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Dravet syndrome is a catastrophic epilepsy of childhood, characterized by cognitive
impairment, severe seizures, and increased risk for sudden unexplained death in epilepsy
(SUDEP). Although refractory to conventional antiepileptic drugs, emerging preclinical and
clinical evidence suggests that modulation of the endocannabinoid system could be
therapeutic in these patients. Preclinical research on this topic is limited as cannabis,
delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), are designated by United
States Drug Enforcement Agency (DEA) as illegal substances. In this study, we used a
validated zebrafish model of Dravet syndrome, scn1lab homozygous mutants, to screen
for anti-seizure activity in a commercially available library containing 370 synthetic
cannabinoid (SC) compounds. SCs are intended for experimental use and not
restricted by DEA designations. Primary phenotype-based screening was performed
using a locomotion-based assay in 96-well plates, and a secondary local field potential
recording assay was then used to confirm suppression of electrographic epileptiform
events. Identified SCs with anti-seizure activity, in both assays, included five SCs
structurally classified as indole-based cannabinoids JWH 018 N-(5-chloropentyl)
analog, JWH 018 N-(2-methylbutyl) isomer, 5-fluoro PB-22 5-hydroxyisoquinoline
isomer, 5-fluoro ADBICA, and AB-FUBINACA 3-fluorobenzyl isomer. Our approach
demonstrates that two-stage phenotype-based screening in a zebrafish model of
Dravet syndrome successfully identifies SCs with anti-seizure activity.

Keywords: cannabinoid, epilepsy, locomotion, screen, seizure, zebrafish
INTRODUCTION

In patients classified with catastrophic epilepsies in childhood, effective seizure control using
conventional antiepileptic drugs (AEDs) can be a significant problem. Early developmental AED
exposure can also be associated with undesirable side effects in these children. In the search for new
treatments, there is growing interest in drugs modulating the endogenous cannabinoid system. The
endocannabinoid system, comprised of two G-protein coupled receptors (CB1 and CB2), may play a
role in regulating seizure activity (Wallace et al., 2002; Lutz, 2004; Deshpande et al., 2007). Recent
data suggests potential anticonvulsant activity for synthetic cannabinoids (SCs), phytocannabinoids,
and Cannabis sativa (cannabidiol) e.g., drugs targeting the endocannabinoid system (Rosenberg
in.org April 2020 | Volume 11 | Article 4641
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et al., 2017; Smolyakova et al., 2020). Unfortunately, careful
preclinical examination of cannabis and related extracts is
difficult as they are designated illegal schedule I compounds.
Potent SCs, representing compounds engineered to bind
cannabinoid receptors with high affinity, offer an alternative.
To date, these compounds have been examined most extensively
in animal models of acute seizures, with mixed results. In the
pentylenetetrazole (PTZ) model of generalized seizures, WIN
55,212-2 (a mixed CB1/CB2 receptor agonist), exerts pro- and
anticonvulsant effects whereas arachidonyl-2'-chloroethylamide
(a CB1 receptor agonist) was shown to decrease acute PTZ
seizure thresholds, increase acute PTZ seizure thresholds or
have no effect at all (Gholizadeh et al., 2007; Shafaroodi et al.,
2008; Naderi et al., 2011; Andres-Mach et al., 2012; Vilela et al.,
2013). In the maximal dentate activation model of limbic seizures
or limbic kindling models, WIN 55,212-2 reduced seizure
thresholds (Wallace et al., 2001; Colangeli et al., 2017), delayed
epileptogenesis (Di Maio et al., 2015), or failed to provide any
seizure protection (Luszczki et al., 2011). Recent testing
completed at the Epilepsy Therapy Screening Program
reported anti-seizure properties for cannabidiol (CBD) in
mouse 6 Hz 44 mA and mouse/rat maximal electroshock
seizure assays (Klein et al., 2017). Although even less is known
about experimental models of childhood epilepsies, a recent
study by Huizenga et al., 2017 examined seven cannabinoid
receptor agonists in young postnatal rat models of PTZ-
hypoxia- or methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-
carboxylate (DMCM)-evoked seizures, only WIN 55,212-2
exhibited anti-seizure activity in all three models.

Interestingly, Dravet syndrome—a genetic epilepsy
associated, in most cases, with a loss-of-function de novo
mutation in the SCN1A voltage-gated sodium channel subunit
(Gataullina and Dulac, 2017)—is one particular form of
childhood epilepsy where CBD has shown anticonvulsant
activity. Reductions in thermally-induced and spontaneous
seizure activity were observed in Scn1a+/− mice at CBD
concentrations above 100 mg/kg with amelioration of autistic-
like behaviors seen at a lower concentration of 10 mg/kg (Kaplan
et al., 2017). In the first open-label investigational trial of CBD in
children with Dravet syndrome, Devinsky et al. (2016) reported a
37% median reduction in monthly seizure counts. Additional
positive seizure reductions with CBD treatment (Porter and
Jacobson, 2013; Crippa et al., 2016; McCoy et al., 2018), and a
GW Pharmaceuticals sponsored open-label double-blinded
study reported an adjusted 23% reduction in seizure frequency
led to FDA approval for CBD (Epidiolex®) as a treatment for
seizures associated with Dravet syndrome (Devinsky et al., 2017).
Despite these advances, preclinical studies remain quite limited
as laboratories using controlled substances (including research
involving animals) are subject to extensive state and federal
regulatory requirements (Samanta, 2019).

Here, we used an established scn1 zebrafish mutant model of
Dravet syndrome to screen synthetic compounds for those that
exhibit anti-seizure properties. This commercially available
library contains 370 parent compounds and positional isomers,
analogs, or homologs designed for experimental, non-human,
Frontiers in Pharmacology | www.frontiersin.org 2
research purposes. The scn1lab mutant zebrafish line exhibits
spontaneous seizures that can be easily monitored using acute
behavioral and electrophysiological assays (Baraban et al., 2013;
Hong et al., 2016; Griffin et al., 2017; Hunyadi et al., 2017). These
mutants exhibit metabolic deficit, early fatality, sleep
disturbances, and a pharmacological profile similar to Dravet
syndrome patients (Schoonheim et al., 2010; Kumar et al., 2016;
Grone et al., 2017). In addition to replicating key aspects of
Dravet syndrome, scn1lab mutants were shown to be a useful
model system for large-scale phenotype-based drug screening
and experimental drugs identified in this model have shown
efficacy in the clinic (Baraban et al., 2013; Dinday and Baraban,
2015; Griffin et al., 2017; Sourbron et al., 2017; Griffin et al.,
2018). Here, we used scn1lab mutants to screen a SC library. We
identified five compounds that exert significant anti-seizure
activity during acute exposures. Structure-activity relationship
analysis revealed these are indole-derived cannabinoids (Wiley
et al., 1998) suggesting specific classes of SCs exert antiepileptic
activity and providing further justification for using larval
zebrafish models to identify novel therapeutic targets.
MATERIALS AND METHODS

Zebrafish Maintenance
Zebrafish were maintained according to standard procedures.
Ethical practices for the laboratory use of zebrafish followed
guidelines approved by the Office of Ethics and Compliance
branch of the Institutional Animal Care and Use Committee
(IACUC approval #: AN171512-03) at the University of
California, San Francisco. The zebrafish room was maintained
on a light-dark cycle, with lights-on at 9:00 AM and lights-off at
11:00 PM. An automated feedback control unit was used to
maintain aquarium water conditions in the following ranges: 29–
30°C, pH 7.5–8.0, conductivity (EC) 690–710. Zebrafish embryos
and larvae were raised in an incubator maintained at 28.5°C, on
the same light-dark cycle as the fish facility. Water used for
embryos and larvae was made by adding 0.03% Instant Ocean
and 0.000002% methylene blue to reverse-osmosis distilled
water. Embryos and larvae were raised in plastic petri dishes
(90 mm diameter, 20 mm depth) and housing density was
limited to approximately 50–60 per dish. The sex of embryos
and larvae cannot be determined at these early stages.

Drugs
Compounds for drug screening were purchased from Cayman
Chemicals and provided as 10 mM stock DMSO solutions
(Supplemental Table I). Fresh drug solutions were prepared
on each day of experimentation in 1 ml of E3 media. Final
DMSO concentration of drug dilutions used for testing was ~1%.
To facilitate large-scale primary screening (Figure 1), single drug
concentrations (10 and 250 µM) were selected based on
previously published high-throughput screens in larval
zebrafish (Baraban et al., 2013; Robertson et al., 2014; Dinday
and Baraban, 2015; Lin et al., 2018; Ibhazehiebo et al., 2018;
Eimon et al., 2018); additional concentrations (1, 10, and
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100 µM) were selected for secondary concentration-dependent
screening assays (Fig. 2). All drug solutions were prepared by an
investigator and coded. A second investigator performed the
experiment (e.g., locomotion assay or electrophysiology) blinded
to drug identity. Drugs were decoded only after data analysis
was completed.

Locomotion Assay
The acute locomotion assay used here follows protocols
established previously (Baraban et al., 2013; Dinday and
Baraban, 2015; Griffin et al., 2017; Griffin et al., 2019). At 5
days post fertilization (dpf) offspring from crossing adult
scn1lab+/− zebrafish were sorted by pigmentation to isolate
scn1lab−/− larvae and placed individually in one well of a 96-
well plate. The plate was positioned in a DanioVision (Noldus)
chamber under dark light for a 20-min habituation period at
room temperature before obtaining a 10 min “Baseline
Recording” epoch. After baseline measurements, embryo media
was carefully removed and 75 µl test drug (at a concentration of
10 or 250 µM) or embryo media (internal control, 1% DMSO)
were added. Each plate included a set of six internal (vehicle)
controls. The plate was returned to the chamber for another 20-
min habituation period before beginning a 10 min “Experimental
Recording” epoch. Criteria for a positive hit designation were set
as follows: (1) a decrease in mean velocity of ≥40% based on an
s.d. of 17.83 for internal (vehicle) controls, and (2) a reduction to
stage 0 or stage I seizure behavior (defined in Baraban et al.,
2005) in the locomotion plot for at least 50% of the test fish. Each
test compound classified as a “positive hit” in the locomotion
assay was assessed for acute toxicity by direct visualization on a
stereomicroscope. Acute toxicity (or mortality) was defined as no
visible heartbeat or movement in response to external
Frontiers in Pharmacology | www.frontiersin.org 3
stimulation in at least 50% of the test fish at 60 min of drug
exposure. Compounds identified as successful in the first
locomotion screen were re-tested on an independent clutch of
larvae using the method described above. Compounds that were
successful in two independent locomotion assays, and were not
acutely toxic, were re-tested a third time using fresh drug stock
sourced from Cayman Chemical.

Electrophysiology Assay
Zebrafish larvae (5 dpf) were first monitored in the 96-well
format locomotion assay as described above. Individual
scn1lab−/− larvae were then removed, briefly exposed to cold
anesthesia and immobilized in 2% agarose by an investigator
blinded to the locomotion assay parameter. Local field potential
recordings (LFPs) were obtained from midbrain using a single-
electrode recording at room temperature, as previously described
(Baraban et al., 2005; Baraban, 2013). LFP recordings, 10 min in
duration, were obtained using Axoclamp software (Molecular
Devices; Sunnyvale, CA) at an acquisition rate of 1 kHz.
Abnormal electrographic seizure-like events were analyzed post
hoc as: (i) brief interictal-like events (0.47 ± 0.02 sec duration; n =
52) comprised of spike upward or downward membrane
deflections greater than 3x baseline noise level or (ii) long
duration, large amplitude ictal-like multi or poly-spike events
(3.09 ± 1.01 sec duration; n = 21) greater than 5x baseline noise
level. Noise level was measured as 0.35 ± 0.03 mV (n = 18). All
scn1lab mutants exhibit some form of spontaneous
electrographic seizure activity and no clustering of activity was
observed even with prolonged electrophysiology monitoring (see
Hong et al., 2016). Both epileptiform events were counted using
“threshold” and/or “template” detection settings in Clampfit
(Molecular Devices; Sunnyvale, CA). All embedded larvae were
A

B

C

D

E

FIGURE 1 | A library of synthetic cannabinoids (SCs) was screened for their ability to reduce the high velocity seizure-like swim behavior of 5 day old zebrafish
larvae. Compounds were screened at (A) 250 µM and (B) 10 µM. Each data point represents the mean velocity change in swim behavior of six fish treated with an
individual compound. The red data points represent compounds that failed to go into solution or identified as toxic after 90-min exposure. (C) Summary of
compound effects after screening 370 SCs at 250 and 10 µM. The threshold for inhibition of seizure activity was determined as a reduction in mean swim velocity of
≥40%. (D) The total number of compounds identified as positive from the 250 and 10 µM library screen. (E) Heat map representing the 20 compounds which
successfully reduced the mean swim velocity by >40% in the 250 and 10 µM screening.
April 2020 | Volume 11 | Article 464
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continuously monitored for blood flow and heart rate using an
Axiocam digital camera. All experiments were performed on at
least two independent clutches of scn1lab−/− zebrafish larvae.

Statistics
Electrophysiological data was examined by one-way analysis of
variance with subsequent Dunnett multiple comparisons tests.
RESULTS

Behavioral Screening
To identify SC compounds that modify convulsive swim
behavior, we performed a blinded in vivo primary screen using
an automated locomotion tracking protocol. Mutants were
placed individually in a single well of a 96-well plate and a
baseline locomotion tracking plot was obtained in embryo
media. At baseline, all scn1lab mutant larvae exhibited
spontaneous convulsive behaviors associated with high-velocity
movement, as previously reported (Baraban et al., 2013; Dinday
and Baraban, 2015; Griffin et al., 2017; Griffin et al., 2019).
Mutants were then exposed to test SC compounds at a single
screening concentration of 250 µM (n = 6 fish/drug). All
compounds remained coded by compound number provided
by Cayman Chemical. Mutant swim activity between two
consecutive recording epochs in embryo media was tracked on
Frontiers in Pharmacology | www.frontiersin.org 4
every plate as an internal (vehicle) control. Mean velocity was
calculated for each well and the percent change from baseline for
all 370 test compounds is plotted in Figure 1A; drugs that were
acutely toxic are shown in red (also noted in Supplemental
Table I). On first pass locomotion screening at 250 µM, 27% of
SC compounds were identified as positive hits and 39% of SC
compounds were identified as acutely toxic (Figure 1C). To
reduce the percent of compounds being identified as toxic and
potential false negatives, a second screen was performed on all
370 compounds at a concentration of 10 µM (n = 6 fish/drug),
following the same protocol (Figure 1B). On first pass
locomotion screening at 10 µM, 25% of SC compounds were
identified as acutely toxic and 22% were identified as positive hits
(Figure 1C). Twenty SC compounds effectively decreased high
velocity seizure-like swim behavior at 10 and 250 µM (Figures
1D, E).

Next, all 20 SCs compounds which emerged from the two
primary screens were decoded and sourced as individual drugs
from Cayman Chemical for concentration-response studies
using scn1lab mutant larvae. SCs were tested at 1, 10, and 100
µM (n = 6 fish/drug/concentration). Five SC compounds were
identified as decreasing seizure-like swim behavior observed in
scn1lab mutant larvae in a concentration-dependent manner
(Figure 2). Representative locomotion tracking plots are
shown in Figure 2B. Aggregating data from the first stage of
our zebrafish anti-seizure drug screening platform, these five SC
A B

FIGURE 2 | Behavioral screening of 20 compounds which were identified as positive from the library screens. (A) Heat map representing the change of mean swim
velocity of the 20 hit compounds. The 20 SCs which were identified from the blind screens were retested at 1, 10, and 100 µM to confirm a dose response effect.
Each box represents the percent change in mean velocity from a locomotion assay on at least 6 scn1lab larvae. Compounds marked with a cross were identified as
toxic; threshold for positive hits shown by solid line. Scale at right represents the range of % change in mean velocity values. (B) Representative swim behavior
traces obtained during a 10 min recording epoch for the top two compounds, #9001523 and #147666.
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https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Griffin et al. Synthetic Cannabinoid Screen in Zebrafish
compounds were classified as positive hits for reducing seizure-
like swim behavior to control levels, and subsequently moved on
electrophysiology assays for confirmation of anti-seizure activity.

Electrophysiology Screening
To evaluate whether selected SCs inhibit electrographic seizures,
we performed a blinded in vivo secondary screen using
electrophysiology techniques (Baraban et al., 2005; Baraban,
2013; Baraban et al., 2013; Griffin et al., 2017; Griffin et al.,
2019). Mutants were placed in a single well of a 96-well plate and
exposed to test SC compounds (#10521, #10690, #14550, #14766,
#900799, and #9001523; Table 1) at drug concentrations
determined above or DMSO (vehicle). Compound #900799
was selected here as a “control” SC that fell below the positive
hit threshold described above for the final locomotion-based
assay. After the locomotion assay, scn1lab mutant larvae were
immobilized in agar for LFP recording and post hoc analysis of
both interictal- (range: 107–453 events/10 min) and ictal-like
(range: 1–10 events/10 min) activity (Figure 3A). Exposure to
compounds #10521, #10690, #14500, #14766, and #9001523
Frontiers in Pharmacology | www.frontiersin.org 5
significantly reduced the frequency of these spontaneous
epileptiform events (F(6,80) = 14.41, ***p < 0.0001 or **p <
0.0003) (Figure 3B). Representative 10 min recording epochs
for each compound, and an age-matched vehicle-exposed
scn1lab mutant larvae control are shown in Figure 3C. Note
the presence of robust interictal- and ictal-like events in scn1lab
controls and following exposure to compound #900799 but the
near complete absence of events with exposure to five
different SCs.
DISCUSSION

Here we describe the first large-scale phenotype-based screen of a
SC library using a zebrafish model of Dravet syndrome. Our
approach to screening compounds for anti-seizure activity in
scn1lab mutant zebrafish builds on earlier model validation,
established acute drug exposure protocols, and a database now
exceeding 3,200 compounds (Baraban et al., 2013; Kumar et al.,
2016; Griffin et al., 2016; Hong et al., 2016; Grone et al., 2017; Griffin
et al., 2017; Griffin et al., 2018). Using a two-stage screening strategy
in scn1lab mutant zebrafish, and anti-seizure criteria incorporating
electrophysiology read-outs, we identified five SCs. SCs add to a
growing list of drugs successfully identified in scn1lab zebrafish that
already include “standard-of-care”AEDs (e.g., valproate, stiripentol,
benzodiazepines, bromides) and experimental drugs (e.g.,
fenfluramine, lorcaserin, trazodone, clemizole) (Baraban et al.,
2013; Dinday and Baraban, 2015; Griffin et al., 2017; Griffin
et al., 2019).

SCs, first developed in the 1940s, represent a variety of
compounds engineered to bind cannabinoid receptors with high
affinity. Many SCs bind G-protein coupled CB1 receptors located at
the presynaptic terminal and are also thought to interact with
voltage-gated potassium channels, voltage-gated sodium channels,
N-and P/Q-type-calcium channels, and an orphan G-protein
coupled receptor (GPR55) (for review see Rosenberg et al., 2017;
Smolyakova et al., 2020). Whether one, or several, of these potential
sites of action are responsible for anti-seizure effects noted with SCs
remains a controversial area of investigation as, cannabinoid-
receptor dependent, and independent, pro- or anticonvulsant
effects have been reported. Complex differences in cannabinoid
receptor expression on excitatory versus inhibitory neurons in the
brain, as well as the wide variety of preclinical models in which
cannabinoids anti-seizure or anti-epileptogenic effect are studied,
has probably contributed to this controversy. For example, in vivo
studies using intracerebroventricular administration of a CB1-
receptor agonist, arachidonyl-2-chloroethylamide (ACEA),
significantly decreased the frequency of penicillin-induced
epileptiform activity in rats (Kozan et al., 2009). CMYL-4CN-
BINACA, another CB1 receptor agonist, elicited pro-convulsant
effects in mice (Kevin et al., 2019) and a SC (AM2201) induced
epileptiform activity and convulsive behaviors in mice that could be
blocked by the selective CB1 receptor antagonist AM251 (Funada
and Takebayashi-Ohsawa, 2018). Huizenga et al. (2017) reported
that nonselective CB1/2 and selective CB1 agonists suppress activity
in neonatal seizure models (though these findings were not
TABLE 1 | SC compounds identified to have anti-seizure properties in scn1lab
mutant zebrafish larvae.

Compound
no.

Compound name Description

10521 JWH 018 N-(5-
chloropentyl) analog

JWH 018 is a SC that potently activates the
central cannabinoid (CB1) and peripheral
cannabinoid (CB2) receptors (Ki = 9.0 and
2.94 nM, respectively). JWH 018 N-(5-
chloropentyl) analog differs structurally from
JWH 018 by having chlorine added to the
five position of the pentyl chain (Aung et al.,
2000; Lindigkeit et al., 2009; Uchimaya
et al., 2009).

10690 JWH 018 N-(2-
methylbutyl) isomer

JWH 018 2-methylbutyl homolog is an
analog of JWH 018, a mildly selective
agonist of the central cannabinoid receptor
(Ki = 8.9 nM) derived from the
aminoalkylindole WIN 55,212-2 (Aung et al.,
2000).

14550 5-fluoro PB-22 5-
hydroxyisoquinoline
isomer

5-Fluoro PB-22 is an analog of 5-
fluoropentyl JWH-type cannabimimetics. 5-
Fluoro PB-22 5-hydroxyisoquinoline isomer
differs from 5-fluoro PB-22 by having the
quinoline group replaced with an
isoquinoline group attached at its five
position (Uchimaya et al., 2009).

14766 5-fluoro ADBICA This compound is a derivative of ADBICA
featuring a fluorine atom added to the
terminal carbon of the pentyl group
(Uchiyama et al., 2012).

9000799 JWH 018
adamantyl analog

JWH 018 adamantyl analog is a mildly
selective agonist of the peripheral
cannabinoid receptor, where the
naphthalene ring is substituted with an
adamantyl group (Lu et al., 2005;
Sobolevsky et al., 2010).

9001523 AB-FUBINACA 3-
fluorobenzyl isomer

AB-FUBINACA is an indazole-based SC
that potently binds the central CB1 receptor
(Ki = 0.9 nM) (Uchiyama et al., 2012).
SC, synthetic cannabinoid.
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replicated with GPR55 agonists). WIN55,212, a synthetic CB1R
agonist, elicited anti-convulsant effects in several acute seizure
models of acute seizure (Wallace et al., 2001; Naderi et al., 2008)
whereas oral administration of SR141716A (rimonabant), a CB1R
specific antagonist, increased seizure susceptibility and duration,
suggesting a pro-convulsant effect (Vinogradova et al., 2011).
Unfortunately, the majority of these preclinical studies utilized
adult rodent models, were not focused on pediatric epilepsy
conditions where modulation of endocannabinoid signaling may
be most therapeutic, and only compared one (or a few) compound
(s) in a single study. In contrast, our results using several hundred
compounds in a zebrafish model of Dravet syndrome could
Frontiers in Pharmacology | www.frontiersin.org 6
represent a new strategy to decipher pro- versus anti-
convulsant activities.

Zebrafish possess orthologs for 82% of human disease-associated
genes (Howe et al., 2013). Orthologous zebrafish proteins are often
similar to human within their functional domains. For example,
between 66% and 75% of amino acids in the zebrafish Cb1 receptor
are similar to those in human CB1 (Lam et al., 2006); comparison of
the zebrafish Cb2 (a/b) receptor revealed a 39% amino acid
similarity with human CB2 (Rodriguez-Martin et al., 2007). Both
receptors are expressed in the zebrafish central nervous system.
These properties combined with ease of large-scale pharmacological
screening make larval zebrafish a good model system for
A B

C

FIGURE 3 | Electrophysiological assay for compounds identified in the locomotion-based screening assay. (A) Local field potential (LFP) recordings were obtained
with an glass micro-electrode placed under visual guidance in the midbrain of agar-immobilized scn1lab larvae that had previously showed reduced seizure-like
behavior in the locomotion assay. Representative examples of events classified as interictal- or ictal-like are shown. Scale bars: 1 mV, 0.5 s, (B) Bar graphs show the
frequency of epileptiform events in a 10 min recording epoch for scn1lab larvae exposed to DMSO vehicle (scn1lab mutants; n = 17), JWH 018 N-(5-chloropentyl)
analog (compound #10521; n = 10), JWH 018 N-(2-methylbutyl) isomer (compound #10690; n = 12), 5-fluoro PB-22 5-hydroxyisoquinoline isomer (compound
#14550; n = 11), 5-fluoro ADBICA (compound #14766; n = 13), JWH 018 adamantyl analog (compound #9000799; n = 13), and AB-FUBINACA 3-fluorobenzyl
isomer (compound #90001523; n = 11). Mean ± SEM and individual data points are shown. One-way analysis of variance with Dunnet's multiple comparisons was
used to test for significance. **p < 0.001; *** p < 0.0001. (C) Representative electrophysiology traces (10 min) are shown for SC compounds 10521, 10690, 14550,
14766, 9000799, and 900015323 compared to an scn1lab mutant zebrafish (red). Scale bars: 1 mV, 10 s.
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investigating drug targets. A recent study (Samarut et al., 2019),
limited only to locomotion assay read-outs in larval zebrafish,
reported a synergistic effect of D-9-tetrahydrocannabinol (THC)
and CBD on hyperactive behaviors. Unfortunately, these studies
failed to include electrophysiology measures and were restricted to
these two compounds. Here we initially screened 370 different SCs
in a locomotion assay at two different drug concentrations,
identifying 20 compounds. With repeated biological replicates,
newly sourced compound re-tests and sensitive secondary
electrophysiology assays, we narrowed this initial list to five SCs
classified as effective in suppressing spontaneous seizures in scn1lab
mutants. This two-stage approach further validates the selectivity of
our screening strategy as only 1.3% of all SCs tested were identified
as true anti-seizure hits. A caveat of this strategy is that
pharmacokinetic data for how SCs are absorbed, distributed or
metabolized in larval zebrafish is not available which would suggest
an error in false negative designations. Although we also recognize
that acute SC exposure may alter non-seizure larval behavior in
wild-type larvae (Achenbach et al., 2018; Ellis et al., 2018;
Luchtenburg et al., 2019), our studies are focused on Dravet
syndrome zebrafish as the overall purpose of this research was to
identify anti-seizure compounds. Interestingly, as several of these
SCs are classified as indole-derivatives these data also suggest a
potential target not recognized in previous preclinical studies
(Figure 4). Indole-derived cannabinoids have strong binding
affinity for 5HT2B receptors (Wiley et al., 2016). This serotonin
receptor subtype was recently identified by our group as potentially
mediating anti-seizure effects of clemizole (Griffin et al., 2019).
Taken together, a convergence of evidence now exists to suggest that
activation of a serotonin 2B receptor is a potential target for Dravet
syndrome therapy.
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Although additional preclinical studies investigating SCs
identified here (both in wild-type and epileptic zebrafish) are
warranted, a note of caution needs to be extended. First and
foremost, SCs are not intended “for human or veterinary use”
(https://www.caymanchem.com/product/9002891). Second,
substantial evidence of serious adverse effects have been reported
for some of these compounds. These include, and may not be
limited to, panic attacks, memory distortions, paranoia, psychotic
reactions, disorganized behavior, and suicidal thoughts (Fattore,
2016; Tait et al., 2016). Reports of acute ischemic stroke (Freeman
et al., 2013; Takematsu et al., 2014), seizures (Schneir and
Baumbacher, 2012; Schwartz et al., 2015), and sudden death
(Behonick et al., 2014; Shanks et al., 2016; Shanks and Behonick,
2016) with SCs are not uncommon. In particular, indole- and
indazole-based SCs are associated with clinical signs of reduced
consciousness, paranoia and seizures in humans (Hill et al., 2018).
This information is valuable for investigators and clinician-scientists
interested in the potential benefits of cannabinoid receptor agonists
for intractable seizure disorders.
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