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Electrospun Nanofiber Meshes With
Endometrial MSCs Modulate Foreign
Body Response by Increased
Angiogenesis, Matrix Synthesis, and
Anti-Inflammatory Gene Expression
in Mice: Implication in Pelvic Floor
Shayanti Mukherjee1,2*†, Saeedeh Darzi1,2†, Kallyanashis Paul1,2, Fiona L. Cousins1,2,
Jerome A. Werkmeister1,2‡ and Caroline E. Gargett1,2‡

1 The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia, 2 Department of Obstetrics and
Gynaecology, Monash University, Clayton, VIC, Australia

Purpose: Transvaginal meshes for the treatment of Pelvic Organ Prolapse (POP) have been
associated with severe adverse events and have been banned for clinical use in
many countries. We recently reported the design of degradable poly L-lactic acid-co-poly
e-caprolactone nanofibrous mesh (P nanomesh) bioengineered with endometrial
mesenchymal stem/stromal cells (eMSC) for POP repair. We showed that such
bioengineered meshes had high tissue integration as well as immunomodulatory effects in
vivo. This study aimed to determine the key molecular players enabling eMSC-based foreign
body response modulation.

Methods: SUSD2+ eMSC were purified from single cell suspensions obtained from
endometrial biopsies from cycling women by magnetic bead sorting. Electrospun P
nanomeshes with and without eMSC were implanted in a NSG mouse skin wound repair
model for 1 and 6weeks. Quantitative PCRwas used to assess the expression of extracellular
matrix (ECM), cell adhesion, angiogenesis and inflammation genes as log2 fold changes
compared to sham controls. Histology and immunostaining were used to visualize the ECM,
blood vessels, and multinucleated foreign body giant cells around implants.

Results: Bioengineered P nanomesh/eMSC constructs explanted after 6 weeks showed
significant increase in 35 genes associated with ECM, ECM regulation, cell adhesion
angiogenesis, and immune response in comparison to P nanomesh alone. In the absence
of eMSC, acute inflammatory genes were significantly elevated at 1 week. However, in the
presence of eMSC, there was an increased expression of anti-inflammatory genes
including Mrc1 and Arg1 by 6 weeks. There was formation of multinucleated foreign
body giant cells around both implants at 6 weeks that expressed CD206, a M2
macrophage marker.
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Conclusion: This study reveals that eMSC modulate the foreign body response to
degradable P nanomeshes in vivo by altering the expression profile of mouse genes.
eMSC reduce acute inflammatory and increase ECM synthesis, angiogenesis and anti-
inflammatory gene expression at 6 weeks while forming newly synthesized collagen within
the nanomeshes and neo-vasculature in close proximity. From a tissue engineering
perspective, this is a hallmark of a highly successful implant, suggesting significant
potential as alternative surgical constructs for the treatment of POP.
Keywords: mesenchymal stem cells, pelvic organ prolapse, electrospinning, nanofiber mesh, tissue engineering,
foreign body response, gene expression, foreign body giant cells
INTRODUCTION

Pelvic Organ Prolapse (POP) is a debilitating urogynecological
pelvic floor disorder that significantly impacts the quality of lives
of 50% of parous women aged over 50 years (Nygaard et al.,
2008). POP is mainly results from vaginal birth injury
(Urbankova et al., 2019), which over time leads to herniation of
pelvic organs, such as uterus, bladder, and bowel into the vagina.
Symptoms include difficulty in passing urine and bowel motions,
sexual dysfunction, feeling of a vaginal bulge, and urinary and
bowel incontinence (Iglesia and Smithling, 2017). While first line
conservative management using pelvic floor exercises and
pessaries may delay disease progression (Li et al., 2016), it does
not eliminate the need for surgical intervention for many women.
Until recently, non-degradable polypropylene (PP) vaginal
meshes were commonly used for reconstructive surgery to
mitigate native tissue repair failures (Milani et al., 2018).
However, regulatory authority warnings and recent reports
indicate high adverse event rates and risks of complications
such as mesh erosion and exposure (Mironska et al., 2019). A
growing body of evidence shows implant failures and have
established that prolonged inflammation and undesirable
foreign body response (FBR) are associated with complications
in patients (Deprest et al., 2009; Claerhout et al., 2010; Brown
et al., 2015; Jallah et al., 2016; Nolfi et al., 2016; Tennyson et al.,
2019). Such FBRs and associated adverse effects of transvaginal
meshes were deemed to out-weigh PP benefits and therefore led
to the ban on transvaginal meshes in Australia, UK, and USA by
regulatory authorities, with no alternative treatments on the
horizon. At present, there are no optimal therapies for POP.
Therefore, more reliable treatment measures that promote tissue
healing and repair without piquing deleterious FBR are pivotal
for the treatment of POP (Siddiqui et al., 2018).

In nature, in vivo cell behavior and vaginal tissues are
supported by the micro/nanoscale architecture of the ECM
(Sridharan et al., 2012) that provides a larger surface area to
adsorb proteins and more binding sites for cell membrane
receptors and adhesion molecules. The standard clinical PP
mesh biomaterial lacks a biomimetic character. They disrupt
the vaginal microenvironment (Liang et al., 2013; Liang et al.,
2015; Jallah et al., 2016) rather than mimicking its
nanoarchitecture, evoking undesired complications. To
overcome mesh erosion, vaginal implants must promote rather
in.org 2
than impede cell-matrix interactions. The primary cause of
complications resulting from PP mesh implants have been
attributed to the prolonged chronic inflammation and poor
tissue integration associated with mechanically inferior non-
degradable implants (Nolfi et al., 2016; Tennyson et al., 2019).
The tissue microenvironment comprises structural and
functional components (e.g. collagens and elastin) that provide
a scaffold to hold cells together through numerous chemical and
physical stimuli at the molecular level. Nanofabrication of
scaffolds recapitulates such biomimetic nanoscale architectural
cues (Mukherjee et al., 2013; Liu et al., 2018a). As a result,
meshes designed with nanoscale fibers using electrospinning
techniques promote cell-cell and cell-biomaterial interactions.
Given that current PP meshes bear little structural or biological
resemblance to native vaginal tissue, we and others have shown
that nanostructured meshes that impart biomimetic properties
can improve mesh integration, overcome erosion and hold
significant promise in POP reconstructive surgery (Sartoneva
et al., 2012; Wu et al., 2016; Vashaghian et al., 2017; Gargett et al.,
2019; Mangir et al., 2019; Mukherjee et al., 2019b).

Irrespective of the composition and fabrication technique,
biomaterials elicit an FBR after implantation in the body
(Mukherjee et al., 2019a; Hympanova et al., 2020). This
response is a cascade of dynamic cellular processes involving
severa l genes influencing the mil ieu of the t issue
microenvironment that ultimately determines the fate of the
implant and healing process. Mesenchymal stem/stromal cells
(MSCs) are clonogenic, multipotent cells, widely recognised for
their ability to promote tissue repair and regeneration (Dimarino
et al., 2013; Ulrich et al., 2013; Le Blanc and Davies, 2015; Gargett
et al., 2016). Therefore, cell based therapies for pelvic floor tissue
repair, although less explored, hold significant potential for POP
treatment (Darzi et al., 2016b; Emmerson and Gargett, 2016;
Gargett et al., 2016; Callewaert et al., 2017; Gargett et al., 2019).
Nonetheless, while undifferentiated MSCs mitigate inflammation
and influence reparative processes (Kode et al., 2009; Le Blanc
and Davies, 2015), several clinical trial outcomes have
highlighted that mere injection of such therapeutic cells into
damaged tissue leads to a rapid loss of MSC, preventing optimal
repair (Dimmeler et al., 2014; Sharma et al., 2014).
Bioengineering using biomimetic degradable nanofiber meshes
that mimic natural ECM to allow entrapment and persistence of
seeded MSCs will likely yield superior vaginal constructs with a
March 2020 | Volume 11 | Article 353
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controlled and anti-inflammatory immune response (Gargett
et al., 2019).

We discovered perivascular MSCs in the endometrial lining of
the uterus (eMSC) and identified a unique marker, SUSD2, to
isolate these rare perivascular cells (Gargett et al., 2016). We also
discovered that a small molecule, A83-01, maintains eMSC'
undifferentiated state during culture expansion, required for
clinical use (Gurung et al., 2015; Gurung et al., 2018). We have
established that eMSC have reparative capacity, reduce fibrosis
and the FBR to nondegradable polyamide mesh by influencing
macrophage polarization switching from an M1 to M2
phenotype in rodent and ovine models (Ulrich et al., 2014;
Darzi et al., 2018; Emmerson et al., 2019). More recently, we
have also shown that eMSC improve the tissue integration,
cellular infiltration and overall FBR response to degradable
nano/microstructured meshes (Mukherjee et al., 2019b; Paul
et al., 2019). The beneficial effects of eMSC are characterized
by upregulation of M2 markers such as CD206 and Arg1, Mrc1,
and Il10 genes in tissue macrophages, as well as reducing their
secretion of inflammatory cytokines Il-1b and Tnf-a (Darzi
et al., 2018). However, the key players in mediating eMSC
paracrine effects on cellular migration and recruitment
remain largely unknown. Furthermore, how eMSC mediate
M2 immunomodulatory responses during the FBR after
implantation of bioengineered constructs also remains
unknown. In general, the FBR to tissue engineered constructs
are often limited to measuring the in vivo capsule thickness and
is poorly understood.

Recently, we reported the design of novel nanostructured
degradable poly L-lactic acid-co-poly e-caprolactone or PLCL
meshes (P nanomesh) tissue engineered with reparative
mesenchymal stem/stromal cells from endometrium
(Mukherjee et al., 2019b). In this study, we assess the potential
of these newly designed degradable nanofiber meshes tissue
engineered with these therapeutic cells to influence
macrophage mediated FBR and promote key reparative
processes such as angiogenesis, cellular adhesion, extracellular
matrix (ECM) synthesis as well as its regulation using gene
expression profiling and histology in a subcutaneous mouse
model. From a clinical perspective, it is not only important to
design novel constructs for POP treatment, but also critical to
understand their FBR pattern and tissue repair process that likely
varies with different components and their degree of involvement
(Mukherjee et al., 2019a). Such detailed understanding is also
pivotal to the long term efficacy of all medical devices and the
lack of this knowledge may potentially disrupt clinical practices
as exemplified by the rise and fall of pelvic PP mesh usage
(Heneghan et al., 2017). In this study we provide an in-depth
assessment of changes in gene expression associated with eMSC-
nanobiomaterial therapy. In particular, we have quantified the in
vivo gene expression associated with ECM formation and
regulation, cell adhesion, angiogenesis and the FBR to PLACL
Nanomesh (P Nanomesh) with and without eMSC. We have also
shown the histological effects arising from the gene expression
profile of eMSC based surgical constructs, including angiogenesis
and ECM formation. To our knowledge, this is the first study to
Frontiers in Pharmacology | www.frontiersin.org 3
show such detailed impact of eMSC based tissue engineered
degradable nanostructured scaffolds in vivo.
METHODS

Ethics
All SUSD2+ eMSC were isolated from endometrial biopsies
obtained from seven women undergoing laparoscopic surgery
for nonendometrial gynecological conditions and had not taken
hormonal treatment for three months before surgery. Samples
were collected following written informed consent as per
approval from the Monash Health and Monash University
Human Research Ethics committees (09270B). All methods
were performed in accordance with National Health and
Medical Research Council guidelines. Each patient biopsy was
used to generate a single eMSC cell line and served as n=1.

Fabrication of Nanomeshes
Nanofiber meshes of PLACL were fabricated by electrospinning
as described in our previous report (Mukherjee et al., 2019b).
PLACL polymer (Resomer, Evonik) was dissolved in 1,1,1,3,3,3-
hexafluoro-2-propanol (HFIP) on a magnetic stirrer to form 10%
(w/v) clear solution. Syringe (Terumo Corporation, Japan) with
this solution was attached to 23 G blunted stainless-steel needle
(Terumo Corporation, Japan) for electrospinning, using a
syringe pump (NE1000, New Era Pump Systems, Inc. USA) at
a controlled flow rate of 1 ml/h and voltage of 18 kV (DC voltage
power supply, Spellman SL150, USA) to collect nanofibers at a
distance of 12.5 cm from the needle tip to the collector. The fibers
were collected on grounded aluminum foil and dried for at least 1
week in a vacuum oven prior to experimental use.

Scanning Electron Microscopy
Samples of only nanofiber meshes were directly sputter coated
with a thin platinum sputter coating layer (Cressington 208 HR,
UK) for 120 s. All specimens were examined under the scanning
electron microscope (Nova NanoSEM, FEI, USA) at an
accelerating voltage of 10 kV and images were quantified by
Image J software.

Atomic Force Microscopy
Atomic force microscopy (AFM) using a FastScan AFM (Bruker,
Billerica, MA, USA) in PeakForce tapping mode and FastScan C
probes with a nominal 5 nm tip radius and spring constant of 0.8
N/m. For imaging, 512 × 512 pixel resolution and a 2-Hz scan
rate was used to measure n=3 samples and pointed AFM tip at
five ROIs (region of interest) of 5 mm2 area. Images were
processed using Nanoscope Analysis software.

Isolation, Expansion, and Labelling of
eMSC
Endometrial tissue was obtained from seven healthy women (no
endometrial pathology) who had not used hormones for
minimum three months. SUSD2+ eMSC were isolated
according to our established protocols (Darzi et al., 2018;
March 2020 | Volume 11 | Article 353
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Mukherjee et al., 2019b). Briefly, endometrial tissue underwent
enzymatic digestion using Collagenase I and DNAs I
(Worthington-Biochemical Corporation) for 1 h at 37°C. The
stromal fraction and red blood cells were separated from
epithelial fraction using a 40 mM sieve (BD Bioscience-
Durham) and Ficoll paque (GE Healthcare Bioscience-Bio-
Sciences AB) gradient, respectively. The isolated stromal cells
were incubated with PE anti human SUSD2 antibody
(Biolegend) for 30 min at 4°C followed by incubation with
anti-PE labelled magnetic beads (Miltenyi Biotec) for 20 min.
PE labelled SUSD2+ eMSC were sorted using a column and
magnet (Miltenyi Biotec). SUSD2+ eMSC were cultured and
expanded in 10% FBS DMEM F12 (Invitrogen) supplied with
growth factor bFGF (Peprotech) for 2–4 passages. Before in vivo
implantation, eMSC were permanently labelled with mCherry
lentivirus vector according to our published protocols (Darzi
et al., 2018; Mukherjee et al., 2019b). Briefly, Lentivirus was
generated using three plasmids; pLVX-IRES-mCherry (lentivirus
plasmid which contains mCherry gene) (clontech-6312237),
packaging plasmids; pSPAX2 that encodes capsid (Addgene
12260) and pMD2.G that encodes reverse transcriptase for
lentivirus replication (Addgene 12259), into 293T cells.
Transfection was performed using TransIT-X2 (Mirus)
transfection reagent according to manufacturer's protocols.

Animal Surgery and Tissue Collection
The experimental procedure and mouse husbandry was
approved by Monash Medical Centre Animal Ethics
Committee A (2017/05). NSG mice were housed in the animal
house at Monash Medical Centre according to the National
Health and Medical Research Council of Australia guidelines
for the care and use of laboratory animals and were provided
sterile food and water under controlled environmental
conditions. NSG mice were divided in two experimental
groups P and P+eMSC and two time-points; 1 and 6 weeks
(seven mice/group). The mice were anaesthetized using 3% w/v
Isoflurane® and carprofen (5 mg/kg body weight) was used as
analgesia. The abdomen was shaved and disinfected with 70%
ethanol. A longitudinal 1.2 cm skin incision was performed in
the lower abdomen and the skin was separated from the fascia by
blunt dissection to make two pockets on each side of the midline.
The P nanomesh was implanted into two pockets of each animal,
and mCherry labelled eMSC was added on top of the nanomesh
using a 50µl pipette tip. Meshes were sutured to the abdominal
fascial layer using 6–0® monofilament sutures (Ethicon) on two
ends and. The skin was closed with 6–0® monofilament sutures
(Vicryl). Following 1 or 6 weeks the animals were euthanized in a
CO2 chamber and tissues were collected for analysis. Some
animals were reused from our previous study (Mukherjee
et al., 2019b) to comply with Monash Medical Centre Animal
Ethics Committee's reuse and reduce usage policy. However, the
tissue portions of the animals used for analysis have not been
used in any other study.

Histology
Tissue sections containing constructs were fixed in 10% formalin
and processed by the Monash Histology Platform at the Monash
Frontiers in Pharmacology | www.frontiersin.org 4
Health Translation Precinct (MHTP). Formalin-fixed tissues
were processed to paraffin, sectioned (5 µm) and placed on
super frost slides. Histological H&E, Picrosirius red staining and
immunohistochemistry was performed by Monash Histology
Platform at MHTP. For H&E staining, slides were dewaxed
using xylene and stained in Haemtoxylin for 7 min. After
washing in tap water, they were blued in ammoniated water
for 30 seconds and stained in alcoholic Eosin for 7 min. For Picro
Sirius red staining, slides were dewaxed using xylene and fixed
in Bouin's fixative for 1 h. After washing in tap water, they
were stained with Picro Sirius red for 1 h at room temperature
followed by washing and mounting. For immunohistochemistry
staining, slides were dewaxed and underwent citrate buffer
antigen retrieval for 30 min followed by endogenous
peroxidase blocking step using 0.3% v/v H2O2. Slides were
then incubated with protein blocker (Dako, USA) for 40 min
and washed with 1× PBS. Primary antibodies were diluted and
incubated for 1 h at room temperature. HRP labelled anti mouse
was used as secondary antibody for 30 min and the nucleus
stained with Hematoxylin. Details of antibodies are listed in
Table1. The sections are scanned using Aperio Digital pathology
scanner (Leica) at 40X and analyzed using Imagescope software
to identify the stains.

qPCR Fluidigm Biomark
Animal tissues were collected in RNAlater (ThermoFisher) and
stored in 4°C for 24 h followed by storage in −80°C. Samples
were weighed and total RNA was extracted using RNeasy mini
kit (Qiagen) as per manufacturer's protocol to prepare cDNA.
Prior to fluidigm qPCR, preamplification was used to increase
the number of copies of each gene to detectable levels as detailed
in Fluidigm Gene Expression. Taqman assays were firstly pooled
by combining 2 ml of each of the 94 20X Taqman assays and 12 ml
Tris EDTA buffer pH 8.0 for a final volume of 200 ml. The final
concentration of each assay was 0.2X (180nM). 3.75 ml of Sample
Premix (Life Technologies TaqMan® PreAmp Master Mix and
Pooled Taqman assays) was combined with 1.25 ml of each of the
87 cDNA samples and 8 RT negative samples for a final reaction
volume of 5 ml per sample. A no template control from Single
Cell Genomics Centre was also included and all 96 samples were
preamplified for 14 cycles. Following preamplification, reaction
products were diluted 1:5 by adding 20 ml Tris EDTA buffer pH
8.0 to the final 5 ml reaction volume for a total volume of 25 ml.
Assays and Samples were combined in a 96.96 Dynamic array
IFC according to Fluidigm® 96.96 Real-Time PCR Workflow.
Five microliter of each assay at a final concentration of 10× was
added to each assay inlet port and 5 ml of diluted sample to each
sample inlet port according to the Chip Pipetting Map (GE
96×96 Standard v2). Data were analyzed using with Fluidigm
Real-Time PCR analysis software (V4.1.1) to obtain Ct values.
March 2020 | Volume 11 | Article 353
TABLE 1 | Details of antibodies used in immunohistochemistry.

Primary Antibody Isotype Supplier Dilution

CD206 Rabbit polyclonal Abcam 1/2500
mCherry Rat IgG1 Life technology 1/100
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Primers are detailed in Table 2. Target gene expression was
normalized to 18sRNA and relative gene expression and fold
change was calculated using the 2-DDCT method.

Data Analysis and Statistics
Fold Change in gene expression was calculated in comparison to
sham controls. Statistical analysis was performed using
GraphPad Prism v8. Data were analyzed using non-parametric
Mann-Whitney U test (comparison between P and P+eMSC).
Data are presented as median and value of P ≤ 0.0513 was
considered to be statistically significant.
RESULTS

Fabrication and Characterization of
Nanomesh
Degradable nanostructured meshes were fabricated from poly
(L-lactic acid)-co-poly(e-caprolactone) (P Nanomesh), given
their acceptance in medical devices, using electrospinning to
mimic the precise features of native tissue dimensions as per our
previous studies (Mukherjee et al., 2011; Mukherjee et al.,
2019b). Electrospinning enabled the design of nanofibers of
PLCL (Figure 1) that produced a mesh which macroscopically
appeared like thin facial tissue paper. Scanning electron
microscopy (SEM) micrographs confirmed that P nanomeshes
had an ultrafine and beadless morphology (Figure 1A) with an
average fiber diameter of 585 nm as previously reported
(Mukherjee et al., 2019b). The nanomeshes were highly porous
(Figure 1B) and had three-dimensional structure of randomly
layered fibers to form sheets of ~406 nm in thickness (Figures
1C, D). The fabricated P nanomesh structures closely resembled
the human vaginal microstructure at the nanoscale, comprised of
collagen fibril structures (Figure 1E and Figure S1) that ranged
from 55–130 nm depending on the patient age and POP severity,
and are arranged in bundles 2–3 µm thick (Kim et al., 2016).

eMSC Increase Synthesis of New ECM
Within Nanomeshes In Vivo
Histology sections prepared from mouse explants were stained
with Picro Sirius red to visualize the newly synthesised ECM
(Figure 2), mainly collagen (black arrows, Figure 2) inside
TABLE 2 | Details of qPCR Primers (mouse genes).

Gene name TaqMan Code

Ang1 Mm00456503_m1
Ang2 Mm00545822_m1
Fgf1 Mm00438906_m1
Fgf2 Mm00433287_m1
Fgfr3 Mm00433294_m1
Ctgf Mm01192933_g1
Mmp2 Mm00439498_m1
Mmp9 Mm00442991_m1
Mmp19 Mm00491296_m1
Pdgfa Mm01205760_m1
Timp1 Mm00441818_m1
Timp2 Mm00441825_m1
Timp3 Mm00441826_m1
Timp4 Mm01184417_m1
Tgfa Mm00446232_m1
Tgfb1 Mm00441724_m1
Tgfb2 Mm00436955_m1
Tgfb3 Mm00436960_m1
Tgfbr1 Mm00436964_m1
Vegfa Mm00437304_m1
Serpine1 Mm00435860_m1
Itgb1 Mm01253230_m1
Itgb2 Mm00434513_m1
Ccl1 Mm01545656_m1
Ccl2 Mm00441242_m1
Ccl3 Mm00441258_m1
Ccl4 Mm00443111_m1
Ccl5 Mm01302428_m1
Ccl7 Mm00443113_m1
Ccl11 Mm00441238_m1
Ccl12 Mm01617100_m1
Ccl17 Mm01244826_g1
Ccl19 Mm00839967_g1
Cxcl1 Mm04207460_m1
Cxcl2 Mm00436450_m1
Cxcl5 Mm00436451_g1
Cxcl9 Mm00434946_m1
Cxcl10 Mm00445235_m1
Cxcl11 Mm00444662_m1
Cxcl12 Mm00445553_m1
Ccr1 Mm00438260_s1
Ccr2 Mm99999051_gH
Ccr3 Mm01216172_m1
Ccr5 Mm01963251_s1
Ccr7 Mm00432608_m1
Cxcr2 Mm99999117_s1
Cxcr3 Mm00438259_m1
Il1a Mm00439620_m1
Il1b Mm00434228_m1
Il4ra Mm01275139_m1
Il6 Mm00446190_m1
Tnf Mm00443258_m1
Il10 Mm00439616_m1
Nos1 Mm01208059_m1
Nos2 Mm00440485_m1
Cd86 Mm00444540_m1
CD80 Mm01344159_m1
Arg1 Mm00475988_m1
Mrc1 Mm00485148_m1
Tnfa Mm99999068_m1
Cd44 Mm01277163_m1
Cdh1 Mm01247357_m1
Cdh2 Mm01162497_m1

(Continued)
TABLE 2 | Continued

Gene name TaqMan Code

Cd49B/Itga2 Mm00434371_m1
Icam Mm00516023_m1
Vcam1 Mm01320970_m1
Col6a1 Mm00487160_m1
Col6a2 Mm00521578_m1
Col6a3 Mm00711678_m1
Col6a6 Mm00556810_m1
Col1a1 Mm00801666_g1
Col3a1 Mm01254476_m1
Rn18s Mm03928990_g1
Gapdh Mm03302249_g1
March 2020 | Volum
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implanted meshes (between dotted lines, Figure 2). At 6 weeks,
there was a substantial amount of collagen inside the Nanomesh
(within dotted lines, Figure 2) in the P+eMSC group compared
to P alone. This difference was not observed at 1 week.
Quantitative PCR analysis of ECM and genes (Figure 3) also
showed a significant increase in the expression (P < 0.05) of
several collagen genes including Col1a1, Col3a1, Col6a1 and
Col6a2 in P+eMSC compared to P alone at 6 weeks (Figure 3A).
Similar to histology observations (Figure 2), the expression of
these genes was not different between the two groups at 1 week
(Figure 3B). The expression of cell adhesion molecules and Tgfb
genes, Itgb1, Vcam, Icam, Cd44, Cdh1, Cdh2, Tgfb1, Tgfb3, and
Tgfbr were also significantly higher (P < 0.05) (Figure 3A),
whereas expression of Tgfb2 (Figure 3A) showed no difference
between P+eMSC and P alone at 6 weeks. In contrast, at 1 week
Frontiers in Pharmacology | www.frontiersin.org 6
no collagen subunit genes were differentially expressed, neither
for cell adhesion genes, except for Cd44, which was significantly
lower in P+eMSC compared to P (Figure 3B). Our results show
that presence of eMSC increases new collagen subunit synthesis
which may be mediated by increased Tgfb1 and Tgfb3 gene
expression within implanted P nanomesh, may foster tissue
integration via the expression of ECM formation and cell
adhesion genes by 6 weeks but not as early as 1 week in vivo.
eMSC Influence Expression of Matrix
Metalloproteinases and Tissue Inhibitors
of Metalloproteinases
Matrix metalloproteinases (Mmps) are essential mediators of
ECM homeostatic dynamics that degrade ECM components and
FIGURE 1 | Electrospun Nanofiber mesh. Scanning electron micrographs of PLCL nanofiber mesh structure at (A) 1000× magnification (B) 5000× magnification.
Atomic force micrograph reveals structure of (C) randomly laid nanofiber meshes at two-dimensional (2D) view and (D) 3D view (E) vaginal extracellular matrix (ECM)
structure revealing arrangement of collagen fibrils (yellow arrows).
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are modulated by Tissue inhibitors of metalloproteinases
(Timps). TIMPs reversibly bind to MMPs and regulate their
proteolytic activities and their balance significantly impacts
tissue homeostasis. To this end, we assessed the expression of
several key Mmps and Timps using qPCR in in vivo tissues post
implantation (Figure 4). At 6 weeks, the expression of Mmp2,
Mmp19, Timp2, and Timp3 was significantly higher (P < 0.05) in
P+eMSC compared to P alone (Figure 4A). At 1 week, there was
no significant differences in the expression of these MMPs and
TIMPs genes in both groups (Figure 4B). Our results show that
eMSC influence the expression of several MMPs and TIMPs
when implanted as tissue engineered constructs compared with P
nanomesh alone by 6 weeks.

Nanomesh With eMSC Promote
Angiogenesis After In Vivo Implantation
Angiogenesis is essential to healing and growth for repair of
tissues. Rapid neo-vascularisation determines the clinical success
of implanted tissue constructs. Since cells must be in 100–200 µm
proximity of blood vessels to receive oxygen through diffusion,
spontaneous ingrowth of capillaries is highly desirable following
in vivo implantation of meshes (Shahabipour et al., 2019). Thus,
it is critical that the post implantation milieu has optimal
conditions to support vascularization for tissue integration and
long-term viability. Therefore, we assessed the expression of
several angiogenic factors following in vivo implantation of P
nanomeshes with and without eMSCs at 1 and 6 weeks
(Figure 5). At 6 weeks, we observed significantly higher
expression (P < 0.05) of the key angiogenic factor genes, Vegfa,
Fgf1, Ctgf, Ang1, and Pdgfa in P+eMSCs compared to P alone
(Figure 5A). Of these, Serpine and Fgf1 were also significantly
higher in the presence of eMSC acutely at 1 week (Figure 5B),
suggesting their role in a sustained angiogenic response.
Expression of Cxcl12, a chemokine that plays a crucial role in
angiogenesis by recruitment of endothelial progenitor cells (Li
Frontiers in Pharmacology | www.frontiersin.org 7
et al., 2015), was also significantly higher (P < 0.05) in the
presence of eMSCs at 6 weeks (Figure 5A), however not at 1
week (Figure 5B), indicating involvement in late angiogenic
responses. Our results indicate that, in comparison to P alone
(Figure 6A), implantation of eMSC with P nanomesh promotes
early angiogenesis and neovascularization as evidenced by H&E
staining (Figure 6B) whereby several blood vessel profiles are
located inside the mesh (black arrows, Figure 6C) as well as
within a close proximity (10–200µm) of the mesh implant (black
arrows, Figure 6D).

eMSC Reduces the Pro-Inflammatory
Response After Nanomesh Implantation
Immediately following mesh implantation, the immune system is
triggered and an influx of white blood cells at the site marks the
beginning of the FBR acute phase, which is characterized by
several inflammatory cytokines. Several factors including
components of the implants, determine the severity of this
acute phase and the milieu of pro-inflammatory factors. Our
analysis of pro-inflammatory factor genes showed that eMSC
dampen and delay the expression of several acute pro-
inflammatory genes in response to implanted P nanomesh
(Figures 7 and 8). eMSC attenuated the inflammatory
response associated with nanomesh at 1 week by significantly
downregulating (P < 0.05) the expression of Il1b, Tnfa, Ccl2, Ccl3,
Ccl4, Ccl5, Ccl7, Ccl12, Ccl19, Cxcl1, Cxcl2, Cxcl10, Ccr1, and Ccr7
compared to P alone (Figure 7). In contrast to upregulating
ECM and angiogenesis genes, we observed that all of these acute
inflammatory genes were no longer upregulated at 6 weeks
(Figure 8). However, the later phase inflammatory genes Nos2,
Ccl11, Ccxl9, Cxcl12, and Ccr2 which is the receptor for Ccl11,
in P+eMSC were significantly upregulated (P < 0.05) compared
to P alone. Our results show that eMSC seeded P nanomesh
significantly and rapidly reduces the acute inflammatory
response associated in vivo biomaterial implantation and
FIGURE 2 | Picro-Sirius red staining of collagen in explanted meshes at 20× and 40× magnifications. P nanomesh implants (within dotted lines), with and without
endometrial mesenchymal stem/stromal cells (eMSCs), explanted from the subcutaneous skin of the flank showing red-stained collagen red in mice at 1 and 6
weeks explantation. Black arrows show new collagen deposited within the P Nanomesh.
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therefore is likely to influence the entire subsequent FBR process.
Some chemokines are upregulated in P+eMSCs at 6 weeks,
associated with inflammatory cell recruitment functions such
as Cxcl12.
eMSCs Promotes an Anti-Inflammatory
Response Following In Vivo Implantation
at 6 Weeks
Macrophages release of cytokines and growth factors induce
migration and proliferation of fibroblasts, that in an anti-
inflammatory environment effectively regenerate tissue (Koh
Frontiers in Pharmacology | www.frontiersin.org 8
and Dipietro, 2011). Accumulating evidence indicates that
macrophages orchestrate the tissue response and healing
process after biomaterial implantation and that macrophage
polarization determines the outcome of the immune response
(Ulrich et al., 2012; Roman Regueros et al., 2014; Feola et al.,
2015; Darzi et al., 2016a). Herein, we observed a significantly
higher (P < 0.05) expression of anti-inflammatory genes
including Arg1, Mrc1, Il6, and Il4ra in P+eMSCs over P alone
at 6 weeks (Figure 9A). While Il4ra is commonly associated with
inflammation, recent evidence has shown it plays a role in M2
polarization by upregulating Il-6, another pro-inflammatory
cytokine associated with tissue regeneration. Moreover, its
A

B

FIGURE 3 | Extracellular matrix (ECM) and adhesion molecule gene expression of P and P+eMSCs nanomesh explants. Fold change in mRNA expression of ECM
and cell adhesion genes by quantitative PCR in explanted mice tissues after (A) 6 weeks and (B) 1 week consisting of P nanomesh, with and without endometrial
mesenchymal stem/stromal cells (eMSCs). Data are median of n=5-7 samples/group analyzed by Mann-Whitney U test; *P < 0.05 and **P < 0.01.
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ligand, Il-4 is commonly used to polarize M2 macrophages in
vitro and is associated with wound repair. In contrast, Arg1 was
upregulated in the presence of P of eMSCs at 1 week (Figure 9B)
which marks the acute phase of the FBR.

Biomaterial-Induced Multinucleated Giant
Cells With M2 Phenotype
We found multinucleated foreign body giant cells (FBGC)
associated with both P+eMSCs and P at 6 weeks but not at 1
week (Figure 10) by H&E stains, which showed fusion of
macrophages mostly at the edges of the mesh (Figure 10A,
black arrows). Our results show that the in the presence of
eMSCs, the number of FBGCs were increased and smaller in size
wi th fewer nucle i per FBGC. Immunohisto log ica l
characterization revealed that these FBGCs expressed CD206,
(Figure 10B, black arrows) a marker usually associated with M2
macrophages as shown within the mesh at 1 week in P+eMSC.
These CD206 FBGCs were found both at the mesh edges and in
the surrounding tissues. In P+eMSC, the intensity of CD206 in
FBGC and other cells was greater, with respect to negative
control (Figure S2) and localised to the plasma membrane
compared to P alone at both time points. Although FBGC have
been viewed in a negative light in FBR process, the knowledge of
Frontiers in Pharmacology | www.frontiersin.org 9
their role and functions remain elusive. Our study shows that
these cells express CD206, a M2 marker and are present while
there is a high expression of angiogenic, ECM synthesis, cell
adhesion and anti-inflammatory genes in P+eMSCs at 6 weeks.
DISCUSSION

In this study, we report the difference in the profile of the FBR
response, with focus on ECM, angiogenesis and inflammatory
responses to degradable nanofiber meshes of PLCL (P) in the
absence and presence of eMSCs. The main findings of our study
are that MSCs promote better tissue integration of nanomesh
through inducing increased expression of ECM, cell adhesion,
angiogenesis and healing gene profiles 6 weeks following
implantation, while dampening the pro-inflammatory response
in the acute FBR phase at the first week. Given that the current
failed vaginal meshes are associated with inadequate tissue
integration and elevated chronic inflammatory FBR years after
implantation (Nolfi et al., 2016), the use of eMSCs to reduce the
pro-inflammatory response and promote early mesh integration
and improve tissue repair is an important advance in improving
outcomes for treating POP.
A

B

FIGURE 4 | Matrix metalloproteinase (Mmp) and tissue inhibitors of metalloproteinases (Timp) gene expression of P and P+eMSCs nanomesh explants. Fold change
in mRNA expression of mouse Mmp and Timp genes by quantitative PCR in explanted mice tissues after (A) 6 weeks and (B) 1 week consisting of P nanomesh,
with and without endometrial mesenchymal stem/stromal cells (eMSCs). Data are median of n=5-7 samples/group analyzed by Mann-Whitney U test; *P < 0.05,
**P < 0.01.
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Our fabricated nanostructured porous P nanomeshes with a
fiber diameter 585 nm (Mukherjee et al., 2019b) and a scaffold
depth of ~406 nm have emerged as an attractive and potential
alternative to nondegradable meshes owing to their biomimetic
properties (Vashaghian et al., 2017; Gargett et al., 2019).
Previously, we have shown that meshes with nano and micro
architecture interact favorably with eMSC and promote their
growth and proliferation (Mukherjee et al., 2019b; Paul et al.,
2019). In the present study, our results show that the P nanomesh
closely mimics the vaginal ECM architecture. Moreover, the
bioengineering of nanomesh with eMSCs triggers a distinctly
Frontiers in Pharmacology | www.frontiersin.org 10
more favorable immune and tissue response in vivo compared to
nanomesh alone. From a clinical perspective, in targeting POP
treatment, these are highly desirable features as nanostructured
meshes recapitulate structural cues for cell adhesion and
prolonged retention of large numbers of MSCs after local
delivery even after 6 weeks (Figure S3).

Following implantation of a biomaterial construct in vivo, a
macrophage-mediated FBR is triggered whereby several
molecular mechanisms are activated at each step of the process
(Anderson et al., 2008; Skokos et al., 2011; Mooney et al., 2014;
Mukherjee et al., 2019a). Accumulating evidence from our and
A

B

FIGURE 5 | Angiogenesis gene expression of P and P+eMSCs nanomesh explants. Fold change in mRNA expression of mouse angiogenic genes by quantitative
PCR in explanted mice tissues after (A) 6 weeks and (B) 1 week consisting of P nanomesh, with and without endometrial mesenchymal stem/stromal cells (eMSCs).
Data are median of n=5-7 samples/group analyzed by Mann-Whitney U test; *P < 0.05.
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other groups indicate that macrophages orchestrate the tissue
response and healing process after biomaterial implantation and
that macrophage polarization determines the outcome of the
immune response (Ulrich et al., 2012; Roman Regueros et al.,
2014; Feola et al., 2015; Darzi et al., 2016a; Paul et al., 2019). Our
results show that eMSC-based nanomesh implants corroborate
known M2 macrophage effects after 6 weeks implantation in
mice by increased expression of Il10 and Tgfb genes which
induced the M2 phenotypic genes Arg1 and Mrc1 on the
accumulating macrophages. eMSCs also induced upregulation
Frontiers in Pharmacology | www.frontiersin.org 11
of angiogenic genes Tgfbr, Vegfa, Ang1, and Pdgfa promoting
neovascularisation around the meshes and the chemotactic and
recruitment genes Cxcl12, Ccr2, and Ccl11 to promote the initial
macrophage accumulation around the implanted mesh.
Therefore, it is clear that eMSCs have a direct impact on the
host macrophages by polarizing them to an M2 phenotype and
proactively modulating their response to the implanted
biomaterial in vivo that promotes nanomesh integration.

Once macrophages are recruited to the implant surface, they
begin to accumulate and release chemo-attractive signals such as
FIGURE 6 | Neo-vascularization in Nanomesh explants after 6 weeks. H&E stained section showing mesh implants of (A) P and (B) P+eMSC at 6 week (dotted
line). (C) Neo-vascularization (black arrows) around P+eMSC is seen at optical zoom within the yellow box area showing neo-vascular structures (black arrows) inside
the mesh area (M) and (D) blue box area showing neo-vascular structures (black arrows) around the mesh area.
FIGURE 7 | Acute Inflammatory gene expression after 1 week implantation of P and P+eMSC. Fold change in mRNA expression of mouse inflammatory genes by
quantitative PCR in explanted mice tissues consisting of P nanomesh, with and without endometrial mesenchymal stem/stromal cells (eMSCs) after 1 week. Data are
median of n=5-7 samples/group analyzed by Mann-Whitney U test; *P < 0.05 and **P < 0.01.
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TNF-a, IL-1b, IL-6, and CCL2 that further enhances
macrophage assembly at the interface (Anderson et al., 2008;
Van Linthout et al., 2014; Kyriakides, 2015). Our results show
that a number of chemotactic genes (Ccr2, Ccl11, Cxcl9, and
Cxcl12) are upregulated in the eMSC-containing constructs and
their reduction over time correlates with the progression of the
FBR in a modulated manner at the surface tissue interface. This is
evident from significantly elevated expression of cell adhesion
genes Itgb1, Cdh1, Cdh2, Vcam1, and Cd44. The JAK/STAT
signalling pathway is activated in the FBR when IL-4 binds to its
receptor on macrophages, inducing the phosphorylation of
STAT6 which translocates to the nucleus and upregulates the
expression of E- cadherin or N-cadherin and b-catenin (Moreno
et al., 2007). Upregulation of this adhesion molecule enhances
cell-cell interactions, induces the fusion of macrophages
(Mcnally et al., 1996; Van Linthout et al., 2014) and modulates
the M2 response, mainly in vitro (Van Den Bossche et al., 2015).
After macrophages are bound via their integrin receptors,
downstream signal transduction can affect cytoskeletal
rearrangement and formation of more adhesion structures
allowing macrophages to spread over the biomaterial surface as
we observed in this study. This spreading is facilitated by
specialized macrophage podosomes consist of actin filaments
that are associated with both initial macrophage adhesion and
subsequent macrophage fusion to form FBGCs (Kyriakides,
2015; Chung et al., 2017). Our results indicate that eMSCs
modulated several cell adhesion genes to promote a
Frontiers in Pharmacology | www.frontiersin.org 12
coordinated interaction with the biomaterial and promote graft
tissue integration, albeit at a later time point. Such a response is
critical to favorable long-term outcomes after mesh implant-
based POP reconstructive surgery.

Nanomeshes themselves may not have the mechanical
properties to alleviate POP symptoms and therefore, we
envision they augment native tissue repair surgery. However,
over time, the bioengineered nanomeshes can stimulate the body
to produce ECM which will not only drive tissue integration but
also provide sufficient mechanical strength to the vaginal wall to
prevent further herniation of pelvic organs into the vagina in
POP following surgery. Herein, we observe that eMSC promoted
a synergistic action between expression of matrix formation
genes such as Col1a1, Col3a1, Col6a1, Col6a2, and other genes
associated with fibroblast activity such as Tgfb as well as the ECM
regulation genes, Mmps and Timps after 6 weeks of nanomesh
implantation. In general, fibroblasts are the cells responsible for
maintaining ECM homeostasis (Kastellorizios et al., 2015) by
producing and remodelling ECM, mediated by tightly regulated
and opposing activities of Mmps and Timps. Given the balanced
expression of ECM forming and regulating genes, eMSCs
promote recruitment of fibroblasts (Figure S4) to maintain this
homeostatic balance in the tissue environment. Fibroblasts are
chemotactically attracted to the site of injury such as Cxcl12,
where they are induced to proliferate and secrete ECM in a
process referred to as fibroplasia (Kendall and Feghali-Bostwick,
2014). Indeed, several ECM genes are upregulated in presence of
FIGURE 8 | Inflammatory gene expression after 6 week implantation. Fold change in mRNA expression of mouse inflammatory genes by quantitative PCR in
explanted mice tissues consisting of P nanomesh, with and without endometrial mesenchymal stem/stromal cells (eMSCs) after 6 weeks. Data are median of n=5-7
samples/group analyzed by Mann-Whitney U test; *P < 0.05 and **P < 0.01.
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eMSCs. Therefore, it is likely that fibroblasts participate in the
later stages of inflammation by responding to Tgfb1, Il1b and Il6,
proteins which increase matrix production, in addition to lipids
such as prostaglandins and leukotrienes (Kendall and Feghali-
Bostwick, 2014; Jones, 2015). Fibroblasts can also produce
TGFb1, IL-1b, IL-33, CXC and CC-chemokines, and ROS,
which serve to recruit and activate macrophages (Kendall and
Feghali-Bostwick, 2014; Jones, 2015). Our results indicate that
eMSC influence gene expression of these factors released in
repairing tissues such as Tgfbs, Il1b, and Il6. Several CXC and
CC-chemokines impacting cellular recruitment and angiogenesis
such as Ccl2, Ccl3, Ccl4, Ccl5, Ccl12, Cxcl2, Cxcl3, and Cxcl10
were also upregulated by the presence of eMSCs highlights their
influence on host fibroblast activity. MMP and TIMP are also
produced by macrophage themselves that influence remodelling
Frontiers in Pharmacology | www.frontiersin.org 13
in the local environment.(Nakashima et al., 1998; Laquerriere
et al., 2004). Macrophages themselves are known to release
MMPs such as MMP1, 2, and 9 in proportions related to
biomaterial debris around the bone prosthetic materials.
Nonphagocytable particles showed more MMP-9 where as
phagocytable debris were associated with larger amounts of Il-
1b.(Laquerriere et al., 2004) Although most of these studies are
performed around bone remodelling, they show that
macrophage response to biomaterials may be driven by local
environment conditions. While the formation of ECM is often
associated with fibrosis and its deleterious effects of
encapsulating mesh, we show a higher and balanced expression
of MMPs and TIMPs together with increased Tgfb, a fibroblast
stimulator. This finding indicates that ECM formation is highly
regulated and that the presence of eMSC controls and minimizes
A

B

FIGURE 9 | Anti-inflammatory gene expression of P and P+eMSCs nanomesh explants. Fold change in mRNA expression of mouse inflammatory genes by
quantitative PCR in explanted mice tissues consisting of P nanomesh, with and without endometrial mesenchymal stem/stromal cells (eMSCs) after (A) 6 weeks and
(B) 1 week. Data are median of n=5-7 samples/group analyzed by Mann-Whitney U test; *P < 0.05 and **P < 0.01.
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fibrosis at 6 weeks and in turn stimulates Tgfb1 expression. A
balance between TGFb and TIMP-1also aids nonfibrotic tissue
repair (Jones, 2015). Tgfb also causes fibroblast deposition of
ECM and secretion of many paracrine and autocrine growth
factors, including CTGF (Leask et al., 2009) as confirmed by
increased Ctgf gene expression in the presence of eMSCs. In
humans, CTGF is involved in angiogenesis, cell migration,
adhesion, proliferation, tissue wound repair, and ECM
regulation and is induced by TGFb and IL-1b (Kendall and
Feghali-Bostwick, 2014; Jones, 2015). CTGF also binds to ECM
proteins and growth factors including VEGF and TGFb to
maximally induce type I collagen synthesis, a-SMA and also
increases IL6 expression (Jun and Lau, 2011; Liu et al., 2012).
Our gene expression results along with co-localization studies
(Figure S4) suggest that the paracrine effects of eMSCs directly
influence these molecular pathways to regulate, synthesise and
maintain ECM, even within nanomeshes as seen in Figure 2.

Inflammatory factors and adhesion molecules such as ICAM
and VCAM recruit monocytes, mast cells, and fibroblasts, all of
which can produce proangiogenic factors, including VEGF and
FGF through a cascade of cell and chemokine interactions
(Mahdavian Delavary et al., 2011). Our results showed that
eMSC increased Vcam, Cxcl12, and Ccr2 suggesting that these
in turn increased expression of the proangiogenic factors Vegfa,
Fgf1, and Ang1 to promote angiogenesis. VEGF-A directly
stimulates endothelial cell proliferation by engaging with the
VEGFR-2 to activate its tyrosine kinase domain and initiate the
sprouting of new vessels from existing micro-vessels (Mahdavian
Delavary et al., 2011). VEGF, likely produced by the recruited
macrophages and fibroblasts, may also contribute to the
angiogenic process by mobilizing endothelial progenitor cells
Frontiers in Pharmacology | www.frontiersin.org 14
and other myeloid cells to the site of angiogenesis (Antonella and
Fabio, 2005). Overall, the neovascularisation of the nascent ECM
is critical for ensuring viability of the new tissue surrounding the
nanomesh. The upregulation of proangiogenic chemokine genes
such as Ccl11 and its receptor Ccr2, Cxcl9, and Cxcl10 to some
extent at 6 weeks after P implantation, suggest these are key
players in initiating angiogenesis and fibroblast activity. In
humans, CCL11 and well as CXCL10 are known to recruit
eosinophils that subsequently induce a prolonged angiogenic
effect (Van Linthout et al., 2014). This signifies that eMSC
promote angiogenesis through paracrine effects even after
mesh implantation. Our results also show eMSC increase
Pdgfr, Ang1, and Tgfb expression, that are associated with
pericytes to stabilize nascent endothelial cell tubes during
angiogenesis (Antonella and Fabio, 2005). These results are
highly encouraging given that blood vessels were found in
close proximity to the P nanomesh, a highly desirable tissue
engineering outcome (Shahabipour et al., 2019), and completely
integrated with tissue by 6 weeks suggesting a highly influential
role for eMSC in modulating the entire FBR process.

Our previous studies have shown that bioengineering of
eMSCs indeed modulates the FBR process to both
nondegradable (Ulrich et al., 2014; Darzi et al., 2018;
Emmerson et al., 2019) and degradable nanomeshes
(Mukherjee et al., 2019b; Paul et al., 2019) and can be detected
in vivo even upto 6 weeks after implantation (Figure S3). Yet, we
showed that eMSC facilitated M2 polarization of macrophages
with immune-regulatory properties that dampen inflammation.
In this cascade upregulation of cytokine and chemokine genes
such as Ccl7, that also indirectly influence the adaptive Th2
immune system as they recruit other innate immune cells such as
A B

FIGURE 10 | Characterization of Biomaterial-induced Multinucleated Foreign body Giant Cells (FBGC). (A) H&E staining of mice tissue sections comprising P
nanomesh implants (m) with and without endometrial mesenchymal stem/stromal cell (eMSCs), in the subcutaneous flank between the abdominal wall and skin
showing fusion of macrophages into multinucleated FBGC after 1 week and 6 weeks. (B) Multinucleated (blue stain) FBGCs (black arrows) show M2 type phenotype
as characterized by CD206 (brown) immunostaining and are present along the mesh edges (m) and in the surrounding tissues (ST).
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basophils and mast cells (Biswas and Mantovani, 2010). They
also promote angiogenesis and wound healing via the production
of PDGFA and VEGF (Antonella and Fabio, 2005; Martinez
et al., 2006; Martinez et al., 2008) genes upregulated by the
presence of eMSCs. Macrophages participate in a number of
ways to regenerate tissue and heal wounds through a cascade of
inflammatory responses, thereby contributing to tissue ECM
formation. eMSCs promote Mmp19 and Mmp2 that degrade
the ECM (Jones, 2015; Mukherjee et al., 2019a) which releases
growth factors and chemokines (Detry et al., 2012) respectively.
The upregulation of MMP2 andMMP19, which are promoters of
angiogenesis through release of ECM growth factors (Webb
et al., 2017; Liu et al., 2018b) likely contributed to the
angiogenesis observed in our study. While we note the increase
in IL-6 and IL-4ra, which are mostly associated with pro-
inflammatory responses, they also have anti-inflammatory
roles (Fuster and Walsh, 2014). A recent landmark study has
shown that IL-6 primes macrophages for IL-4-dependent M2
polarization by inducing IL-4RA expression via STAT3-
mediated activation of the IL4ra (Mauer et al., 2014). Thus,
macrophages have different functions during the healing,
macrophage process (Galdiero and Mantovani, 2015; Rőszer,
2015). This is clearly seen in our results, where eMSCs increased
the expression of genes associated with the M2 macrophage
phenotype and the healing response.

The presence of FBGCs after biomaterial implantation is
often viewed as a negative response and has been directly
linked to FBR leading to material rejection. Recent
accumulating evidence questioned the role of FBRCs in these
deleterious effects. Both in vitro and in vivo studies have shown
that FBGC exhibit different phenotypic profiles, in particular the
expression of both pro and anti-inflammatory cytokines,
depending on the physicochemical characteristics of the
biomaterials (Ghanaati et al., 2010; Mcnally and Anderson,
2015). Herein, we showed FBGCs with an M2 phenotype with
differences in their fusion pattern based on the cellular
component (ie eMSC) of the bioengineered implant. Recent
reports have indicated that FBGCs are a potent source of
VEGF, promote mannose receptor mediated phagocytic
processes and may be involved in the process of implant bed
vascularization by stimulating angiogenesis (Mcnally and
Anderson, 2011; Mcnally and Anderson, 2015; Barbeck et al.,
2016). In agreement, we showed CD206 expressing FBGC in P
+eMSC explants after 6 weeks, together with significant
upregulation of several angiogenic genes and formation of neo-
vessels. Moreover, several chemokines and cell adhesion genes
which were down regulated at 1 week but upregulated at 6 weeks,
may be involved in the recruitment and fusion of macrophages to
form FBGC. MSC incorporated biomaterials modulate bone
healing by formation of FBGC that ultimately lead to
angiogenesis and long term stability of implants in
humans.(Miron and Bosshardt, 2018) Given their capacity to
promote both tissue inflammatory and/or tissue wound healing,
the appropriate characterization of FBGCs is therefore critical.
While, further studies are pivotal to establish their exact role and
mechanisms of cell–cell communication, our study suggests that
Frontiers in Pharmacology | www.frontiersin.org 15
they may be closely associated with rapid establishment of
homeostasis after implantation by aiding in key tissue
repair processes.

Since the discovery of eMSCs, it has been applied to various
areas of research including POP treatment (Gargett et al., 2016).
Our research has shown that eMSCs can modulate FBR to
various types of meshes, a phenomenon we suspected to be a
paracrine effect(Gargett et al., 2019). Moreover, there is an urgent
unmet health need and heavy drive in design of biomaterials that
can be used for regenerative medicine, including POP treatment
(Mukherjee et al., 2010; Gargett et al., 2019). These approaches
include surface modifications and growth factor release from
materials to modulate the FBR and repair process. This study
provides an insight into the gene expression profile of host
response that are modulated by eMSCs that is likely to aid
researchers in the field of biomaterials and regenerative
medicine with evidence and knowledge to better design
constructs. Our results also help to understand FBR processes
that are particularly impacted by eMSCs and will enable future
studies in uncovering the exact mechanisms to hopefully
overcome the current hurdles in clinical care.
CONCLUSION

In summary, our study provides the first extensive profiling of
gene expression following P nanomesh implantation and the
impact of tissue engineering them with eMSCs. Our results show
that eMSC, most likely through their paracrine effects,
significantly modulate the elicited FBR. In particular, eMSCs
induce upregulation of ECM, cell adhesion and angiogenic genes,
most likely through the increased expression of several
chemokines and cytokines at 6 weeks but not acutely at 1week.
However, in the absence of eMSCs, the acute response is pro-
inflammatory, while the presence of eMSCs leads to a M2 healing
response after 6 weeks following P nanomesh implantation.
Thus, the initial alterations to the FBR mediated by eMSCs
show longer term favorable outcomes. The expression of these
genes collectively leads to the formation newly synthesized ECM
within the nanomeshes and neo-vasculature in close proximity.
From a tissue engineering perspective, this is a hallmark of a
highly successful implant and will likely overcome the current
hurdles faced in POP treatment.
STUDY LIMITATION

(1) This study used tissues that were close to the meshes
implanted for the gene expression study. Although ideal, it was
not feasible to extract the cells that infiltrated the mesh due to
technical challenges. (2) This study was performed in a mice
subcutaneous model rather than vaginal model owing to the
small size of mouse vagina. Further studies in larger animal
models are needed to fully understand the exact immunogenic
properties of these constructs in the vaginal environment.
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