
Frontiers in Pharmacology | www.frontiers

Edited by:
Jacob Raber,

Oregon Health and Science University,
United States

Reviewed by:
Arianna Bellucci,

University of Brescia, Italy
Alessio Squassina,

University of Cagliari, Italy

*Correspondence:
Angelos Papaspyropoulos

apapaspyropoulos@chem.auth.gr

Specialty section:
This article was submitted to

Neuropharmacology,
a section of the journal

Frontiers in Pharmacology

Received: 29 November 2019
Accepted: 16 March 2020
Published: 31 March 2020

Citation:
Papaspyropoulos A, Tsolaki M,

Foroglou N and Pantazaki AA (2020)
Modeling and Targeting Alzheimer’s

Disease With Organoids.
Front. Pharmacol. 11:396.

doi: 10.3389/fphar.2020.00396

MINI REVIEW
published: 31 March 2020

doi: 10.3389/fphar.2020.00396
Modeling and Targeting Alzheimer’s
Disease With Organoids
Angelos Papaspyropoulos1*, Magdalini Tsolaki2, Nicolas Foroglou3 and
Anastasia A. Pantazaki1

1 Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2 1st
Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece, 3 Department of Neurosurgery, AHEPA
University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece

Human neurodegenerative diseases, such as Alzheimer’s disease (AD), are not easily
modeled in vitro due to the inaccessibility of brain tissue and the level of complexity
required by existing cell culture systems. Three-dimensional (3D) brain organoid systems
generated from human pluripotent stem cells (hPSCs) have demonstrated considerable
potential in recapitulating key features of AD pathophysiology, such as amyloid plaque-
and neurofibrillary tangle-like structures. A number of AD brain organoid models have also
been used as platforms to assess the efficacy of pharmacological agents in disease
progression. However, despite the fact that stem cell-derived brain organoids mimic early
aspects of brain development, they fail to model complex cell-cell interactions pertaining
to different regions of the human brain and aspects of natural processes such as cell
differentiation and aging. Here, we review current advances and limitations accompanying
several hPSC-derived organoid methodologies, as well as recent attempts to utilize them
as therapeutic platforms. We additionally discuss comparative benefits and
disadvantages of the various hPSC-derived organoid generation protocols and
differentiation strategies. Lastly, we provide a comparison of hPSC-derived organoids
to primary tissue-derived organoids, examining the future potential and advantages of
both systems in modeling neurodegenerative disorders, especially AD.

Keywords: Alzheimer’s disease, disease modelling, hPSC-derived brain organoids, pharmacological treatments,
primary tissue-derived organoids
INTRODUCTION

Alzheimer’s disease (AD) constitutes the most prominent cause of late-life dementia, affecting over
50 million individuals. Additionally, AD represents one of the leading causes of death worldwide
(Collaborators, G.B.D.D, 2019). Although considerable progress has been made in neuroscience,
there are currently no available drug treatments curing the disease, thus highlighting that it is
accompanied by significant social and economic burden (Vigo et al., 2016; Amin and Pasca, 2018).
The majority of AD clinical cases develop symptoms beyond the age of 65 and are collectively
referred to as sporadic AD (SAD). Familial AD (FAD) incidents, which pertain only to 2–5% of AD
cases, develop early-onset symptoms and have been linked to mutations in genes such as APP,
PSEN1, and PSEN2 (Holtzman et al., 2011).
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AD is caused by neuronal deposition and subsequent toxicity
of amyloid-beta (Ab)- and tau hyperphosphorylation-derived
neurofibrillary tangles (NFTs) (Palmer, 2011; Dos Santos
Picanco et al., 2018; Yan et al., 2019). In the AD brain, Ab
plaques are formed by aggregation of monomeric Ab peptides
into toxic Ab oligomers, which subsequently generate the
insoluble fibrils. Ab plaque formation has been shown to
trigger inflammatory responses and Reactive Oxygen Species
(ROS) production, resulting in neuronal death (Prokop et al.,
2013; Heppner et al., 2015; Yan et al., 2019). Additionally, toxic
Ab species may trigger caspase-associated apoptosis, following
their transfer into neuronal cells (Prokop et al., 2013; Heppner
et al., 2015; Yan et al., 2019). In healthy individuals, b- and g-
secretases proteolyze the amyloid precursor protein (APP) to
soluble and non-toxic Ab monomers, whereas in AD patients,
Ab plaques are formed due to increased production or
insufficient removal of Ab peptides (Bekris et al., 2010).
Moreover, extracellular matrix (ECM) components such as
heparin sulfate proteoglycans (HSPG) have been shown to
foster amyloid plaque formation (van Horssen et al., 2002). Ab
peptide accumulation may synergize with tau-related NFT
formation to contribute to AD manifestation, as indicated by a
number of studies (Nisbet et al., 2015).

Several limitations accompany the implementation of
transgenic mice in elucidating the molecular mechanisms
underlying AD pathophysiology, such as the inability to
capture tau pathology and the development of AD features
early in life (Andorfer et al., 2003; Kitazawa et al., 2012;
Sasaguri et al., 2017; Gerakis and Hetz, 2019). Additionally,
monolayer neuronal cultures from AD patients lack plaques
and tangles and express toxic proteins, which also limit their
potential use as model systems (Amin and Pasca, 2018). Thus,
novel systems are required to model AD development and serve
as platforms for the discovery of effective AD treatments. In this
literature review, we aim to provide an overview of recent
advances regarding the development of brain organoids as a
humanized model system against AD.

iPSCs in AD Modeling
The establishment and optimization of protocols allowing the
reprogramming of human somatic cells into induced pluripotent
stem cells (iPSC) opened new avenues in disease modeling
(Tiscornia et al., 2011). Human pluripotent stem cells (hPSC)
include blastocyst-derived human embryonic stem cells (ESC)
and hiPSCs reprogrammed from somatic cells. HPSCs display
unlimited self-renewal and can differentiate toward mesoderm,
endoderm, or ectoderm (Rowe and Daley, 2019). Three methods
have been so far established to capture the AD phenotype using
hPSCs. The first method pertains to chemical induction with
Ab42 oligomers or Ab42 inducers, such as aftin5. In this method,
neural cells derived from AD-free hPSCs are induced to develop
AD phenotypes (Vazin et al., 2014; Pavoni et al., 2018). Although
certain pathophysiological features of the disease such as
neuronal cytotoxicity can be displayed by implementing this
method, induced neuronal cells usually lack other features such
as extracellular Ab plaque formation. The second method is
based on the generation of iPSCs from somatic cells carrying
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known AD mutations and subsequent differentiation of those
iPSCs into various types of neuronal cells. iPSCs deriving from
FAD patients usually carry PS1, PS2, or APP genomic mutations,
whereas those deriving from SAD patients carry APOE4
mutations (Muratore et al., 2014). In the third method,
lentiviral transduction or CRISPR-Cas9-mediated genomic
editing are implemented in order to induce overexpression or
expression of mutant APP, PS1, PS2, and APOE4 proteins in
healthy hPSCs (Koch et al., 2012; Huang et al., 2017).
Additionally, by utilizing human ESC-derived neurons
ectopically expressing APOE2/E3/E4, it was shown that all
APOE isoforms could induce Ab and APP production, albeit
to a different extent, with APOE4 being the most potent isoform
(Huang et al., 2017). The majority of hPSC-based AD models
implemented either two-dimensional (2D) or embryoid body
(EB) differentiation methodologies to produce different types of
neurons, including forebrain, cortical glutamatergic, GABAergic,
and cholinergic neurons (Harasta and Ittner, 2017; Jorfi
et al., 2018).

2D cell culture models of FAD and SAD based on patient-
derived iPSCs have been shown to resemble some features of AD
pathophysiology, such as intracellular accumulation of soluble
Ab species, aggregation of insoluble Ab species, and tau
hyperphosphorylation (Kondo et al., 2013; Freude et al., 2014).
Moreover, iPSC-derived neurons from FAD patients can
successfully capture important features of AD pathogenesis at
early stages (Israel et al., 2012). However, while iPSC- or ESC-
derived neurons cultured in monolayer have yielded important
findings, they fail to present various morphological and
functional properties of the human brain, which poses
limitations in their use as model systems for neurodegenerative
diseases. Neuronal maturation and development of synapse
connections are governed by cell-cell and ligand-receptor
signaling, which are not sufficiently established when neurons
are cultured in monolayer (Amin and Pasca, 2018). Monolayer
cultures do not offer accurate representations of the number,
functional interactions, and regulatory functions typically
observed in oligodendrocytes, astrocytes, and microglia in the
human brain. Additionally, it is difficult to faithfully mimic
neuronal maturation in monolayer cultures, as the in vivo
process takes place on much longer timescales than monolayer
cultures can be maintained (Dehaene-Lambertz and Spelke,
2015; Silbereis et al., 2016). In the case of AD, in particular, 2D
cultures fail to display aggregation of extracellular b-amyloids, as
only low Ab species levels are produced even in the presence of
the most prominent FAD genetic mutations. Moreover, the
absence of interstitial compartment is believed to inhibit
extracellular b-amyloid aggregation in 2D cultures (Choi
et al., 2014).
Modeling AD With hPSC-Derived
Organoids
The limitations of monolayer cultures triggered the development
of additional in vitro model systems capable of resembling
human brain architecture and function more accurately than
before (Nakano et al., 2012; Muguruma et al., 2015). The
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improvement of protocols for in vitro iPSC differentiation led to
the establishment of “organoids”, which are three-dimensional
(3D) self-organized structures displaying morphological and
functional similarities with complex organs, such as the brain.
Brain organoid formation relies on the self-organization ability
of hiPSCs, which may be facilitated by additional exogenous
components, for example matrigel (Mansour et al., 2018; Pham
et al., 2018). Brain organoids develop to display organized
structures, resembling distinct regions of the brain, thus
maintaining hallmarks of key developmental processes
involved in brain formation (Lancaster et al., 2013). Over the
past few years, various attempts have been made to model
specific brain substructures with the use of organoids. In this
context, forebrain, midbrain, hippocampus, and retinal
organoids have been developed from hiPSCs (Di Lullo and
Kriegstein, 2017). A major point of discussion regarding the
optimization of organoid formation protocols is whether cell fate
induction should be facilitated through the addition of
Frontiers in Pharmacology | www.frontiersin.org 3
exogenous morphogens and signaling molecules or not
facilitated at all. Several protocols favor spontaneous neural
induction by avoiding supplementation of organoid media
with exogenous factors, thereby resulting in the acquisition of
heterogeneous cell populations, corresponding to various brain
regions (Lancaster et al., 2013; Camp et al., 2015; Quadrato et al.,
2017). Undirected organoids, often grown in ECM, stochastically
give rise to cells corresponding to multiple brain sections ranging
from the retina to hindbrain (Figure 1A) (Lancaster et al., 2013).
One major limitation of spontaneous neural induction is that a
proportion of cells are randomly differentiated into non-
ectodermal cell types (Camp et al., 2015; Quadrato et al.,
2017). Hence, most current efforts are based on protocols
optimizing the application of extrinsic cues to induce
neuronal differentiation.

In guided brain formation, defined combinations of exogenously
applied factors direct the in vitro specification of stem cell aggregates
into organoids (Figure 1B) (Pasca et al., 2011; Mariani et al., 2015;
A

B

C

FIGURE 1 | Organoid formation technologies from human pluripotent stem cells (hPSCs) and primary tissue. (A) Guided brain organoids generated from hPSCs
through embryoid body (EB) formation. The process requires extrinsic factors, such as extracellular matrix (ECM) and exogenous differentiation signals. The presence
of different cell types in the organoids is indicated by different colors (blue, red and green) (B) Unguided brain organoids generated from hPSCs upon stem cell self-
organization and self-assembly, in the absence of extrinsic factors. With this method, non-ectodermal cell types may be incorporated in brain organoids (yellow color)
(C) Primary tissue-derived organoids are generated by human epithelial tissue of any age. Described protocols include tissue digestion and subsequent use of
defined cell culture media supplemented with tissue-specific growth factors. Organoids are embedded in ECM.
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Qian et al., 2016; Amin and Pasca, 2018). Guided methodologies for
brain organoid generation were first described by the Sasai group,
which conceived and optimized targeted 3D differentiation
protocols based on culturing EB aggregates in serum-free
conditions (Eiraku et al., 2008; Danjo et al., 2011; Muguruma
et al., 2015; Sakaguchi et al., 2015). Directed organoid cultures
have the advantage of containing different cell lineages at relatively
stable proportions, thereby limiting potential variations across
different batches and cell lines (Sloan et al., 2017). Organoids
mature over a period of many months (Sloan et al., 2017),
achieving a diameter of several millimeters, and contain
heterogeneous cell types including neuronal subtypes, outer radial
glia cells, astrocytes, and oligodendrocytes (Camp et al., 2015; Qian
et al., 2016; Birey et al., 2017; Quadrato et al., 2017; Sloan et al., 2017;
Amin and Pasca, 2018).

In order to model inter-regional interactions pertaining to
brain physiology, several groups have attempted to differentiate
hPSCs toward distinct brain region-specific organoids before
fusing them together to allow the formation of “assembloids”
integrating multiple region identities (Bagley et al., 2017; Birey
et al., 2017; Xiang et al., 2017). Along those lines, assembloids
have formed via fusion of dorsal and ventral forebrain organoids
(Birey et al., 2017). In those structures, intraneurons originating
from the ventral region translocate to the dorsal region, thus
resembling the in vivo situation.

Brain organoids generated from hPSCs have been recently
implemented to model various neurological disorders such as
autism (Mariani et al., 2015; Birey et al., 2017), microcephaly
(Tiscornia et al., 2011), Parkinson’s disease (Kim et al., 2019),
and Zika virus infections (Qian et al., 2016). The first successful
attempt in using organoids to model AD was based on human
neuronal progenitor cells genetically manipulated to overexpress
mutant PS1 and APP (Choi et al., 2014). This methodology
allowed the simultaneous presence of b-amyloid- and tau-related
features in a single 3D model system. Those 3D structures
carrying FAD mutations displayed increased detergent-
resistant accumulations of phosphorylated tau, together with
filamentous tau.

A sophisticated model of AD cerebral organoids was recently
generated from FAD patient- or Down patient-derived iPSCs
(Gonzalez et al., 2018). In this model, brain organoids displayed
progressive accumulation of amyloidogenic Ab peptides,
accompanied by the development of structures strongly
resembling amyloid plaques and NFTs. These phenotypes were
absent in cerebral organoids derived from “control” templates
such as healthy hiPSC, mouse ESCs, or mouse iPSCs (Gonzalez
et al., 2018).

Recently a new 3D human tri-culture model including
neurons, astrocytes, and microglia was developed to model AD
with the use of microfluidics (Park et al., 2018). The model
displayed critical features of AD pathology, such as b-amyloid
aggregation, tau hyperphosphorylation, neuroinflammatory
activity, microglial recruitment, axonal cleavage resulting from
neurotoxic activities, and release of NO with deleterious effects
on AD neurons and astrocytes (Park et al., 2018).
Frontiers in Pharmacology | www.frontiersin.org 4
Use of hPSC-Derived Organoids as a
Treatment Platform for AD
Two studies have implemented AD brain organoids in order to
assess the effect of pharmacological agents on various disease
features. Both studies used primarily modulators of b- or g-
secretase and were able to observe reductions in Ab peptide
levels, as well as alterations in tau pathology, in line with previous
reports involving iPSCs. Choi et al. (2014) developed 3D-
differentiated neuronal cells carrying FAD mutations, and
importantly, demonstrated that perturbation of b-amyloid
generation with b- or g-secretase inhibitors attenuated both b-
amyloid and tau-related pathology, indicating that tau-dependent
phenotypes may be driven by excessive accumulation of Ab species
as a result of FAD mutations (Choi et al., 2014). Additionally, the
use of glycogen synthase kinase 3 (GSK3) was found to regulate b-
amyloid-mediated tau phosphorylation in that system. Thus, that
study constituted the first attempt to show that stem cell-derived 3D
in vitro systems can potentially serve as drug treatment platforms
against AD (Choi et al., 2014).

In a more recent study by Raja et al. (2016), hPSC-derived
organoids from FAD patients again exhibited AD-like
pathophysiological features, including amyloid aggregation, tau
hyperphosphorylation, and endosome abnormalities, in an age-
dependent fashion (Raja et al., 2016). The authors showed that
the 3D system they developed could be easily subjected to
experimental manipulation and serve as a potential drug
treatment platform. The authors found that treatment of FAD
patient-derived organoids with g-secretase inhibitor compound
E or BACE-1 b-secretase inhibitor (b-secretase inhibitor IV)
partially reversed both amyloid and tau pathology. Additionally,
in contrast to published data not supporting a pivotal role of
amyloids in AD manifestation (Takahashi et al., 2015; Kametani
and Hasegawa, 2018), the authors showed that inhibition of Ab
species limited tau hyperphosphorylation only after Ab
reduction was observed, suggesting that Ab accumulation-
driven phenotypes in AD may emerge prior to tauopathy (Raja
et al., 2016).

Limitations of hPSC-Derived Organoids in
Modeling AD
HPSC-derived brain organoids display most of the advantages of
2D cultures, while offering the ability to model complex cell-cell
interactions, as they usually contain more than one cell
population. Because of their advantages, hPSC-derived brain
organoids have been utilized to model AD and examine the
impact of pharmacological factors on disease progression,
however, serious technical hurdles are still required to be
resolved. Additionally, the organoid generation technology
applied so far to model neurodegenerative diseases, including
AD, needs to be reviewed and updated.

One critical limitation to modeling AD with the use of hPSC-
derived organoids relates to aging. Aging constitutes the main risk
factor to develop AD, especially in the case of SAD, and the process
of aging is accompanied by numerous genetic alterations resulting
in changes in the overall cellular transcriptional profile (Lopez-Otin
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et al., 2013; Gerakis and Hetz, 2019). However, iPSC-derived neural
cells display a transcriptional profile similar to prenatal brain (Camp
et al., 2015; Gerakis and Hetz, 2019), thereby making it challenging
to recapitulate aging-related phenotypes.

Another important limitation is the lack of complete
vascularization. Vascularization is critical to mimic the in vivo
situation in the brain, as maturation of neuronal cells cannot be
accomplished without sufficient oxygen and nutrient supply.
Insufficient neuronal cell maturation results in perturbed
synapse formation, whereas lack of vascularization overall
limits organoid culturing periods (Lancaster et al., 2013; Di
Lullo and Kriegstein, 2017). Lack of vascularization
additionally prevents modeling important aspects of brain
physiology, such as the blood brain barrier (Huch et al., 2017).
Along these lines, cerebral organoids produced from AD- or
Down patient-derived iPSCs structurally resemble the human
cortex, however they contain only neurons and glial cells, lacking
oligodendrocytes. Additionally, those organoids fail to establish
active synapses (Gonzalez et al., 2018). To overcome
vascularization-related hurdles, heterotypic cultures combining
mouse brain cells or brain progenitors with endothelial and
mesenchymal stem cells have been recently used to generate 3D
organ buds (Takebe et al., 2015), however, the functionality of
that system has yet to be addressed in mice and humans.
Additionally, it has been shown that although brain organoids
are able to incorporate exogenous endothelial cells, the resulting
endothelial network may not be functional (Pham et al., 2018).

HPSC-derived organoid models are so far challenged by low
reproducibility and homogeneity. Organoid differentiation
protocols relying on hPSC self-organization, in particular, lead
to variable outcomes. Brain organoids differ from each other in
size and structure, which are limiting factors in accurately
modeling diseases such as AD. The small size, in particular, of
hPSC-derived organoids comprises an important limitation in
modeling human brain development, especially at later stages
(Rambani et al., 2009). Microfluidics, spinning bioreactors and
orbital shakers combining new biomaterials and culture
methodologies, have been proposed as new avenues to control
neural patterning more accurately and improve oxygen and
nutrient supply to the organoid interior (Kadoshima et al.,
2013; Qian et al., 2016; Lancaster et al., 2017; Yan et al., 2019).

Improvements in culturing conditions and the use of novel
biomaterials might also help rectify another important limitation
encountered in hPSC-derived organoid cultures, which is
insufficient immune cell representation. Several brain organoid
systems developed so far are characterized by the presence of
astrocytes, but no microglial cells (Yakoub, 2019). The absence of
microglial cells could be also attributed to their distinct
embryonic origin, as they derive from yolk sac erythromyeloid
precursors (Ginhoux and Prinz, 2015; Li and Barres, 2018).

HPSC-derived organoids predominantly rely on the process
of somatic cell reprogramming, which has been extensively
linked to increased risk of genomic instability, as iPSCs may
often carry mutations related to known tumorigenic loci
(Mayshar et al., 2010; Hussein et al., 2011; Laurent et al.,
2011). This implication poses serious limitations to the use of
Frontiers in Pharmacology | www.frontiersin.org 5
hPSC-derived organoids in modeling human disease.
Additionally, genomic analyses of early passage iPSCs have
indicated that they might retain “epigenetic memory” related
to their previous fate, by displaying DNA methylation patterns
encountered in somatic cells, at regions proximal to CpG islands.
Consequently, this leads to variations in gene expression which
might affect hPSC usage as organoid generation templates (Doi
et al., 2009; Kim et al., 2010; Polo et al., 2010; Bar-Nur et al., 2011;
Puri and Nagy, 2012).

Another limitation related to hPSC-derived organoids is that
most hPSC cultures are feeder cell-dependent, adding to the
complexity of the culturing protocols and increasing the risk of
underlying cell culture infections. A shift to feeder-free culturing
conditions could increase reproducibility across cell lines and
laboratories (Lancaster et al., 2017; Yoon et al., 2019). Due to the
above limitations, hPSC-derived organoid cultures need to be
constantly compared to independent batches of multiple hPSC
lines and adequately assessed for their capacity to produce
consistent results, before being put forward as powerful disease
model systems.

Future Perspectives of the Organoid
Technology
Since 2009, a 3D in vitro culture system for several organs, such
as small intestine, colon, stomach, prostate, liver, pancreas,
breast, lung, and skin has been established (Sato et al., 2009;
Barker et al., 2010; Sato et al., 2011; Karthaus et al., 2014; Boj
et al., 2015; Huch et al., 2015; Sachs et al., 2018; Wiener et al.,
2018; Sachs et al., 2019), based on stimulating the self-renewal
capacity of the underlying stem cell populations. Culturing of the
above tissues in defined conditioned media results in the
formation of 3D mini-tissues, also called organoids. Those
primary tissue-derived organoids can be established from
mouse and human tissue of any age, they do not require
additional cell types to stimulate growth, are genetically stable
and can retain the in vivo organization and development of the
tissue they derive from. More importantly, they do not depend
on iPSC technology and their long-term culture has been
optimized through various protocols depending on the tissue
(Figure 1C) (Rossi et al., 2018).

Patient-derived organoids offer a unique model system, as it
resembles the in vivo situation more closely than any other cell
culture so far. All attempts, however, to generate organoids
immediately derived from primary material have been focused
on epithelial tissue. Given that the study of neurodegenerative
disorders requires the establishment and maintenance of non-
epithelial cell cultures, one of the most important future
challenges is to adapt the current patient-derived organoid
technology to model diseases encountered in non-epithelial
tissues. Taking into account the numerous advantages of
patient-derived organoids, the field is soon expected to expand
this cutting edge technology to encompass non-epithelial tissue.
In doing so, the biggest challenge would be to define the optimal
media composition supporting the in vitro generation and
maintenance of patient-derived brain organoids. The next step
following the establishment of hPSC-free brain organoids would
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be to implement means of genetic manipulation and drug
delivery, allowing for personalized treatment approaches.
Along those lines, and considering the advantages of patient-
derived brain organoids with regards to functionality and
biosafety, the potential of utilizing the system in regenerative
medicine would be greater than any other system so far.
DISCUSSION

Several attempts have been made to model and pharmacologically
target neurodegenerative diseases, such as AD, with the use of brain
organoids. So far, brain organoid generation attempts have been
mostly focused on somatic cell reprogramming, a process in which
patient-derived somatic cells are induced to become hPSCs (Amin
and Pasca, 2018). HPSCs can be subsequently differentiated into
monolayer neuronal cultures or brain organoids, which are 3D
neural cell aggregates resembling various brain regions. In the case
of AD, there have been several attempts to generate brain organoids
using the hPSC technology (Raja et al., 2016; Pavoni et al., 2018;
Gerakis and Hetz, 2019; Qian et al., 2019) and a lot of progress has
been made both in modeling the disease and assessing the
effectiveness of drugs like g-secretase inhibitors to reverse AD-
related phenotypes. With regards to their differentiation pattern,
unguided brain organoids have shown suitability in modeling cell-
lineage diversity in whole brain development, whereas directed
brain organoids may be fused to form assembloids in order to
capture and study processes linked to specific brain regions,
including the hippocampal loss in AD (Bagley et al., 2017; Birey
et al., 2017; Xiang et al., 2017).

HPSC-derived organoids are accompanied by a series of
limitations, such as lack of or limited integration of important
cell types (e.g. microglial cells and oligodendrocytes), lack of
distinct cortical neuronal layer formation, no evidence of
Frontiers in Pharmacology | www.frontiersin.org 6
gyrification, nor complex neuronal circuitry (Gerakis and Hetz,
2019; Qian et al., 2019). Additionally, the iPSC technology itself
poses limitations with regards to safety, genomic stability,
and reproducibility.

Current organoid models are majorly derived from the
epithelium of various organs. Established protocols for generating
primary tissue-derived organoids could overcome the aging-related
issues of hPSC-derived organoids, as primary tissue-derived
organoids can be established from mammalian tissue of any age.
Additionally, primary tissue-derived organoids are based on more
stringent differentiation protocols, in contrast to protocols relying
on hPSC self-organization. It has been widely reported that
stochasticity in the hPSC differentiation process culminates in
unpredictable outcomes in brain organoid cultures, adding to
reproducibility issues. The challenge of adapting epithelial
organoid generation protocols to meet the requirements of non-
epithelial tissue culture still remains.
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