), in cardiac
regeneration by stimulating cardiac progenitor cell proliferation
(Khalafalla F.G. et al., 2017) and in intestinal epithelial cell
tubulogenesis (Ibuka et al., 2015). Activation of P2Y2Rs in the
HSG cell line also induces the transactivation, homodimerization
and autophosphorylation of the EGFR, a receptor tyrosine kinase
known to be crucial for salivary gland branching morphogenesis
and development (Miyazaki et al., 2004; Patel et al., 2006;
Mizukoshi et al., 2016). This process in salivary epithelial and
endothelial cells involves ADAM10/17-dependent proteolytic
cleavage induced by P2Y2R activation that causes the release
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TABLE 1 | Expression and function of purinergic receptors in salivary glands.

Purinergic
receptor

Cell or tissue type Salivary gland function References

P2X7 Rat parotid acinar cells Mediates eATP-induced Ca2+ entry Soltoff et al., 1990;
Dehaye, 1993; McMillian
et al., 1993, 1987

Mediates eATP-induced plasma membrane permeabilization and large pore formation Gibbons et al., 2001

Rat submandibular acinar
cells

Induces plasma membrane permeabilization and large pore formation Alzola et al., 2001

Inhibits carbachol- and substance P-induced mobilization of intracellular Ca2+ Hurley et al., 1993;
Metioui et al., 1996

Increases phospholipase A2-dependent secretion of arachidonic acid and kallikrein Alzola et al., 1998

Rat submandibular acinar
and ductal cells

Mediates eATP-induced Ca2+ entry and increases membrane Cl− conductance Lee et al., 1997

Mouse parotid acinar cells Modulates carbachol-induced Ca2+ mobilization Novak et al., 2010

Mediates eATP-induced Ca2+ entry, Ca2+-induced Ca2+ release, and exocytosis Bhattacharya et al., 2015,
2012

Mediates eATP-induced membrane anion conductance Reyes et al., 2008

Mouse parotid acinar and
ductal cells

Mediates eATP-induced Ca2+ entry and membrane conductance; cell-specific channel
assembly properties

Li et al., 2003

Mediates γ-radiation induced eATP and PGE2 release Gilman et al., 2019

Mouse submandibular
acinar and ductal cells

Mediates eATP-induced apoptosis, ROS production, NLRP3 inflammasome assembly
and IL-1β release

Woods et al., 2012;
Khalafalla M.G. et al.,
2017

Ex vivo mouse
submandibular gland

Mediates eATP-induced fluid secretion and inhibits carbachol-induced fluid secretion Nakamoto et al., 2009

In vivo mouse salivary
glands

Modulates carbachol-induced saliva secretion Pochet et al., 2007;
Novak et al., 2010

P2X4 Rat parotid acinar cells Mediates eATP-induced Ca2+ entry McMillian et al., 1993

Mouse parotid acinar cells Mediates eATP-induced Ca2+ entry and exocytosis; potentiated by increased cAMP
levels

Bhattacharya et al. 2012;
2015

Mediates eATP-activated membrane currents; functional interaction with P2X7 receptor Casas-Pruneda et al.,
2009

Mouse submandibular
ductal cells

Mediates eATP-induced Ca2+ entry Pochet et al., 2007

Human parotid acinar cells Mediates eATP-induced Ca2+ entry; potentiated by increased cAMP levels Brown et al., 2004

P2Y1 Rat submandibular acinar
and ductal cells

Mediates nucleotide-induced [Ca2+]i increase; decreased activity in aged animals Park et al., 1997

Mediates nucleotide-induced [Ca2+]i increase and ERK1/2 phosphorylation; differential
coupling to Gα14 and Gαq/11 during development

Baker et al., 2006

P2Y2 Rat parotid cell line ParC10 Mediates eUTP-induced increase in short-circuit current and Cl− efflux Turner et al., 1998a

Rat submandibular acinar
and ductal cells

Mediates eUTP-induced increase in membrane Cl− conductance Lee et al., 1997; Zeng
et al., 1997

Increased expression and eUTP-induced [Ca2+]i increase during short-term culture Turner et al., 1997

In vivo rat submandibular
glands

Increases CFTR-mediated Cl− reabsorption to modify saliva ion content Ishibashi et al., 2008

Mouse submandibular
acinar and ductal cells

Mediates eUTP-induced cell aggregation and migration through EGFR transactivation El-Sayed et al., 2014

In vivo mouse
submandibular glands

Increased expression and eUTP-induced [Ca2+]i increase during salivary gland
inflammation

Schrader et al., 2005;
Ahn et al., 2000;
Woods et al., 2018

Human salivary gland
(HSG) cell line

Mediates UTP-induced IP3 production, [Ca2+]i increase and K+ efflux Yu and Turner, 1991

Potentiates cell regulatory volume decrease in response to hypotonic stress Kim et al., 1996

Increases vascular cell adhesion molecule expression Baker et al., 2008

Mediates eUTP-induced EGFR phosphorylation and induces EGFR and ErbB3
heterodimerization

Ratchford et al., 2010

eATP, extracellular ATP; eUTP, extracellular UTP; PGE2, prostaglandin E2; CFTR, cystic fibrosis transmembrane conductance regulator; EGFR, epidermal growth
factor receptor.
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of cell surface-bound EGFR ligands as well as the Src kinase-
dependent transactivation of growth factor receptors through
the binding of Src to SH3 binding motifs in the P2Y2R
intracellular domain (Liu et al., 2004; Seye et al., 2004; Ratchford
et al., 2010). In HSG cells, P2Y2R activation also induces the
heterodimerization of EGFR and ErbB3, another member of the
EGFR family (Ratchford et al., 2010). ErbB3 has an inactive kinase
domain that requires heterodimerization with EGFR to respond
to its ligand, neuregulin, which then stimulates the ERK/MAPK
signaling pathway to promote cell proliferation, migration, and
differentiation (Patel et al., 2006; Ratchford et al., 2010).

Integrins are transmembrane cell surface receptors that
interact with extracellular matrix components, including laminin
(Nishiuchi et al., 2006), fibronectin (Bharadwaj et al., 2017)
and collagen (Tuckwell and Humphries, 1996), intracellular
cytoskeletal proteins and other cell surface receptors (Legate
et al., 2009) that are crucial components in the salivary
gland regeneration process (Wei et al., 2007; El-Sayed et al.,
2014). Hence, the bi-directional nature of integrin signaling
regulates many physiological processes relevant to salivary gland
regeneration, including cell proliferation, polarity, migration,
and adhesion (Legate et al., 2009). Through its extracellular
RGD domain, the P2Y2R can bind directly to integrins (e.g.,
αvβ3/5) and allow for nucleotide-induced P2Y2R-mediated
activation of integrin signaling pathways, including Rho and
Rac GTPase activation that regulate cytoskeletal rearrangements
(Erb et al., 2001; Wang et al., 2005). The extracellular ligand
for the α5β1 integrin is fibronectin, a well-known mediator
of salivary gland morphogenesis (Sakai et al., 2003; Onodera
et al., 2010), and we have previously demonstrated that UTP-
induced P2Y2R activation also induces α5β1 integrin-mediated
migration, aggregation, and self-organization of dispersed
salivary epithelial cells into acinar-like spheres (El-Sayed et al.,
2014). These spheres resemble native acinar units of the
salivary gland, possessing a lumen and organized expression
of the tight junction protein ZO-1, and we have shown
that the mechanism for P2Y2R-mediated self-organization of
salivary gland cells involves the activation of EGFR via the
Cdc42 Rho GTPase pathway and subsequent downstream
activation of ERK1/2 and JNK signaling pathways (El-Sayed
et al., 2014). Thus, these studies suggest a promising role
for unique structural motifs in P2Y2Rs that are highly
relevant to cell-based regenerative therapy and bioengineering of
salivary glands.

SUMMARY

Activation of purinergic receptors for extracellular nucleotides
in the salivary glands modulates various physiological and
pathophysiological functions (Table 1). The ATP-gated
ionotropic P2X7 receptor in salivary acinar cells contributes to
physiological salivary gland function by modulating muscarinic
receptor-induced saliva secretion into the ductal lumen,
whereas activation of ductal P2X7Rs modulates ion and protein
content of saliva. P2X4R activation also contributes to saliva
secretion through the formation of functional homotrimers

and P2X4R/P2X7R heterotrimers in salivary gland epithelium,
suggesting that P2XRs represent an integration point between
canonical and non-canonical signaling pathways that regulate
saliva flow and composition. P2Y1Rs also may contribute
to salivary gland development through coupling to multiple
G proteins resulting in diverse physiological responses.
The ability of P2Y2R activation to stimulate increases in
[Ca2+]i and Cl− flow across epithelial membranes suggests
a role in saliva secretion, however, P2Y2R expression is
negligible under normal steady-state conditions. The observed
upregulation of P2Y2R expression during tissue stress and
in response to P2X7R-induced IL-1β release suggest their
significant role in salivary gland pathophysiology. Due
to an increase in extracellular nucleotide release during
tissue inflammation and dysregulation, nucleotide-induced
activation of the interconnected P2X7R-P2Y2R signaling
pathways likely modulates multiple immunological and tissue
repair functions, including cell migration, growth factor
receptor transactivation, integrin signaling, adhesion molecule
upregulation, and cytokine release. Thus, P2X7R activation
in salivary epithelium and upregulation of the P2Y2R with
its unique structural domains likely regulate both salivary
gland dysfunction and repair through the stimulation of these
important pro-inflammatory processes.

In conclusion, purinergic receptors have emerged as
promising therapeutic targets to promote physiological saliva
flow, prevent salivary gland inflammation and enhance tissue
regeneration required to reverse common causes of salivary
gland dysfunction in humans, such as the autoimmune disease
SS or the side effect of radiotherapy in head and neck cancer
patients. Because purinergic receptors share common agonists
and form heteromeric receptors with distinct pharmacologic
profiles, unraveling the contribution of intracellular P2 receptor
cross-talk to salivary gland dysfunction in animal models
and humans will further define their therapeutic value in
the treatment of salivary gland disorders. The continued
development of high affinity P2R agonists and antagonists
and the investigation of their safety and efficacy represent
the next steps in the clinical translation of this promising P2
receptor research.
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