
Frontiers in Pharmacology | www.frontiers

Edited by:
Katrin Sak,

NGO Praeventio, Estonia

Reviewed by:
Frederick E. Williams,

University of Toledo, United States
Marco Falasca,

Curtin University, Australia

*Correspondence:
Carmela Fimognari

carmela.fimognari@unibo.it

Specialty section:
This article was submitted to

Pharmacology of Anti-Cancer Drugs,
a section of the journal

Frontiers in Pharmacology

Received: 22 December 2019
Accepted: 14 April 2020
Published: 01 May 2020

Citation:
Calcabrini C, Maffei F, Turrini E and
Fimognari C (2020) Sulforaphane
Potentiates Anticancer Effects of
Doxorubicin and Cisplatin and
Mitigates Their Toxic Effects.
Front. Pharmacol. 11:567.

doi: 10.3389/fphar.2020.00567

MINI REVIEW
published: 01 May 2020

doi: 10.3389/fphar.2020.00567
Sulforaphane Potentiates Anticancer
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and Mitigates Their Toxic Effects
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Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, Italy

The success of cancer therapy is often compromised by the narrow therapeutic index of
many anticancer drugs and the occurrence of drug resistance. The association of
anticancer therapies with natural compounds is an emerging strategy to improve the
pharmaco-toxicological profile of cancer chemotherapy. Sulforaphane, a phytochemical
found in cruciferous vegetables, targets multiple pathways involved in cancer
development, as recorded in different cancers such as breast, brain, blood, colon, lung,
prostate, and so forth. As examples to make the potentialities of the association
chemotherapy raise, here we highlight and critically analyze the information available for
two associations, each composed by a paradigmatic anticancer drug (cisplatin or
doxorubicin) and sulforaphane.
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INTRODUCTION

A promising strategy to improve the efficacy of anticancer therapy is the association of
chemotherapeutic drugs with natural compounds (Farzaei et al., 2016; Negrette-Guzman, 2019).
Indeed, in tumor tissues, phytochemicasl may interact with multiple molecular targets and
potentiate the efficacy of traditional anticancer drugs. Moreover, they might exert a protective
role against side effects caused by chemotherapeutic agents on off-target tissues.

Sulforaphane (SFN) is a natural isothiocyanate extensively studied for its pleiotropic activity on
different cancer models. SFN has been found to exhibit cytotoxic and cytostatic activities through
several mechanisms. The production of reactive oxygen species (ROS) is one of the most important.
SFN-induced ROS generation promotes the activation of both intrinsic and extrinsic apoptotic
pathways. SFN can also cause cell-cycle arrest in tumor cells, partly dependent on the modulation of
epigenetic mechanisms including histone acetylation and DNA methylation (Brioness-Herrera
et al., 2018). Its activity has been reported even in the most advanced stages of cancer development,
where it inhibits pathways involved in metastasis and angiogenesis (Sestili and Fimognari, 2015;
Negrette-Guzman, 2019). A very recent study reported that the anticancer activity of SFN involves
microRNAs (miRNAs) regulation. miRNAs are post-transcriptional regulators of genes implicated
in critical cellular pathways, including apoptosis, cell cycle, and cell differentiation (Rafiei
et al., 2020).

A peculiar characteristic of SFN is its ability to exert dichotomous effects. Indeed, SFN is also an
indirect ROS scavenger: it up-regulates phase II biotransformation enzymes by enhancing Nuclear
factor E2-related factor 2 (Nrf2) activity. SFN disrupts the link between Nrf2 and its suppressor
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Kelch-like ECH-associated protein 1 (Keap1) and promotes the
cytoplasmic and nuclear accumulation of Nrf2 (Briones-Herrera
et al., 2018). In the nucleus, Nrf2 acts as a transcription activator
for DNA sequences known as antioxidant response elements
(ARE). SFN via Nrf2 increases the expression of some ARE-
target genes including NADPH-quinone oxidoreductase 1
(NQO1), heme-oxygenase (HO-1), and glutamate-cysteine
ligase catalytic subunit (GCLC).

In this mini-review, we highlight and critically analyze the
available evidence on the anticancer and cytoprotective effects of
SFN in association with two paradigmatic anticancer drugs, i.e.,
doxorubicin (Doxo) and cisplatin (CIS).
SFN AND DOXO ASSOCIATION

SFN Enhances the Anticancer Efficacy
of Doxo
The anthracycline Doxo induces DNA damage through different
mechanisms such as topoisomerase II inhibition, generation of
ROS, and DNA adduct formation. Doxo undergoes bioreductive
activation by redox-cycling reactions, forming a reactive
semiquinone. The semiquinone radical intercalates in DNA
duplex and generates ROS. ROS increase DNA damage
Frontiers in Pharmacology | www.frontiersin.org 2
resulting in cytotoxic and cytostatic events (Agudelo et al.,
2014). Of note, the generation of ROS is a double-edged
sword. It is the key mechanism through which Doxo induces
tumor cell death but, at the same time, it may contribute to Doxo
toxicity (Angsutararux et al., 2015; Karasawa and Steyger, 2015)
and prompt signals leading cancer cells to escape apoptosis
(Alimbetov et al., 2018).

In combination with Doxo, SFN increased its proapoptotic
activity in different cell lines (Fimognari et al., 2012; Bose et al.,
2018; Mielczarek et al., 2019) (Figure 1). Furthermore, SFN
reverted Doxo-resistant phenotype in p53-mutated cells,
inducing apoptosis irrespective of p53 status (Fimognari et al.,
2006; Fimognari et al., 2007). SFN potentiated also the RNA-
damaging activity of Doxo, increasing its proapoptotic potential
(Fimognari et al., 2012). Besides, SFN improved the sensitivity to
Doxo by inducing autophagy via epigenetic mechanisms. In
particular, SFN suppressed histone deacetylase HDAC6 that in
turn activates PTEN (phosphatase and tensin homolog), a tumor
suppressor gene and key regulator of autophagy (Yang F, et al.,
2018). However, in certain cancer cell lines, SFN showed a
hormetic biphasic response. At low doses, it reduced Doxo-
induced oxidative stress, but at higher doses it exhibited
synergistic effects and promoted DNA damage (Zanichelli
et al., 2012) (Figure 1).
FIGURE 1 | Chemosensitization and cardioprotection of sulforaphane (SFN) in association with doxorubicin (Doxo).
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Some anticancer drugs can lose their efficacy in a hypoxic
cancer microenvironment (Muz et al., 2015). The master genes
orchestrating molecular response to hypoxia are HIF1a
(hypoxia-inducible factor 1a) and its downstream targets, such
as carbonic anhydrase protein IX (CA IX). CA IX protein
protects from pH imbalance provoked by hypoxia and
facilitates invasion and migration of tumor cells (Tafreshi
et al., 2014). SFN down-regulated the expression of HIF1a and
CA IX proteins in ovarian cancer cells cultivated in hypoxia and
reduced their migration (Pastorek et al., 2015) (Figure 1). Since
HIF1a was found to be upregulated in tumor cells after Doxo
treatment (Cao et al., 2013), the down-regulation of HIF1a by
SFN could represent a relevant mechanism to enhance Doxo
efficacy in cancer cells.

However, conflicting data on the effects of SFN when used in
association with Doxo impose caution. Rizzo and coworkers
showed that SFN can decrease Doxo's antitumor potential
depending on the specific redox status of the cell line (Rizzo
et al., 2017). SFN sensitized cells characterized by high basal Nrf2
expression to Doxo, whereas it reduced Doxo's anticancer effects
in cells with very low Nrf2 basal levels (Hu et al., 2010)
(Figure 1). Thus, the effects of SFN+Doxo may depend on the
Nrf2 basal level of tumor cell type. Of note, most of the data on
SFN+Doxo effects was obtained by in vitro studies. Evidence has
started to accrue in vivo (Figure 1) and confirmed the synergistic
effect of the association. The association of SFN could thus allow
the use of lower doses of Doxo and a reduction of its adverse
effects. Accordingly, Bose and coworkers demonstrated that the
effective dosage of Doxo could be lowered by 50% in
combination with SFN (Bose et al., 2018). Altogether, data on
SFN-Doxo association are promising, but not conclusive.

SFN Mitigates Doxo-Induced
Cardiotoxicity
The most common adverse effect in patients receiving Doxo-
based chemotherapy is cardiotoxicity. The mechanism of Doxo
cardiotoxicity is multifactorial. It includes ROS-mediated
myocardium injury, impaired mitochondrial function,
cardiomyocyte apoptosis, and dysregulation of Ca2+

homeostasis. All together these events lead to an increased rate
of heart failure (Bai et al., 2017; Tomlinson et al., 2019).

Several in vitro studies showed the cardioprotective effects of
SFN after pre- or co-treatment with Doxo (Figure 1). SFN
contrasted Doxo-induced oxidative stress and cardiomyocytes'
death. In particular, SFN prevented apoptosis inhibiting: i) the
activation of Bax protein, ii) the release of cytochrome c, iii) the
activation of caspase-3, iv) the loss of mitochondrial
transmembrane potential , and v) the generation of
mitochondrial ROS (Li et al., 2015; Singh et al., 2015). SFN
cardioprotection was mediated by Nrf2 activation and the
subsequent induction of phase II enzymes, such as HO-1 (Li
et al., 2015). Interestingly, Tomlison and colleagues confirmed
the pivotal role of Nrf2 in a 3D model exhibiting key features of
cardiac tissue (Figure 1). Using this model, inducers of Nrf2,
including SFN, exploited cardioprotective activity similar to
dexrazoxane, used in patients receiving high cumulative dose
Frontiers in Pharmacology | www.frontiersin.org 3
of anthracyclines (McGowan et al., 2017). Similarly, SFN
counteracted oxidative damage and heart failure induced by
Doxo in vivo (Figure 1). In particular, SFN activated cardiac
Nrf2 and upregulated its downstream targets, including genes
involved in glutathione (GSH) synthesis, HO-1, and NQO1
(Singh et al., 2015; Bai et al., 2017; Bose et al., 2018). The
reduction of Doxo-induced myocardial injury markers, such as
creatine kinase-MB, aspartate aminotransferase, lactate
dehydrogenase, and troponin I, further support the
cardioprotective activity of SFN (Singh et al., 2015; Bai
et al., 2017).

Doxo strongly compromised mitochondrial activity, due to its
conversion by the mitochondrial complex I of the electron
transport chain (ETC) into the more reactive semiquinone
(Bose et al., 2018). SFN preserved ETC functionality and
mitochondria ultrastructure of cardiac cells from oxidative
stress damage in Doxo-treated animal models (Singh et al.,
2015; Bose et al., 2018).

Fibrosis and inflammation can contribute to heart stiffness
and dysfunction. SFN prevented Doxo-induced cardiac fibrosis
inhibiting cardiac collagen accumulation and contrasting the up-
regulation of connective tissue growth factors induced by Doxo
(Bai et al., 2017). Moreover, it decreased Doxo-induced
inflammatory heart markers, such as plasminogen activator
inhibitor-1 (Bai et al., 2017) and serum levels of IL-6 and
TNF-a (tumor necrosis factor-a) (Bose et al., 2018).

Finally, SFN led to an increased survival rate in animals co-
treated with SFN+Doxo compared to those treated with Doxo
(85% reduction in rats and 90% reduction in mice in hazard of
dying from Doxo exposure) (Singh et al., 2015; Bose et al., 2018).
This evidence is mainly imputable to the preservation of heart
functionality (measured by ejection fraction, fractional
shortening, and stroke volume) mediated by SFN.

On the whole, in vitro mechanistic studies and in vivo results
univocally outline SFN as a promising molecule to prevent
Doxo-induced cardiotoxicity.
SFN AND CIS ASSOCIATION

SFN Enhances the Anticancer Efficacy
of CIS
CIS is a platinum derivative used for both solid and liquid cancer
treatment (Volarevic et al., 2019). Its anticancer activity is due to
multiple mechanisms involving binding to genomic or
mitochondrial DNA to generate DNA damage and interfering
with DNA repair systems, eventually leading to activation of p53
and induction of apoptosis. CIS-induced DNA damage is also
due to its ability to generate ROS (Ghosh, 2019). Thus,
compounds able to increase ROS or DNA damage could
enhance CIS anticancer effects.

Many studies reported that SFN synergizes with CIS in
counteracting cancer development (Figure 2). SFN enhanced
CIS-induced DNA damage and apoptosis in many cancer cell
lines (Hunakova et al., 2014; Lan et al., 2017; Lee and Lee, 2017;
Elkashty et al., 2018; Kan et al., 2018; Xu et al., 2019). In most of
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them apoptosis occurred via p53 and caspases activation. Few
studies, however, deepened the mechanisms involved in those
effects. The SFN's ability to inhibit DNA repair (Piberger et al.,
2014) or to transiently depletes GSH (Pappa et al., 2007)
represent two candidate mechanisms. In particular, GSH
depletion lowered the inactivation/excretion of CIS that occurs
mainly via conjugation with GSH or metallothioneins (Ghosh,
2019). Accordingly, a nanoparticle delivery system containing
SFN plus CIS decreased GSH levels and enhanced the
intracellular levels of CIS (Xu et al., 2019). Since GSH
depletion deprives cells of one of the most important defenses
against oxidative stress, a possible consequence could be an
increase in ROS and an enhanced CIS-induced DNA damage.
The role of ROS generation on the cytotoxicity of SFN+CIS was
defined pre-treating cancer cells with N-acetylcysteine (NAC), a
GSH precursor. NAC prevented ROS generation, activation of
the mitochondrial apoptotic pathway as well as cell-cycle arrest
and autophagy induced by SFN+CIS (Lee and Lee, 2017).
Similarly, NAC abrogated the antitumor activity of SFN+CIS
nanoparticles in vivo (Xu et al., 2019) (Figure 2).
Frontiers in Pharmacology | www.frontiersin.org 4
Interestingly, SFN can increase the cytotoxicity of CIS also
through mechanisms different from DNA damage. The
association reduced the CIS-induced overexpression of
antiapoptotic proteins such as Bcl2 (Rackauskas et al., 2017)
(Figure 2), an event involved in the onset of chemoresistance
(Galluzzi et al., 2012).

Another mechanism of CIS chemoresistance is the formation
of cancer stem cells (CSC) (Wang et al., 2016). Both in in vitro
and in vivomodels, CIS-resistant cells overexpress b-catenin and
c-Myc proteins, which are involved in CSC self-renewal (Li et al.,
2017). CIS+SFN reduced the CSC population and inhibited their
stem-like cell properties and viability in many cancer cells
(Kallifaditisis et al., 2011; Wang et al., 2016; Li et al., 2017)
(Figure 2). SFN reduced the activation of b-catenin/c-Myc
pathway through the up-regulation of miR-214, a negative
post-translational regulator of both c-Myc and b-catenin (Li
et al., 2017). Through the up-regulation of one more miRNA, i.e.,
miR-124 targeting the IL-6 receptor gene (Xiao et al., 2015), SFN
counteracted CIS-activation of IL-6/STAT3 pathway, which
seems to be involved in CIS-induced expansion of CSC cells
FIGURE 2 | Chemosensitization and nephroprotection of sulforaphane (SFN) in association with cisplatin (CIS).
May 2020 | Volume 11 | Article 567
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(Wang et al., 2016). STAT3 signaling is also activated by c-Myb, a
protein associatedwithCIS resistance andCSC self-renewal (Zhang
et al., 2012). SFN reverted c-Myb-induced cancer cell proliferation
and invasion and sensitized cells to CIS (Tian et al., 2019).

In summary, many reports disclose the ability of SFN to
enhance CIS ' s ant i cancer ac t iv i ty and counterac t
chemoresistance, although there are some exceptions. As an
example, SFN did not enhance CIS's cytotoxicity in a lung cancer
cell line. Tubulin-binding drugs are widely used with CIS to
enhance its cytotoxicity in non-small cell lung cancer. SFN, if
compared with other isothiocyanates, weakly depletes b-tubulin
levels (Di Pasqua et al., 2010). This evidence could explain its lack of
activity in those cells. Besides, SFN exhibited a controversial role in
two ovarian cancer cell lines: it synergized with CIS in A2780 cells
and antagonizedCIS effects in SKOV3 cells (Hunakova et al., 2014).
A2780 cells have aweakly efficientNrf2 pathway and cannot restore
the depletion of GSH induced by SFN. Thus, the association
significantly increased DNA damage and apoptosis compared to
CIS alone. Conversely, SKOV3 cells have a highly efficient Nrf2
pathway. Thus, SFN-induced activation of the Nrf-2 pathway
protected SKOV3 cells from the cytotoxicity of CIS instead of
sensitizing them to CIS (Hunakova et al., 2014).

SFN Mitigates CIS-Induced Nephrotoxicity
CIS therapy causes nephrotoxicity in 30–40% of patients
(Volarevic et al., 2019). The mechanism behind the onset of
nephrotoxicity is particularly complex and involves multiple
mechanisms, including ROS generation, mitochondrial
dysfunction, apoptosis, necrosis, and autophagy of renal cells.
Moreover, inflammation exacerbates these processes (Holditch
et al., 2019).

ROS generation and mitochondrial dysfunction represent the
earliest events in CIS-induced nephrotoxicity. SFN reduced CIS-
induced ROS generation in vitro. It increased GSH pool and
antioxidant enzyme activity, and reduced markers of nitrosative
and oxidative stress. Accordingly, SFN ameliorated cellular,
plasma, kidney, and liver oxidative status (Guerrero-Beltran
et al., 2010a; Guerrero-Beltran et al., 2010b; Atilano-Roque
et al., 2016) (Figure 2). Furthermore, SFN improved renal
histopathology and physiological functions in rats treated with
CIS (Guerrero-Beltran et al., 2010a; Guerrero-Beltran et al.,
2010b). SFN antioxidant activity takes place through the Nrf2
pathway. Treatment with SFN before CIS exposure activated the
Nrf2 pathway and its target genes (i.e., GCLC and NQO1) and
protected from CIS-induced renal cell injury (Guerrero-Beltran
et al., 2010a; Atilano-Roque et al., 2016). The inhibition of GCLC
and NQO1 nullified nephroprotection (Guerrero-Beltran et al.,
2010a). This finding clearly points out the close link between the
SFN-protective effect and its ability to activate the Nrf2 pathway.

CIS accumulates in mitochondria (Dzamitika et al., 2006) and
depletes GSH levels, thus increasing mitochondrial oxidative
stress and damage to complex I (Guerrero-Beltran et al.,
2010a). ROS exacerbate complex I damage and activate several
pathways involved in apoptosis or inflammation (Sharma et al.,
2009). SFN prevented CIS-induced alterations of mitochondrial
functionality in rat kidney (Guerrero-Beltran et al., 2010a) and
counteracted the pathways activated by ROS in CIS-induced
Frontiers in Pharmacology | www.frontiersin.org 5
kidney damage (Guerrero-Beltran et al., 2012). In particular, SFN
increased pro-survival ERK (extracellular signal-regulated
kinase) and antiapoptotic p38b mitogen-activated protein
kinase, and decreased the proapoptotic Jun N-terminal kinase
(JNK) and p38a pathways. SFN was also able to decrease TNF-a,
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB), adhesive molecule expression, and leukocytes and
macrophage recruitment into renal tissue and reduce kidney
inflammation (Guerrero-Beltran et al., 2012) (Figure 2).

These findings highlight the pivotal role of oxidative stress in
CIS toxicity and the ability of SFN of counteracting these events
through its antioxidant properties.
CONCLUSIONS

Pre-clinical existing data highlight that SFN enhances the
anticancer activity of Doxo and CIS and counteracts the off-target
toxicity through multiple mechanisms. In particular, SFN strongly
activates the Nrf2 antioxidant signaling pathway. This evidence
could have clinically relevant implications for cancer therapy as
Nrf2 activation in cancer cells may contribute to the onset of either
chemosensitisation or chemoresistance (Bai et al., 2016; Catanzaro
et al., 2017). Most anticancer drugs amplify ROS levels in cancer
cells over a threshold to induce cell death and tumor regression.
Anthracyclinesproduce thehighest levelsof cellularROS; alkylating
drugs, platinum-based drugs, camptothecins, arsenic-based drugs,
and topoisomerase inhibitors generate high levels of ROS; taxanes,
Vinca alkaloids, nucleotide analogues, and antimetabolites induce
lower levels of ROS (YangH, et al., 2018). Thismeans that the effect
of SFN when used in association with anticancer therapy could be
not easily predicted, and indeed, evenwith the two anticancer drugs
included in our review, the effects of SFN are sometimes discordant,
as reported above.

In addition, it is well known that cancer cells are not
homogeneous. Reprogramming of cancer cells impacts on
disease's progression and contributes to their heterogeneity
(Milkovic et al., 2017). As an example, in later stages of cancer,
Nrf2 and Keap1 are mutated and Nrf2 activity increased. This
means that inhibitors of Nrf2 could be better than activators of
Nrf2 in the later stages of the disease. Thus, cancer stage should
be taken into account for the usage of specific Nrf2 activators or
inhibitors during cancer therapy.

Of note, Nrf2 modulation was observed in women orally
treated with a broccoli sprout preparation containing 200 µmol
of SFN/g. In their breast tissues, increased NQO1 and HO-1
transcripts and NQO1 enzymatic activity have been found
(Cornblatt et al., 2007). A phase-II clinical trial is actually
recruiting patients with the aims to investigate the ability of
SFN-rich broccoli sprout extracts to (i) enhance Doxo anticancer
effects on women with breast cancer undergoing neoadjuvant
chemotherapy, with no prior cardiac disease and who will receive
Doxo without Her-2 receptor antagonists as part of their clinical
care, (ii) protect from Doxo-associated cardiac dysfunction, and
(iii) explore the role of Nrf2 in this association therapy
(ClinicalTrial.gov identifier: NCT03934905, 2019). This
interventional study will certainly contribute to define the role
May 2020 | Volume 11 | Article 567
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of Nrf2 modulation in the efficacy and safety of SFN when
associated with traditional anticancer therapies.

Concerning the safety profile of SFN in association with
anticancer drugs, SFN prevented changes in animal body
weight caused by either Doxo or CIS (Singh et al., 2015; Kerr
et al., 2018; Chen et al., 2019). However, a recent study recorded
hematic signs of possible myelosuppression and hepatotoxicity
in animals exposed to CIS+SFN. Interestingly, these side effects
became negligible when drugs were delivered in nanoparticles
(Xu et al., 2019), a formulation improving the release of drugs in
tumor cells. Thus, a controlled delivery system may enhance
chemotherapy efficacy and reduce systemic toxicity of SFN+CIS.
Frontiers in Pharmacology | www.frontiersin.org 6
Last but not least, the stability and bioavailability of SFN may
influence its chemosensitizing/chemoprotective effects. Thus, the
pharmacokinetics of SFN in association with anticancer drugs
should be addressed to fully understand its clinical potential in
the oncological field.
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