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Tyrosine-kinase inhibitors (TKIs) demonstrate high inter-individual variability with respect
to safety and efficacy and would therefore benefit from dose or schedule adjustments.
This study investigated the efficacy, safety, and economical aspects of alternative dosing
options for sunitinib in gastro-intestinal stromal tumors (GIST) and axitinib in metastatic
renal cell carcinoma (mRCC). Dose individualization based on drug concentration,
adverse effects, and sVEGFR-3 was explored using a modeling framework connecting
pharmacokinetic and pharmacodynamic models, as well as overall survival. Model-based
simulations were performed to investigate four different scenarios: (I) the predicted value of
high-dose pulsatile schedules to improve clinical outcomes as compared to regular daily
dosing, (II) the potential of biomarkers for dose individualizations, such as drug
concentrations, toxicity measurements, and the biomarker sVEGFR-3, (III) the cost-
effectiveness of biomarker-guided dose-individualizations, and (IV) model-based dosing
approaches versus standard sample-based methods to guide dose adjustments in
clinical practice. Simulations from the axitinib and sunitinib frameworks suggest that
weekly or once every two weeks high-dosing result in lower overall survival in patients with
mRCC and GIST, compared to continuous daily dosing. Moreover, sVEGFR-3 appears a
safe and cost-effective biomarker to guide dose adjustments and improve overall survival
(€36 784.- per QALY). Model-based estimations were for biomarkers in general found to
correctly predict dose adjustments similar to or more accurately than single clinical
measurements and might therefore guide dose adjustments. A simulation framework
represents a rapid and resource saving method to explore various propositions for dose
and schedule adjustments of TKIs, while accounting for complicating factors such as
circulating biomarker dynamics and inter-or intra-individual variability.

Keywords: tyrosine kinase inhibitor, dose individualization, population modeling, PKPD, pharmacometrics
INTRODUCTION

Tyrosine-kinase inhibitors (TKIs) represent a group of targeted therapies that have shown great
benefit in the treatment of various malignancies (Arora and Scholar, 2005). Contrary tomost cytotoxic
drugs, TKIs can be taken orally, and they target fundamental proteins involved in cancer cell
proliferation, differentiation, migration, and metabolism. Despite their advantages, TKIs demonstrate
in.org March 2020 | Volume 11 | Article 3161
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high inter-individual variability in pharmacokinetics (PK) as well
as in pharmacodynamics (PD), i.e. with respect to safety and
efficacy outcomes, and, therefore, would benefit from dose
individualization to optimize treatment outcomes (Sabanathan
et al., 2017; Schmidinger et al., 2017).

Several proposals for dose individualization of TKIs have
been made, based on PK and PD observations. Therapeutic drug
monitoring/management (TDM) of drug plasma concentration
appears an obvious choice given the large variability in drug
exposure and the apparent exposure–response relationships
(Verheijen et al., 2017). The drug exposure may be the area
under the curve (AUC) or the pre-dose concentration at steady-
state (Ctrough). TDM targets have indeed been suggested for TKIs
in previous exposure–response studies. Dose individualization
based on PD-biomarkers, such as soluble biomarkers or changes
in blood pressure and neutrophil count, has also been proposed
for several TKIs (Hansson et al., 2013a; Hansson et al., 2013b;
Tsuchiya et al., 2015; Sabanathan et al., 2017; Schmidinger et al.,
2017). Challenges in the evaluation of circulating biomarkers
reside in (i) the time-related changes (i.e. kinetics) of biomarkers,
(ii) their inter- and intra-individual variability and (iii) the
limited patient and funding resources compared to the large
number of drugs to be investigated (Buyse et al., 2010; Almufti
et al., 2014).

In parallel, modification of dosing schedules has been
explored for TKIs (i.e. continuous daily dosing versus 4 weeks
on, 2 week off, Houk et al., 2008; Nozawa and Uemura, 2012).
More recently, intermittent administration (i.e. weekly or
biweekly) of high-dose TKIs have been proposed (Rovithi
et al., 2014; Rovithi et al., 2016). This type of schedule results
in higher peak plasma concentrations, and is proposed to give
rise to enhanced efficacy, possibly due to a second mechanism of
action. It is however not clear what impact this type of schedule
has on various adverse effects (AEs) and overall survival (OS).
Moreover, biomarker target values might not hold across drug
schedules, such as continuous and intermittent, given the various
concentration-time profiles different regimens can result in.

In addition to potential changes in clinical outcome,
monetary aspects related to dose and schedule adjustments are
important to take into consideration (Centanni et al., 2019). In
the interest of managing healthcare costs, it has become
acknowledged that alternative dosing regimens could result in
lower prescribing costs, whilst maintaining equivalent efficacy
(Ratain et al., 2019). Cost-effectiveness analysis represents a
separate tool that highlights the role of each dose and schedule
adjustment from both a clinical and economic perspective
(Hughes and Walley, 2001). Typically, however, such analyses
employ relatively empirical (i.e. Markov) models to reproduce
transition probability between disease stages or between AE
grades. Because of this feature, they may lack the flexibility
required to draw inferences related to cost-effectiveness of
various drug schedules and individualization approaches.

The question of the best treatment schedule and
individualization options for TKIs remains, and is complex to
sort out, given the different dynamics of each biomarker and
AEs. As an illustrative example, diastolic blood pressure was
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found to have low accuracy in guiding dose adaptation of
sunitinib in gastro-intestinal stromal tumors (GIST) (Centanni
et al., 2018). Furthermore, there are several AEs variables that
need to be taken into consideration as they may hamper dose
increments. This in turn give rise to marginal treatment benefits
that would require large patient populations to reach adequate
power in prospective clinical trials (Goulooze et al., 2016;
Centanni et al., 2018). Given the fact that there are over 25
TKIs available, and most are approved for several treatment
indications, the number of combinations to be explored would be
extensive and require a large amount of monetary and
patient resources.

PK/PD modeling and simulation represents a means to
analyze available information in order to quantify the added
value and dynamics of each dose individualization rationale
and dosing schedule in a rapid, ethical and low-cost manner
(Almufti et al., 2014; Bender et al., 2015; Standing, 2017;
Centanni et al., 2019). Model-based PK/PD frameworks can
facilitate schedule selection in the presence of toxicity, disease,
and survival models that can emulate a compromise between
safety and efficacy under each treatment schedule and
biomarker in a structured way (Jänne et al., 2016; Centanni
et al., 2018). Moreover, mechanistic PK/PD frameworks
possess a more biological character, which aside from
potential inaccuracies related to the models, would provide
more reliable inferences when analyzing the cost-effectiveness
of alternative dosing strategies (van Hasselt et al., 2015).
Previous model-based simulations have demonstrated that
at the current suggested threshold values, the sunitinib dose
in GIST can best be individualized by pharmacodynamic
biomarkers, such as neutrophil count or soluble vascular-
endothelial growth factor (VEGFR)-3, as opposed to blood
pressure and drug concentrations (Centanni et al., 2018).

Given the long treatment period of TKIs such as sunitinib,
and the potential impact of AEs on daily life (fatigue, hand-foot
syndrome [HFS]), further research on sunitinib in GIST is of
importance to optimize the biomarker threshold values for dose
adaptation. In addition, the existing model-based framework of
axitinib for metastatic renal cell carcinoma (mRCC) can be
adapted for similar purposes (Schindler et al., 2017). The
following work utilizes the existing sunitinib and axitinib
frameworks to evaluate the efficacy, safety, and economical
aspects of the abovementioned dosing options. Current clinical
protocols and hospital expenses are integrated to emulate real-
life scenarios and maximize the direct clinical applicability of the
results. In the first section of the work, labeled recommended
dosages of axitinib and sunitinib are compared to high-dose
intermittent schedules for development of treatment-related AEs
and OS. Secondly, biomarker-based dose adjustments are
performed to evaluate potential differences in clinical outcomes
and thirdly the predictive accuracy of model-based biomarker
adjustments is compared to that of regular sample-based
methods, wherein dose is directly adjusted according to the
measured biomarker plasma levels. Finally, a cost-effectiveness
analysis of sunitinib is performed for the available biomarker-
based dose interventions.
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METHODS

Setting Up the Sunitinib and Axitinib
Framework
Two separate sunitinib simulation frameworks were built using a
collection of previously created models (Figure 1A)
(Supplementary Material 1) (Hansson et al., 2013a; Hansson
et al., 2013b). None of the model parameters were re-estimated.
Five AE models were available to describe the development of
diastolic hypertension, neutropenia, thrombocytopenia, fatigue,
and HFS under sunitinib therapy. Here, thrombocytopenia and
diastolic hypertension were driven by sunitinib AUC, whereas
remaining AEs were affected by changes in sVEGFR-3. A PK
model of sunitinib and its active metabolite (SU12662) was
selected to simulate changes in drug concentration over time
(Yu et al., 2015). The time-courses of sVEGFR-3 and circulating
levels of soluble KIT (sKIT) were described by two indirect
response models. Longitudinal tumor size was reproduced with a
tumor growth inhibition (TGI) model (Claret et al., 2009),
affected by changes in sVEGFR-3, sKIT, and sunitinib AUC.
Two OS models were divided over the simulation frameworks;
one driven by changes in diastolic blood pressure (DdBP), scaled
absolute change in neutrophil count (ANC), and baseline tumor
size (Eqs. 1 and 2), and the second model was steered by relative
changes in sVEGFR-3 (DsVEGFR-3) and baseline tumor size
(Eq. 3). In the interest of clarity, dose adjustments based on the
first (toxicity-related) framework will be referred to as toxicity-
adjusted dosing (TAD), whereas dose-adjustments based on the
second framework (sVEGFR-3-based) will be referred to as
biomarker-based dosing (BAD). Lastly, a dropout model was
added to both frameworks to account for the tendency of
individuals with poorer responses to discontinue treatment.
The probability to drop out was determined by tumor
progression and tumor size.

ANC(t) =
ANC(t) − 5

5
(1)

DdBP(t) =
dBP(t) − BASEdBP

BASEdBP
(2)
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DsVEGFR-3ðtÞ ¼ sVEGFR-3ðtÞ-BASEsVEGFR−3

BASEsVEGFR−3
(3)

In a similar manner, the axitinib simulation framework was
built on a collection of previous models, using originally
estimated parameters (Figure 1B) (Supplementary Material 2)
(Schindler et al., 2017). An axitinib PK model was included to
simulate drug serum concentration over time (Garrett et al.,
2014). We assumed axitinib was taken orally in the XLI
formulation, which is the marketed formulation according
to the label information. One AE model was available to
describe the development of diastolic blood pressure under
treatment. Changes in sVEGFR-3 were captured by an
indirect response model. Tumor size (sum of longest
diameters, SLD) was described by a growth model, affected
by changes in sVEGFR-3. OS, driven by tumor size and
progression, was simulated by means of a time-to-event
model. Lastly, a dropout model, driven by axitinib exposure,
tumor progression, and tumor size, was added to simulate
patients who discontinued treatment.

Both the sunitinib and axitinib frameworks were
implemented in the R-based package mrgsolve (version 0.8.10,
Elmokadem et al., 2019), together with the parameter estimates.
Visual audits were performed to compare the mrgsolve to
NONMEM (Beal et al., 1989) simulation output to assure
accurate translation of the models.

Virtual Populations
In order to achieve the simulations, datasets containing 1,000
virtual individuals with metastatic and/or unresectable GIST,
or mRCC, were generated using the dmutate (version 0.1.2)
and dplyr (version 0.7.4) R packages. Individual covariates
were created by sampling from a defined population
distribution (Hansson et al., 2013a; Hansson et al., 2013b;
Garrett et al., 2014; Yu et al., 2015; Schindler et al., 2017).
Weight was assumed to follow a normal distribution with a
mean of 73.5 kg and a standard deviation of 18.7 kg (76.7+/−
11.6 kg, for axitinib), truncated between 36 and 185 kg.
Baseline tumor size followed a lognormal distribution, with
a mean of 182.7 mm and a standard deviation of 134.2 mm,
truncated between 29 and 822 mm.
A B

FIGURE 1 | Simulation frameworks. (A) Model-based framework for sunitinib in GIST, adapted from previous work (Hansson et al., 2013a; Hansson et al., 2013b).
(B) Model-based framework for axitinib in mRCC, adapted from previous work (Schindler et al., 2017). AUC, area under the plasma drug concentration-time curve;
dBP, diastolic blood pressure; HFS, hand-foot syndrome; SLD, sum of longest diameters (tumor); sVEGFR-3, soluble VEGFR-3.
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Baseline Simulations
Following current guidelines, initial simulations of sunitinib and
axitinib were performed using a fixed dose at 37.5 mg daily or 5
mg twice per day (b.i.d.), respectively [Pfizer, Inc. SUTENT®

(Sunitinib malate), 2006; Pfizer, Inc. INLYTA® (Axitinib), 2012].
No dose escalations were allowed in the base simulations. Dose
reductions were allowed in the event of unacceptable toxicity
(≥Grade 3, or ≥Grade 2 for fatigue and HFS), following National
Cancer Institute Common Toxicity Criteria (CTCAE) v3.0. To
replicate a clinical scenario, monitoring of ANC, dBP, and
platelet count occurred solely on days 15, 29, 43, 57, 85, 113,
and once every 12 weeks thereafter. Fatigue and HFS were
assumed to be spontaneously reported side effects that were
monitored on a daily basis.

Dose adjustments were simulated with a discrete number of
possible sunitinib and axitinib doses. Available sunitinib doses
ranged from 0 to 75 mg of sunitinib once daily, in 12.5 mg
increments. For axitinib the available doses were 0, 2, 5, 7, or 10
mg b.i.d. In the event of primary Grade 3 (or Grade 2 for HFS
and fatigue) toxicity, the drugs were withheld until ≤ Grade 1
toxicity. Hereafter, the drugs were resumed at the initial dose. In
case of repeated, i.e. > 1 occurrence of Grade 3 (or Grade 2 for
HFS and fatigue), or severe Grade 4 (or Grade 3 for HFS and
fatigue) toxicity, the drugs were withheld until ≤Grade 1 toxicity,
and thereafter resumed at one dose level reduction.

Simulation of High-Dose Treatment
The influence of intermittent high-dose sunitinib or axitinib was
evaluated by comparing once weekly (QW), and once every 2
weeks (Q2W) administration, to standard continuous dosing.
For these simulations, the available pool of sunitinib doses was
extended with doses of 100–700 mg in 100 mg increments. The
initial sunitinib dose was fixed to 300 mg for QW and 700 mg for
Q2W, with possible dose reduction in the event of AEs (Rovithi
et al., 2016). The pool of available axitinib doses was extended
with doses of 10–80 mg in 10 mg increments, and 80–140 mg in
20 mg increments, for QW and Q2W dosing regimens,
respectively. Axitinib starting doses were at 70 mg for QW, or
140 mg for Q2W, with possible dose reductions in case of AEs.

Identification of Biomarker Cut-Off Points
Different threshold values for each biomarker were evaluated in
order to divide biomarker findings into “adjustment” and “no
adjustment” dosing decisions. The influence of each biomarker
cut-off point was simulated (n = 1,000) to predict population
survival and the development of AEs. Individual predicted values
of the biomarker (“IPRED”) were used to evaluate the direct
effect of dose interventions, i.e. the residual error resulting in a
difference between the clinically measured value (“Y”) from the
“true” value IPRED, was omitted. Threshold values with similar
OS outcomes across TDM, BAD, and TADwere selected in order
to ensure that the biomarker-based dose-adjustment approaches
could be compared with respect to the development of AEs and
cost-effectiveness. If differing OS values would be utilized, the
difference between biomarkers could otherwise be caused by
discrepancies in biomarker cut-off values. The predicted OS
Frontiers in Pharmacology | www.frontiersin.org 4
when using the sunitinib TDM threshold was used as reference
to ensure equal threshold selections also in the BAD and TAD
simulation frameworks.

Cut-off values between 0 ng/ml and 80 ng/ml (sunitinib plus
SU12662, or axitinib) were evaluated for TDM of Ctrough. Since
most axitinib exposure-response analyses have focused on the
relationship between AUC and response (Verheijen et al., 2017),
the correlation between axitinib AUC and Ctrough (IPRED) was
firstly evaluated using Pearson's correlation coefficient to warrant
the adaptation of Ctrough in TDM scenarios.

For TAD based on neutrophils, values between 1 × 109 cells/L
and 5 × 109 cells/L were evaluated as cut-offs. Similarly, for BAD
based on sVEGFR-3 a range between 5 and 80%, in addition to
0%, decrease from individual sVEGFR-3 baseline was assessed.
For TAD based on dBP, cut-off values in the range 2.5 to 40%, in
addition to 0%, increase from individual baseline values were
evaluated. Based on the biomarker threshold-survival plots, cut-
off values were selected for each biomarker that constrained the
total number of developed AEs and resulted in equal survival for
TDM, TAD, and BAD.

Model-Based Forecasts
The accuracy of clinical sample measurements (“Y”) was
evaluated by taking the ratio between the observed change
measured in clinical samples at week 8 (BIOMARKERY) and
the true biomarker change (e.g. Eqs. 1–3) at week 8
(BIOMARKERIPREDtrue) (Eq. 4). The accuracy of model-based
estimations of biomarker changes (BIOMARKERIPREDest.) was
evaluated under different monitoring durations and sampling
frequencies. The simulation-estimation procedure was
performed using the proseval command (prospective
evaluation; Pearl-speaks-NONMEM [PsN])1 in NONMEM
(version 7.3.0) (Beal et al., 1989; Keizer et al., 2013). The
function enables automated performance evaluation of
maximum a posteriori prediction (MAP) Bayesian estimations
based on varying amount of information, i.e. using an increasing
number of data points per individual (Abrantes et al., 2019).
Based on the dataset of n observations per individual, the
command initiates estimations based on the first observation
in each individual and runs successive estimations adding one
additional observation in each round (in the order of sampling
time), until the final number of n observations is reached. As
such, the proseval command facilitates the process of
determining the influence of observation numbers on
individual biomarker value estimation.

In order to determine the influence of monitoring durations and
frequencies on the model-based estimations, daily BIOMARKERY
values were simulated for ANC, dBP, sVEGFR-3, and drug plasma
concentration (n = 1,000) using the “true” individual values
IPREDtrue with an added random residual error. Datasets
containing different numbers of biomarker measurements were
generated through changes in (1) monitoring duration (week 0 to
week 8) and (2) sampling frequencies (daily, weekly, and biweekly).
Based on these outputs, individual parameters were obtained
(IPREDest) within the corresponding population pharmacokinetic
March 2020 | Volume 11 | Article 316
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and pharmacodynamic models, using maximum-a-posteriori
estimation. The final BIOMARKERIPREDtrue were simulated using
the IPREDtrue values and compared to the individual
BIOMARKERIPREDest values simulated with IPREDest. Accuracy
of model estimations were computed by taking the ratio of the
forecasted estimated biomarker changes (BIOMARKERIPREDest.)
and true biomarker changes (BIOMARKERIPREDest) from baseline
at week 8 (Eq. 5).

Accuracyclinicalsample = BIOMARKERY÷BIOMARKERIPREDtrue (4)

AccuracyIPREDest =

BIOMARKERIPREDest÷BIOMARKERIPREDtrue

(5)

The capacity of each method to give rise to correct dose
recommendations was further summarized by means of its
sensitivity and specificity to inform correct dosing decisions, using
the determined biomarker cut-off values. Here sensitivity represents
the percentage of times dose increments were recommended at t =
1,344 h (e.g. day 57/week 8) according to the estimated
(BIOMARKERIPREDest) or measured (BIOMARKERY) changes in
biomarker value, compared to the number of times that the “true”
biomarker change (BIOMARKERIPREDtrue) would require dose
increase. Specificity represents the percentage of times dose
increments were not recommended at week 8 according to the
estimated (BIOMARKERIPREDest) or measured (BIOMARKERY)
changes in biomarker value, compared to the number of times
that the “true” biomarker change (BIOMARKERIPREDtrue) obliges
no dose alternations.

Simulating Cost-Effectiveness
Cost-effectiveness of biomarker-based dose individualization was
determined via differences in absolute costs and quality adjusted
life years (QALYs) between standard and individualized
treatments. Information regarding treatment costs and hospital
expenses of sunitinib therapy were added to the simulation
frameworks to analyze the expenditures, as seen in previous
work (van Hasselt et al., 2015; Zuidema et al., 2019). Costs of
regular follow-up procedures, including medical visits,
laboratory investigation, and radiology tests (following clinical
guidelines for treatment of metastatic and unresectable GIST),
were gathered from the Dutch Healthcare Authority (NZa2,
accessed 12 October 2019). Expenditures related to the
development of AEs were collected from (Mickisch et al.,
2009), summarizing the costs of each AE in different countries.
Because of the absence of Dutch data, the German costs were
employed for calculating expenses related to AEs, as the German
healthcare system is most compatible to the Dutch one (Zuidema
et al., 2019). Drug-related costs were computed by multiplying
the price of each sunitinib dose category by the cumulative
number of capsules. Prices of each capsule were collected from
the Dutch National Health Care Institute (Zorginstituut
Nederland3, accessed 12 October 2019).
2https://www.nza.nl/english
3www.farmacotherapeutischkompas.nl
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To account for potential differences in health status
between the biomarker schedules, cost-effectiveness was
calculated using both gained life-years and QALYs. In
contrast to gained life-years, QALYs combine information
regarding both increase in survival time as well as the quality
of health during these years, which may be affected by the
presence of AEs or changes in disease status. The number of
QALYs for a given individual is commonly calculated by
multiplying the total number of life-years-gained by the
quality of life in these years, generally scored between 0
(equivalent to death) and 1 (equivalent to perfect health)
according to the EuroQol- 5 Dimension (EQ-5D)
questionnaires (Whitehead and Ali, 2010). In cost-
effectiveness analysis, such scores are known as “utility
values.” To quantify the overall health quality score at a
given moment, utility values of relevant factors should be
taken into consideration. For sunitinib, utility values related
to baseline status, disease progression, and the development of
AEs were here gathered from literature (Paz-Ares et al., 2008;
Beauchemin et al., 2016; Liviu Preda and Galieta Mincă,
2018). Individual utility values (UVi) at each time point
(UVij) were computed by multiplying relevant UVi's under
disease and the predicted Grades of AE (0–4) (Eq. 6).
Individual QALYs (QALYi) were then calculated by dividing
the sum of daily UVij values by days between the start and end
of treatment (ttreatment), and multiplying by the amount of life-
years-gained per individual (LYGi) (Eq. 7).

UVij = UVneutropenia,ij � UVtrombocytpenia,ij � UVhypertension,ij

� UVfatigue,ij � UVHFS,ij � UVdiseasestatus,ij (6)

QALYi = LYGi x sum(UVij)=ttreatment (7)

Using the established biomarker threshold values, the
influence of each sunitinib biomarker was simulated for a
virtual patient population (n = 1,000) over a 5-years time
horizon, as recommended for cost-effectiveness analysis (Kim
et al., 2017) on gained life-years, QALYs, development of AEs,
and treatment costs. Due to that AE models were not available
for all common AEs during axitinib treatment, this analysis was
not possible for the axitinib framework.
RESULTS

High-Dose Intermittent Administration
Based on the simulation output, OS of the GIST population at
week 102 was predicted to be higher under sunitinib standard
CD dosing (37.5 mg), compared to QW (300 mg) and Q2W (700
mg) dosing (Table 1). The frequency of high-grade AEs was
predicted to be pronouncedly lower for the high-dose schedules,
with a relatively low frequency of neutropenia, HFS, and
thrombocytopenia for QW, Q2W dosing, compared to CD
dosing. The incidence of fatigue was comparable between the
QW, Q2W, and CD dosing schedules. Frequency of diastolic
hypertension was substantially higher under QW and QW
March 2020 | Volume 11 | Article 316
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dosing, compared to CD dosing. For axitinib, OS of the mRCC
population at week 102 was predicted to be higher under
standard (5 mg b.i.d.) dosing, compared to QW (70 mg) and
Q2W (140 mg) dosing.

Biomarker Threshold Values
The influence of different biomarker threshold values is
visualized against changes in OS (Figure 2). The selected
sunitinib TDM cut-off value of 50 ng/ml, resulted in 50.5% OS
at 102 weeks. For ANC, a 20% decrease from population baseline
(e.g. from 5 to 4 × 109 cells/L) resulted in the same OS rate. For
BAD, a cut-off value of 25% decrease in sVEGFR-3 from
individual baseline was predicted to equal the threshold of 50
ng/ml sunitinib threshold in terms of OS.

Pearson's correlation coefficient between axitinib AUC and
Ctrough (IPRED) was found to be 0.679 (p < 0.001, n = 1,000). An
Frontiers in Pharmacology | www.frontiersin.org 6
axitinib TDM cut-off value of 10 ng/ml was selected, resulting in
67.5% OS at 102 weeks. The same OS rate was predicted for an
on average 12.5% increase in dBP and a 30% decrease in
sVEGFR-3, from individual baselines.

Biomarker Forecasts
The accuracy of model-based biomarker forecasts compared to
using observed clinical biomarker measurements is depicted in
Figure 3. The accuracy plots represent the capacity of each
method to predict biomarker value at t = 1,344 h (e.g. day 57/
week 8). For most biomarkers, model-based predictions
demonstrated higher accuracy than direct c l inical
measurements, particularly when > 1 measurement informed
the Bayesian feedback estimation. It is important to notice that
IPRED = 0 was estimated solely on the measurement made at t =
0, which adds to the baseline value of the ANC, dBP, and
TABLE 1 | Efficacy and safety under sunitinib CD (37.5mg), QW (300 mg), and Q2W (700 mg) dosing for GIST; Efficacy under axitinib b.i.d. (5 mg), QW (70 mg), and
Q2W (140 mg) dosing for mRCC.

Survival GIST, at 102
weeks (%)

Neutropenia
(max %)

Thrombocytopenia
(max %)

HFS
(max %)

Fatigue
(max %)

Diastolic hypertension
(max %)

Survival mRCC, at 102
weeks (%)

b.i.d./
CD

48.2% 3.7% 8.4% 10% 1.9% 1% 65.2%

QW 42.6% 0% 0% 1% 1.9% 4.8% 50.7%
Q2W 39.6% 0% 0.1% 1.1% 2.3% 17.1% 48.5%
March 20
CD, continuous daily; QW, once weekly; Q2W, once every two weeks.
FIGURE 2 | Influence of biomarker threshold values on population overall survival at 102 weeks. For TDM of sunitinib (sunitinib and SU1266) and axitinib Ctrough,ss

values of 0 to 80 ng/ml were assessed. For TAD based on neutrophils, a relative decrease from 0 to 80% from the population baseline value (5 × 109 cells/L) was
evaluated. In case of TAD based on dBP, relative increase of 0 to 40% from individual baseline value was chosen. For BAD of sVEGFR-3, relative decrease from 0 to
80% of individual baseline value was assessed. BAD, biomarker-adjusted dosing; TAD, toxicity-adjusted dosing (ANC for sunitinib; dBP for axitinib); TDM, therapeutic
drug monitoring.
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sVEGFR-3 biomarkers. For the TDM biomarker, however, this
represents a sampling moment antecedent to start of drug
administration (e.g. a concentration of 0) and IPRED = 0 is
therefore representing the population distribution prior to
individual knowledge.

The percentage of correct dose decisions that was made at
t = 1,344 (e.g. day 57/week 8) following model-based
biomarker forecasts (IPRED) or cl inical biomarker
measurements (Y) is summarized in Figure 4. Here the
sensitivity (e.g. percentage of times the method correctly
states dose increase should occur) is demonstrated for
forecasts based on biweekly, weekly, and daily measurements
(following 8 weeks of measurements), as well as for clinical
biomarker samples (following one sample at t = 0 and one
sample at t = 1,344 h). Specificity (e.g. percentage of times the
method correctly states dose increase should not occur) is
depicted in a similar manner. Both sensitivity and specificity
vary between different biomarkers and prediction method, e.g.
mode l -based pred ic t ion ver sus c l in ica l b iomarker
measurements, however, model-based estimations generally
improve with an increasing measurement frequency.
Frontiers in Pharmacology | www.frontiersin.org 7
Cost-Effectiveness Analysis
Based on our sunitinib model we estimated median OS at 1.71,
1.80, 1.90, and 2.16 years for the fixed, TDM-based, ANC-based,
and sVEGFR-3-based dosing, respectively (Table 2). The cost
per additional life-year was highest for TDM-based (€115 433),
when compared to ANC-based (€71 458) and sVEGFR-3-based
(€25 340) dosing. Cost per additional QALY was found to be
substantially lower for s-VEGFR-3 (€36 784), compared to
TDM-based (€173 150) and ANC-based (€104 438) dosing.
DISCUSSION

Two simulation frameworks were created that allowed for survival
and safety analysis of different (I) treatment schedules and (II)
biomarker-guided dose individualization options for axitinib in
mRCC and sunitinib in GIST. Moreover, (III) model-based dose
individualizations were weighted against current sample-based
approaches. For sunitinib, where relevant AE models were
available, the framework was additionally employed to (IV) assess
FIGURE 3 | Accuracy of biomarker forecasts (IPRED) versus clinical sample-based methods (Y). Accuracy in the simulated population (n = 1,000) as illustrated by
the distribution of model-based biomarker forecasts (BIOMARKERIPREDest) or directly measured sample values (Y) under continuous bidaily dosing of axitinib at 5 mg
or daily dosing of sunitinib at 37.5 mg. Accuracy = [Predicted (BIOMARKERIPREDest) or Measured (Y) biomarker change/Actual biomarker change
(BIOMARKERIPREDtrue)]. Each plot represents forecasts accuracies at week 8 under different monitoring durations (0, 2, 4, 6, or 8 weeks; IPRED on x-axis) and
sampling frequencies (daily [light], weekly [medium], or biweekly [dark]; color shades). For directly measured clinical samples (Y on x-axis) each plot represents the
accuracy to capture the true biomarker change at week 8, using one measurement at baseline and one at week 8. Solid black line means 100% accuracy and
represents the state at which predicted biomarker change = actual biomarker change. Dashed horizontal lines represent the range wherein the predicted biomarker
change falls within the 80–125% range of the true biomarker change. The ends of each box represent the population 25th and 75th percentiles and whiskers the
2.5th and 97.5th percentiles, respectively. Median is represented by the line that cuts through each box in the plot. BAD, biomarker-based dosing; TAD, toxicity-
adjusted dosing (ANC for sunitinib; dBP for axitinib); TDM, therapeutic drug monitoring.
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the cost-effectiveness of sunitinib therapy under each biomarker
option. The abovementioned approaches serve as a methodological
example of how model-based frameworks can be applied to assess
schedule adjustments, select biomarkers for dose adaptations, and
perform pharmacoeconomical analyses.

Simulations from the axitinib and sunitinib frameworks suggest
that QW or Q2W high-dosing at the cumulative weekly standard
CD dosemight result in lower OS in patients withmRCC andGIST,
compared to CD dosing. With the exception of diastolic
hypertension under sunitinib, the development of AEs was
however lower or similar under QW or Q2W high-dose
Frontiers in Pharmacology | www.frontiersin.org 8
compared to CD dosing, which complies with clinical findings
(Rovithi et al., 2018). A possible explanation for this finding resides
in the relationship between the axitinib and sunitinib exposure and
the development of AEs, which is directly or indirectly defined by
Emax equations, with exception of the sunitinib AUC-dBP
relationship that is defined by a linear relationship. The adverse
effect caused by drug exposure is consequently expected to
asymptote to a maximum effect at higher values, thus the high
dose regimens is overall resulting in less toxicity over time given that
the longer dosing interval allows for washout. The distinction
between the development of AEs will be determined by the
FIGURE 4 | Sensitivity and specificity of dose decisions based on biomarker forecasts (IPRED) versus clinical sample-based methods (Y). Percentage of correct
dose recommendations in the simulated population (n = 1,000) in model-based biomarker forecasts (IPRED) or directly measured sample values (Y) under
continuous bidaily dosing of axitinib at 5 mg or daily dosing of sunitinib at 37.5 mg. Each plot represents the dose recommendation at week 8 under different
sampling frequencies (biweekly [IPRED_BW], weekly [IPRED_W] or daily [IPRED_D]; on x-axis). For directly measured clinical samples (Y on x-axis) each plot
represents the dose recommendation at week 8, following one measurement at baseline and one at week 8. Sensitivity = [amount of times dose increases/amount
of times dose should have been increased according to biomarker value] × 100%. Sensitivity is represented by the dark shaded bars. Specificity = [amount of times
dose did not increase/amount of times dose should not have been increased according to biomarker value] × 100%. Specificity is represented by the light shaded
bars. BAD, biomarker-based dosing; TAD, toxicity-adjusted dosing (ANC for sunitinib; dBP for axitinib); TDM, therapeutic drug monitoring.
TABLE 2 | Sunitinib biomarker cost-effectiveness analysis, median values.

Life-years
(95% CI)

QALYs
(95% CI)

Cumulative
AEs

Expenditures, euro
(95% CI)

Expenditures per life-year, euro
(95% CI)

Expenditures per QALY, euro
(95% CI)

Fixed dosing 1.71
(1.60–1.86)

1.16
(1.08–1.27)

1373 49360
(47651–51069)

TDM-based dosing 1.80
(1.65–1.96)

1.22
(1.12–1.33)

1564 59749
(57326–62172)

115433
(88511–142356)

173150
(132767–213533)

ANC-based dosing 1.90
(1.72–1.98)

1.29
(1.17–1.34)

1723 62937
(60538–65337)

71458
(58832–84089)

104438
(85985–122900)

sVEGFR-3-based
dosing

2.16
(2.02–2.32)

1.47
(1.37–1.58)

1680 60763
(58335–63190)

25340
(19944–30733)

36784
(28952–44613)
March
CI, confidence interval; QALY, quality-adjusted life-years.
2020 | Volume 11 | Article 316

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Centanni and Friberg Model-Based Optimization of TKIs
longevity of drug effect; e.g. CD will cause more adverse effects
compared to QW or Q2W schedules.

It is important to note that extrapolation outside the original
dosing schedule, that the models were built on, result in more
uncertain predictions and clinical study data would need to
confirm the findings and/or serve the basis for refining the
models. Since current models were based on frequent, low-
dose schedules of axitinib and sunitinib, they may not capture
pleiotropic drug effects that can arise at intermittent, high doses.
Although the models appear to capture the development of AEs
in comparison to clinical data, it is possible that the linear and
Emax equations that are defined using lower dosages may not
accurately represent the relationships between drug exposure
and effect that occur at higher dosages. As such, schedule
adjustments will often necessitate an iterative endeavor of
prediction, data generation, and confirmation (EMA
extrapolation framework 4, accessed 15 November 2019).

Model-based forecast values of biomarkers on >1 clinical
measurement provided higher accuracy than most single direct
clinical sample measurement values, particularly for dBP under
axitinib (Figure 3). Interestingly, previous studies found model-
based estimations to have low predictive accuracy for changes in
dBP under sunitinib (Centanni et al., 2018). This inconsistency may
be due to the presence of inter-individual variability on two
additional parameters (i.e. drug effect and dBP turnover rate) and
the existence of a combined additive and proportional error instead
of just a proportional error. Extrapolation of biomarkers between
treatment indications or members of a drug class should therefore
be made with caution. In a similar manner, the influence of model-
based estimations and clinical sample measurements on the
percentage of correct dosing decisions differs between the different
biomarkers and drugs (Figure 4). For axitinib, TDM-guided dosing
using a model-based method appears to overestimate the number of
dose increases that should occur (i.e. low specificity) under the more
sparsely sampled (e.g. biweekly) data, compared to just evaluating
the clinical measurement at week 8. This is likely due to the initial
relative underestimation in drug concentration that is seen in
Figure 3. A similar pattern is observed for BAD of sunitinib,
where the sensitivity of the model-based estimations is lower than
the clinical biomarker measurement when using sparse sampling
(Figure 4), due to initial overestimations of biomarkers changes
(Figure 3). For the remaining biomarkers, model-based estimations
with sparse data provided either an equal or improved percentage of
correct dosing decisions, as compared to clinical sample
measurements. Importantly, it is expected that model-based
estimations are capable of providing predictions close after
treatment initiation, whereas clinical samples can only inform
dosing decisions once steady-state has been reached (Svensson
et al., 2019).

Limitations related to the use of model-based dose
individualization for TKIs mainly involve the complexity and
computational power related to the model building process, and
consequently the availability of such models and software to have
4https://www.ema.europa.eu/en/documents/presentation/presentation-ema-
extrapolation-framework-christoph-male_en.pdf
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a direct implementation at the point of care (van Beek et al.,
2019). In addition, since the current models are based upon rich,
but often more selected, datasets derived from clinical trials they
might require further adjustments to represent the parameter
distributions of the entire patient population (Keizer et al., 2018).
Advantages of model-based dose individualization of TKIs reside
in the (i) capacity to take previous sample observations and
patient-specific characteristics into account, (ii) ability to
consider a modified dosing history, (iii) flexibility in when to
take measurements and finally (iv) capability to predict future
effects following dose adjustments.

Cost-effectiveness analysis of biomarkers suggest that
sunitinib dose individualization based on sVEGFR-3 results in
highest increase in median OS and lowest costs per QALY.
Following current clinical expenses, a median increase of €36
784 per QALY was determined. Using the threshold of €80 000
and 500,000 SEK (~€57,000) per gained QALY, this would entail
that sVEGFR-3 based dosing can be regarded as a cost‐effective
intervention in the Netherlands and Sweden, respectively
(Vallejo-Torres et al., 2016). The cost-effectiveness of ANC-
based and TDM-based dosing appears low, at €104 438 and
€173 150 per gained QALY, respectively. Because biomarker
threshold values were not set with the primary purpose of
increasing OS, alternative biomarker threshold values may
optimize cost-effectiveness of ANC-based and TDM-based
dosing. Since the correlation between axitinib AUC and Ctrough

is not perfect (r = 0.679), it is recommended to perform an
exposure-response analysis to further evaluate the correlation
between Ctrough and treatment outcome and determine the
relevance of Ctrough to guide axitinib dose individualization.

The main disadvantage of cost-effectiveness analysis using a
model framework resides in the initial creation of mechanistic
models, which demands a significant investment of time and
effort. As such, it might primarily appear less desirable. With
increasing necessity for model-based analysis in regulatory drug
approval it is, however, expected that the required models will
become readily available for future developed compounds (Lee et al.,
2011). Due to its mechanistic nature it is additionally expected that
the predictions made by a model framework are more biologically
plausible and therefore better resemble reality (van Hasselt et al.,
2015). Moreover, the flexibility of the current model framework the
exploration of alternative dosages requires limited additional effort.

To conclude, a model-based framework that includes PK,
AEs, circulating biomarkers, tumor growth dynamics, and their
relation to OS can be employed to assess alternative treatment
schedules and dose-individualization approaches. As more
clinical data is collected, each framework can become further
extended to reflect the “real-world” population, and to meet
novel clinical needs (Keizer et al., 2018). For models in which
patient-specific factors (i.e. “covariates”) determine treatment
effect, the impact of subpopulations can be simulated and
compared to the overall population. As such, the framework
provides a flexible approach to evaluate the safety, efficacy, and
cost-effectiveness of treatments. In addition to simulations,
future efforts should focus on verifying the added value of
model-based dose adjustments.
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