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Gut microbiome maintains local gut integrity and systemic host homeostasis, where
optimal control of intestinal lipopolysaccharides (LPS) activity may play an important role.
LPS mainly produced from gut microbiota are a group of lipid-polysaccharide chemical
complexes existing in the outer membrane of Gram-negative bacteria. Traditionally, LPS
mostly produced from Proteobacteria are well known for their ability in inducing strong
inflammatory responses (proinflammatory LPS, abbreviated as P-LPS), leading to septic
shock or even death in animals and humans. Although the basic structures and chemical
properties of P-LPS derived from different bacterial species generally show similarity,
subtle and differential immune activation activities are observed. On the other hand,
frequently ignored, a group of LPS molecules mainly produced by certain microbiota
bacteria such as Bacteroidetes show blunt or even antagonistic activity in initiating pro-
inflammatory responses (anti-inflammatory LPS, abbreviated as A-LPS). In this review,
besides the immune activation properties of P-LPS, we also focus on the description of
anti-inflammatory effects of A-LPS, and their potential antagonistic mechanism. We
address the possibility of using native or engineered A-LPS for immune modulation in
prevention or even treatment of P-LPS induced chronic inflammation related diseases.
Understanding the exquisite interactive relationship between structure-activity correlation
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of P- and A-LPS not only contributes to molecular understanding of immunomodulation
and homeostasis, but also re-animates the development of novel LPS-based
pharmacological strategy for prevention and therapy of chronic inflammation
related diseases.
Keywords: lipopolysaccharides, microbiota, proteobacteria, bacteroidetes, TLR4, immune modulation
INTRODUCTION

Lipopolysaccharides in General
Lipopolysaccharides (LPS) mainly derived from gut microbiome
are chemical molecules located in the outer membrane of Gram-
negative bacteria (Sperandeo et al., 2017). It is a pathogen
associated molecular pattern (PAMP) molecule consisted of a
core lipid structure and polysaccharide components (Nativel et al.,
2017). Traditionally, LPS are best known for their eliciting strong
immune responses in a variety of eukaryotic species ranging from
insects to animals and humans (Alexander and Rietschel, 2001).
Increased concentration of LPS in the sera is also closely related to
development of sepsis and even mortality (Fink, 2014). Detailed
structural analysis indicated that LPS consist of three parts: lipid A,
a core oligosaccharide and an O antigen of oligo- or
polysaccharide chain (Alexander and Rietschel, 2001). The
conserved lipid A entity buried within the Gram-negative
bacterial outer membrane is basically composed of a b(1 ! 6)-
linked glucosamine disaccharide backbone that is phosphorylated
at positions 1 and 4 of the disaccharide, and acylated at positions 2
and 3 of each monosaccharide (Steimle et al., 2016). Covalently
attached to lipid A is the core oligosaccharides that link to lipid A
through 3-deoxy-D-manno-oct-ulosonic acid (Kdo), and show
in.org 2
variance among LPS purified from different bacterial species
(Amor et al., 2000). Located on the outermost part of LPS, the
highly versatile O-antigen sugar chain is characterized by
significant variation of sugar length, composition, arrangement
and the linkages between monosaccharides in different bacterial
species, different bacterial strains of the same species, or even
different bacterial clones of the same bacterial strain (intrastrain
LPS heterogeneity) (Lerouge and Vanderleyden, 2002) (Figure 1).

Proinflammatory Lipopolysaccharides
Traditional proinflammatory LPS (P-LPS) are mostly derived
from the phylum Proteobacteria such as those from Escherichia
coli. They have been established to play important roles in
increasing the oxidative stress and over-production of
inflammatory cytokines/chemokines. Functional activities of P-
LPS are widely identified in not only mammals (Wiese et al.,
1999), but also other animals including chicken and fish (Komori
et al., 2015). While the three parts of P-LPS may all patriciate in
modulation of immune activities, the lipid A is the primary
immunostimulatory moiety of P-LPS. After lysis of bacterial
cells, exposed lipid A binds to cell surface receptors of target
cells such as macrophages and dendritic cells (DCs), initiating
downstream inflammatory signaling components. Subsequently,
FIGURE 1 | Structure and immunogenicity of lipopolysaccharide from Gram-negative bacteria. Lipopolysaccharide (LPS) is the major component of outer membrane
of Gram-negative bacteria and also is anchored on outer membrane vesicles (OMVs) secreting by live Gram-negative bacteria. The structure of LPS consisted of a
core lipid structure (core polysaccharide and lipid A) and polysaccharide components (O antigen). The immunogenicity of LPS is affected by variations in the O
antigen structure (sugar composition, length, and permutation), and modification of lipid A (number of phosphate group, number, and length of acryl chains).
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fever, inflammation, and even septic shock are induced. Release of
bacterial LPS can not only be achieved after bacterial lysis, but also
through secreting outer membrane vesicles (OMVs) by live Gram-
negative bacteria (Vanaja et al., 2016) (Figure 1). Though
proinflammatory, the biological activity of P-LPS molecules
show a range of differential activities on target cells. Such effects
depend on various factors, including bacterial origin and P-LPS
structure, composition, and concentrations (Chantratita et al.,
2013). Although lipid A moiety may be the most active
component of LPS, the O-antigen part also participates in
immune regulation activity (Kadowaki et al., 2013) (Figure 1).

Cascades of Proinflammatory
Lipopolysaccharides Activated
Inflammations
P-LPS act as important molecules initiating local and even
systemic inflammations in the host. While there are multiple
TLR4-independent P-LPS sensing pathways, TLR4 is currently
regarded as a major cell surface pattern recognition molecule
receptor (PRR) responsible for initiation and sustaining the
inflammatory responses in the host (Nativel et al., 2017;
Mazgaeen and Gurung, 2020). Upstream interaction between P-
LPS and cell surface TLR4 ignites the whole cascade of
downstream signaling (Figure 2). P-LPS does not directly bind
to TLR4. In body fluids, P-LPS micelles first interact with LPS-
binding protein (LBP), an acute-phase protein, forming P-LPS/
LBP micelles. Sequentially, P-LPS/LBP micelles then interact with
CD14. Afterwards, the resulting complex interacts with TLR4/
MD-2, leading to oligomerization of TLR4/MD-2/CD14 complex
Frontiers in Pharmacology | www.frontiersin.org 3
(Kim and Kim, 2017). Subsequently, aggregated LPS-TLR4
complex (P-LPS/TLR4/MD-2/CD14) activates cells through
eliciting the NF-kB signaling pathway, leading to increased
production and secretion of abundant pro-inflammatory
cytokines such as IFN-g, TNF-a, interleukin (IL)-1b and
interleukin (IL)-8 (but little or no IL-4, IL-13 or IL-5), and
chemokines, such as monocyte chemoattractant protein 1
(MCP-1) (Chow et al., 1999; Alexander and Rietschel, 2001).
Alternatively, P-LPS may also activate immune cells by TLR4
independent pathway. Recent studies indicated that LPS can be
transported into cytosol by OMVs and guanylate-binding
proteins. In cytosol, LPS can be sensed by the noncanonical
inflammasome and directly binds to its intracellular receptor
caspase-4/5/11. This may lead to activation of NLRP3
inflammasome and pyroptosis of the cells. The LPS-triggered
cytosolic activation of noncanonical inflammasome may play
important roles in development of sepsis (Pfalzgraff and Weindl,
2019; Mazgaeen and Gurung, 2020).

The P-LPS induced lung inflammations are described here,
where sequential multiple biochemical steps occur, leading to
final lung pathogenesis development. Following P-LPS-TLR4
interaction, TLR4/MyD88 signaling pathways (Lu et al., 2008)
in alveolar macrophages are induced, leading to increased release
of proinflammatory cytokines/chemokines such as IL-1b, IL-6,
IL-8, and MCP-1 (Atamas et al., 2013). These subsequently
provoke infiltration of various over-activated immune cells
including macrophages, neutrophils, and CD8+ T and B
lymphocytes (Asti et al., 2000). Proteolytic enzymes activities
such as those from elastase, matrix metalloproteinase (MMP-2,
FIGURE 2 | Simplified diagram of extracellular and intracellular signaling by P-lipopolysaccharides (LPS) (pro-inflammatory) and A-LPS (anti-inflammatory) on host
cells. (left) P-LPS is bound by LPS binding protein (LBP), passed to CD14, then transferred to MD-2 and TLR4. P-LPS-induced CD14-TLR4-MD2 receptor
oligomerization promotes activation of the transcription factor NF-kB through MyD88-dependent signaling cascade, then induces the expression of genes encoding
proinflammatory cytokines and chemokines. A-LPS may antagonize P-LPS-induced activation of TLR4 through interfering the interactions between P-LPS and LBP
as well as P-LPS and TLR4-MD2. (Right) P-LPS can be transported into cytosol from endosome containing Gram-negative bacteria or outer membrane vesicles
(OMVs). In cytosol, LPS can be sensed and then activates caspase-4/5/11. This may lead to activation of NLRP3 inflammasome and pyroptosis of the cells.
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MMP-9, MMP-12) and cathepsins are also increased in lung
(Davey et al., 2011). This leads to enhanced degradation of
collagen and matrix proteins which further enhance
inflammation. Together with other exogenous and endogenous
oxidative stresses, the lung parenchyma starts to be damaged.
Cell injuries further activate proteases and generate danger-
associated molecular patterns (DAMPs) such as hsp70
(Hulina-Tomaskovic et al., 2019) or high mobility group box 1
(HMGB-1) protein (Gangemi et al., 2015). DAMPs continue to
activate inflammasome in macrophage, leading to reduced
mitochondrial function, cell senescence, apoptosis, and
necrosis (Faner et al., 2012).

Proinflammatory Lipopolysaccharides–
TLR4 Interaction in Modulation of
Immunity and Inflammation
P-LPS derived from the gut microbiota of animals and humans
have been shown to cause or contribute to development of chronic
inflammation related diseases. The P-LPS levels in blood plasma
are normally low, but are found to be elevated in many chronic
inflammation related diseases. These include infections and sepsis
(Opal, 2010), obesity and type 2 diabetes (Hersoug et al., 2016),
gum disease (Brown, 2019), chronic obstructive pulmonary
disease (COPD) (Aul et al., 2012; Kobayashi et al., 2013; Gupta
et al., 2015), non-alcoholic fatty liver disease (NAFLD) (Fuke et al.,
2019), colitis associated cancers (Waldner and Neurath, 2015),
and even neurodegenerative diseases such as Alzheimer’s disease,
Parkinson’s disease, and amyotrophic lateral sclerosis (Brown,
2019). Concordantly, dysbiosis in the gut microbiome may
increase the production and release of microbial P-LPS which
activate gut inflammatory response. Pro-inflammatory cytokines
produced in gut can systematically affect host physiology, such as
stimulating the afferent vagal nerve which in turn impacts the
hypothalamic-pituitary-adrenal (HPA) axis and induces
symptoms associated with depression (Simkin, 2019). Gathering
evidences strongly indicate the causative relationship between
increased P-LPS concentration in body fluids and development
of chronic inflammations related diseases. Therefore, it is possible
that these diseases may be ameliorated by either decreasing P-LPS
levels or antagonizing P-LPS-induced inflammations
(Brown, 2019).

P-LPS do not just provoke unfavorable inflammations. These
molecules may also contribute to restoring immunity-
compromised diseases due to gut microbiota dysbiosis. Using
an animal model of antibiotics-induced dysbiosis and bacterial
lung infection, previous work has shown that oral
supplementation with commensal flora derived P-LPS
improves lung defense against E. coli-induced pneumonia.
Thus, P-LPS derived from the gut microbiota may increase
host lung immunity in this context (Chen, Chen et al., 2011).
The mechanism underlying the effects of LPS modulatory effects
remains to be further examined.

Efficacy of P-LPS activation activity can be significantly affected
by variations in the sugar composition, length and permutation,
and modification of lipid A, core, and/or O-antigen structure
Frontiers in Pharmacology | www.frontiersin.org 4
(Fedele et al., 2008). On the other hand, expression levels or
structural variations in the target LBP, CD14, and TLR4 protein
complex of host cells may also affect the immune-stimulation
activities (Hajjar et al., 2017). In brief, TLR4-MD-2 receptor
complex recognizes variations in P-LPS molecule of a particular
Gram-negative bacterium and uses multiple sites in interaction. In
this situation, subtle tuning of the earliest interaction between the
host cell surface and pathogen P-LPS occurs, which affects P-LPS
affinity and the subsequent activation activity (Maeshima et al.,
2015). For example, LPS derived from Chlamydiaceae shows
reduced binding affinity for LBP and CD14, and exhibits weak
biological activity against host immune cells such as monocytes
(Tsutsumi-Ishii et al., 2008). Besides, studies of LPS derived from
Bordetella pertussis indicate that distinct charged and uncharged
amino acids in TLR4 and MD-2 proteins determine the binding
affinity between lipid A and TLR4/MD-2, affecting subsequent
macrophage activation (Maeshima et al., 2015). Another example
is the involvement of LBP and soluble CD14 (sCD14) in
modulation of LPS response in a concentration dependent
manner. While low concentration of LBP enhances P-LPS
responses, high LBP concentration during acute inflammation
and infection inhibits P-LPS bioactivity in contrast. On the other
hand, in body fluid, systematic sCD14 may distract P-LPS from
membrane-bound CD14 (mCD14) and inhibit TLR4 signaling.
Dual stimulatory and inhibitory mechanisms of LPB and sCD14
may therefore exist tomodulate the inflammations in infected host
(Kitchens and Thompson, 2005). Subtle interactive variations at
the host-pathogen interface thus fine-tune the host immune
responses to specific P-LPS.

Microbiota Anti-Inflammatory
Lipopolysaccharides Counteract
Proinflammatory Lipopolysaccharides to
Achieve Homeostasis
LPS are mostly produced from gut microbiota, besides those
from external infections, the respiratory tract and gum (Brown,
2019). Gut microbiota are mostly strict anaerobes (97%), and
play multiple important roles in maintaining host intestinal
homeostasis and promoting health (Alexandre et al., 2018).
Basic composition of the human gut microbiota is composed
of bacteria from the phyla Firmicutes (64%, mainly Gram-
positive Clostridium, Bacillus, Lactobacillus, and Enterococcus
species), and Bacteroidetes (23%, mostly Gram-negative
Bacteroides and Prevotella species). Other phyla include
Proteobacteria (1–8%), Actinobacteria (3%), and low numbers
of the phyla Fusobacteria, Verrucomicrobia, and TM7 (2%). By
contrast, fungi and archaea comprise less than 1% of the total gut
microbiota (Cardinelli et al., 2015). Under normobiosis situation,
hosts do not develop gut inflammatory phenotypes. This may be
due to a harmonic habituating relationship of microbiota
bacteria and optimal control of P-LPS activity in the intestine,
leading to host intestinal homeostasis and beyond. Within the
gut microbiota, intestinal Proteobacteria work as major
contributors of P-LPS synthesized. Among these, an average of
14% of total P-LPS produced is of E. coli origin in healthy people,
April 2020 | Volume 11 | Article 5
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and 5.2% in human microbiome project 1(HMP1) donors
(Alexandre et al., 2018).

Recent studies indicated that total LPS prepared from the
consortium of gut-resident microbes potently antagonize the E.
coli LPS-host TLR4 signaling pathway (Alexander and Rietschel,
2001; d’Hennezel et al., 2017). Further metagenomic sequencing
delineated the strain level contributions to the gut LPS pool and
found that bacteria across the members of the order
Bacteroidales produce antagonistic forms of LPS (A-LPS), thus
driving immune silencing for the entire microbial community.
Especially, Bacteroidetes species may contribute up to 79% of the
A-LPS produced in healthy people and 92.4% of that in HMP1
samples. The estimated average ratio of Bacteroidetes-to-E. coli
LPS in the gut would be between 6:1 in healthy people and 18:1 in
the HMP1 cohort (Alexandre et al., 2018). The abundances of the
Bacteroides species, and therefore their likely contribution to the
whole LPS pool are started to be unraveled to play an important
role in intestinal immune homeostasis.

Anti-Inflammatory Lipopolysaccharides Is
Characterized by Structure Variations of
Lipid A
It is established that natural heterogeneity observed in the lipid A
structure portion of LPS may produce differential modulatory
effects on immune responses (Chilton et al., 2013). The underlying
silencing mechanism of A-LPS is subsequently deciphered to be
closely related to their status of lipid A acylation in contrast to P-
LPS, where hypoacylation is frequently observed (Coats et al.,
2007; d’Hennezel et al., 2017). For example, tetra- or penta-
acylation of A-LPS in contrast to the well-established hexaacyl-
lipid A of E. coli (Reife et al., 2006) is identified. Such
hypoacylation characteristic of lipid A structure is expected to
be found in many Bacteroidetes bacteria including Bacteroides
dorei, Bacteroides fragilis, Bacteroides ovatus, Bacteroides
thetaiotaomicron, and Bacteroides uniformis … etc. (Poxton and
Edmond, 1995; d’Hennezel et al., 2017; Jacobson et al., 2018).
Another example is the hypoacylated LPS from a foodborne
pathogen Campylobacter jejuni that only moderately induces
TLR4 dependent immune response (Korneev et al., 2018).
Furthermore, Shigella flexneri 2a that contains a mixture of
hexaacylated, pentaacylated, and predominantly tetraacylated
lipid A in its LPS also significantly decreases its stimulatory
effects on NF-kappaB signaling pathway in contrast to the
hexaacylated E. coli LPS (Rallabhandi et al., 2008). On the other
hand, structurally similar, pentaacylated LPS of Porphyromonas
gingivalis and B. thetaiotaomicron initiate significantly different
innate immune responses (Berezow et al., 2009), highlighting the
importance of exquisite structural variations of lipid A of LPS in
immune regulation.

Besides hypoacylation, hypophosphorylation of the
diglucosamine backbone also decreases LPS toxicity. The A-
LPS derived from the intestinal mucosa-associated bacteria B.
thetaiotaomicron and Prevotel la intermedia contain
monophosphorylated lipid A (MPLA). These A-LPS showed
moderate immune-stimulating functions and could work as
Frontiers in Pharmacology | www.frontiersin.org 5
immunological adjuvants for antigen-specific immune
responses (Chilton et al., 2013). As the immune silencing effect
via A-LPS seems to be an intrinsic characteristic in healthy hosts,
the current belief that robust activation of TLR4 signaling by gut
microbiome derived LPS is therefore to be carefully reconsidered
(d’Hennezel et al., 2017).

Anti-Inflammatory Lipopolysaccharides
Combats Inflammation Induced by
Proinflammatory Lipopolysaccharides
A-LPS may show antagonistic effects on P-LPS activity. Taking
modulation of colitis by use of A-LPS as an example, mice
harboring low levels of Enterobacteriaceae (main P-LPS
producer) and high Bacteroidetes (main A-LPS producer)
showed intestinal low endotoxicity and maintained mucosal
immune homeostasis. By contrast, mice harboring a highly
endotoxic gut microbiota (with high Enterobacteriaceae and
low Bacteroidetes levels) were prone to develop colitis. In
concordance, administration of E. coli JM83 (wild-type P-LPS)
to mice exacerbated colitis, whereas a mixture of E. coli JM83 and
E. coli htrBPG (mutated LPS, with a lower endotoxicity similar to
that of Bacteroidetes) prevented colitis development in mice.
These results indicated that the A-LPS produced by the intestinal
microbiota may counteract P-LPS dominantly induced colitis
development in mice (Gronbach et al., 2014). Another example
was B. dorei that produces an antagonistic A-LPS affecting the
susceptibility of children to allergies and autoimmunity (Vatanen
et al., 2016). Besides, B. fragilis and B. ovatus also alleviated the P-
LPS-induced inflammation in mice (Tan et al., 2019), and
Bacteroides vulgatus and B. dorei ameliorated endotoxemia,
decreased gut microbial LPS production, and suppressed
proinflammatory immune responses (Yoshida et al., 2018).
Recently, the intestinal inflammation-reducing properties of
weak agonistic A-LPS derived from B. vulgatus were reported
to be due to inducing a special type of endotoxin tolerance,
mainly through the MD-2/TLR4 receptor complex axis in
CD11c+ cells of intestinal lamina propria (Steimle et al., 2019).

On top of these Bacteroidale bacteria, some Proteobacteria
bacteria such as Rhodobacter capsulatus and Rhodobacter
sphaeroides also owned A-LPS that lack potent agonist activity
(Alexander and Rietschel, 2001). What’s more, A-LPS derived
from Rhodobacter, such as E5531 (Rc-LPS derived) and E5564
(eritoran tetrasodium, developed from E5531) further showed
potent antagonism of P-LPS-mediated cellular activation (Christ
et al., 1995). E5564 was subsequently shown to prevent chronic
airway hyperreactivity and inflammation to inhaled P-LPS
(Savov et al., 2005). Besides, not only in vitro effects, A-LPS
also showed protective effect on mice suffered from P-LPS-
induced lethality (Barochia et al., 2011). Another example is
that, in contrast to P-LPS prepared from E. coli, A-LPS prepared
from two bacterial strains, the commensal Endozoicomonas sp.
and the opportunistic bacteria Pseudoalteromonas spp., that are
associated with the sponge Suberites domuncula are non-toxic
for mammals. The relatively low acylation of the lipid A of
Pseudoalteromonas sp. 1A1 and Endozoicomonas sp. HEX311
April 2020 | Volume 11 | Article 554
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may be a possible reason to explain their A-LPS characteristics
(Garderes et al., 2015).

Results from our study also indicated that lipid A of A-LPS
derived from the bacterium Parabacteroides goldsteiniiMTS01 is
expected to be pentaacylated, based on genome comparison and
structural determination results (unpublished). P. goldsteinii
MTS01 derived A-LPS (Pg-LPS) antagonizes E. coli O111:B4
LPS induced TNF-a production in macrophages RAW264.7, IL-
1b in human PBMC, and over-activation of BCR signaling in B
cells (Xu et al., 2008) and reverses the expression of CS-induced
inflammations-related genes, leading to alleviating the
pathogenes is of COPD in lung and colon t i ssues
(unpublished). Pg-LPS seems to be consistent in their immune
inhibiting effect against many different kinds of cells. On the
other hand, the antagonistic potential of hypoacylated LPS from
R. sphaeroides (Rs-LPS) is not consistently seen against many
immune cells, and is dependent on the cell sources of
mammalian species (Doring et al., 2017). Therefore,
complicated and minute interactions occur between LPS and
immune cells, which has to be taken into consideration for
subsequent development of clinical applications.

Anti-Inflammatory Lipopolysaccharides
Competes With Proinflammatory
Lipopolysaccharides in TLR4 Signaling
Pathway
“Competition” may be the underlying mechanism that
hypoacylated A-LPS antagonizes P-LPS activity (Figure 2).
Previous study has shown that tetra-acylated LPS derived from
P. gingivalis, and penta-acylated msbB LPS derived from an
Escherichia colimutant strain antagonized the capability of hexa-
acylated E. coli LPS to activate the TLR4 signaling complex in
human endothelial cells (Coats et al., 2005). While expression
levels of TLR4 do matter in modulating the efficacy of LPS-
dependent antagonism, MD-2 seemed to act as the principal
molecular component responsible for the antagonistic effects,
due to fact that msbB and P. gingivalis LPS could directly bind to
hMD-2 (Coats et al., 2005). Subsequent studies showed that these
antagonistic A-LPS might utilize at least two distinct
mechanisms to block E. coli P-LPS-dependent activation of
hTLR4: i) directly compete with the E. coli P-LPS for the same
binding site on hMD-2, and ii) to inhibit complexes interaction
between E. coli P-LPS-hMD-2 and hTLR4. Besides hMD-2,
hTLR4 also participated in species-specific recognition of msbB
and P. gingivalis A-LPS at the hTLR4 complex (Coats et al.,
2007). Results obtained from crystal protein structures studies, as
well as targeted mutagenesis analyses of the receptor complex
might give some more hints. Combination of intricate
electrostatic and hydrophobic interactions primarily occurring
within the MD-2 co-receptor, with a contribution from TLR4,
may contribute to the species-specific recognition of lipid A by
host cells (Oblak and Jerala, 2015). As underacylated LPS has
emerged as a novel mechanism utilized by microbiota bacteria to
optimally modulate host innate immune responses, these LPS
may be developed as prime therapeutic candidates for
neutralizing Gram-negative bacteria initiated bacterial sepsis.
Frontiers in Pharmacology | www.frontiersin.org 6
Lipopolysaccharides and TLR4 as Targets
of Immune Modulation
Varying LPS structures may be used as a means by which Gram-
negative bacteria control host immune status. Therefore,
engineering LPS structure and chemical properties can be used
as a strategy for development of novel immune-regulation
agents. For example, controll ing the acylation and
phosphorylation status of lipid A may be considered. The
position of phosphate group on lipid A may change the
potency of LPS (Coats et al., 2009; Coats et al., 2011). On the
other hand, lipid A without phosphate group due to alkaline
phosphatase activity produced from host can even lead to
formation of the non-immunostimulatory LPS, as illustrated by
the Eurypmna scolopes-Vibrio fischeri symbiotic association
(Rader et al., 2012). Another example is the lipid A of P-LPS
of V. fischeri in which heterogeneous mixtures of mono- and
diphosphorylated disaccharides, with variable acylation
situations from tetra- to octaacylated were identified. These
uncommon phosphoglycerol entity and carbohydrate
compositions of lipid A may modulate the close interaction
between V. fischeri and E. scolopes during symbiotic
development (Phillips et al., 2011; Post et al., 2012), where
imbalanced bacteria-host immune response is prevented.

Another example of application by lipid A modification is the
mono-phosphorylated lipid A species (MPL) which is less toxic
compared to conventional lipid A, and is the first vaccine
adjuvant approved by the Food and Drug Administration
(FDA) in more than 70 years (Needham et al., 2013). In
contrast to the wild-type E. coli LPS which mainly acts on
TLR4-MyD88 signaling, MPL preferentially effects through
TRIF which is less inflammatory (Needham et al., 2013). On
top of these, addition of aminoarabinose residues onto lipid A of
Burkholderia cenocepacia P-LPS enhanced binding efficacy of
lipid A to TLR4-MD-2 complex. This might initiate strong
activation, despite the lipid A moiety having only five acyl
chains (Di Lorenzo et al., 2015). The engineering of lipid A of
P-LPS in a human pathogen B. pertussis for better control of P-
LPS-TLR4 activity is also described. Glucosamine is added into
lipid A moiety, leading to promote TLR4 activation in human
macrophages. In parallel, site-directed mutagenesis together with
a NF-kB reporter assay are also used to screen TLR4 and MD-2
mutants with changed amino acid residues that change species-
specific responses. Results indicate that some uncharged amino
acids in both TLR4 and MD-2 are involved in recognition of
penta-acylated B. pertussis lipid A (Maeshima et al., 2015). These
amino acids may be considered as research targets for optimizing
P-LPS-TLR4 interaction and activation activity.

Besides lipid A, engineering of O-antigen may also be taken
into consideration. Oral or intradermal administration of LPS
derived from the bacterium Pantoea agglomerans, a bacterium
that grows symbiotically in wheat, produce prophylactic and
anti-tumor effects, even though no serious side-effects are
identified. The main LPS structural difference that involves
such biological effects lies in the structure of the O-antigen
polysaccharides (Nishizawa et al., 1992). On the other hand,
O-antigen defective LPS derived from certain E. coli strains may
April 2020 | Volume 11 | Article 554
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be anti-inflammatory. For example, the probiotic E. coli strain
Nissle 1917 given orally to mice exert local and systemic anti-
inflammatory effects in a model of LPS-induced sepsis (Arribas
et al., 2009). Further analysis show that this strain has a defective
LPS biosynthesis pathway that results in production of truncated
variable oligosaccharide-antigen chains and gives the bacteria a
semi-rough phenotype. Such characteristic may contribute to the
probiotic properties of the E. coli strain (Guttsches et al., 2012).
Another example is the E. coli K-12 strain, which shows a
defective O-antigen structure, can be converted into a
pathogen of Caenorhabditis elegans upon restoration of its O
antigen structure (Browning et al., 2013). Further studies are
ongoing to study how engineered LPS with different structures
and components can be exploited to generate a spectrum of
immuno-stimulatory molecules for the development of new
adjuvants of vaccines and therapeutics (Needham et al., 2013).
FUTURE PERSPECTIVES

Microbiome derived-LPS play important roles in immune
modulation and development of inflammatory diseases (Lin et
al., 2016). LPS comprise of chemical molecules of very
complicated components, though their basic constructions are
similar. In concordance, LPS prepared from different bacterial
species and strains produce gradient immune-modulation effects
on host cells. Intriguingly, dualism that represents two abstract
and complementary regulatory effect in LPS seems to exist, after
identification and characterization of A-LPS. As counteracting
activity exists between A- and P-LPS, engineering LPS structure
and composition, or deploying relative LPS ratios may be used to
either enhance or inhibit their activities on immunity and
inflammation. Therefore, bacterial original or synthesized LPS
may be used to modulate the immune response as a preventive or
Frontiers in Pharmacology | www.frontiersin.org 7
therapeutic measure for the management of chronic
inflammation related diseases. Some difficulties and challenges
are expected, especially on how to obtain optimal LPS species or
determine relative compositions of A- and P-LPS for potential
clinical applications. To circumvent the difficulties, use of
modern techniques is proposed. A high-throughput
experimentation workflow platform for rapidly and efficiently
measuring cytokines, together with high efficacy chemical
synthesis pipelines should be established to accelerate the
optimization from laboratory-scale discovery to large-scale
screening. In parallel, complementary artificial intelligence
approaches are just coming into focus.
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