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Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by
impairments in social communication and restricted and repetitive behaviors and
interests. Identifying the genetic background may be one of the key features for the
future diagnosis and treatment of ASD. With the tremendous development in genetic
diagnosis techniques, next-generation sequencing (NGS) can be used to analyze multiple
genes simultaneously with a single test in laboratory and clinical settings and is well suited
for investigating autism genetics. According to previous studies, there are two types of
genetic variants in ASD, rare variants and common variants, and both are important in
explaining pathogenesis. In this study, NGS data from 137 participants with ASD were
reviewed retrospectively with consideration for comorbid epilepsy. Diagnostic yield was
17.51% (24/137), and pathogenic/likely pathogenic variants were seen more frequently in
female participants. Fourteen participants were diagnosed with comorbid epilepsy, six of
them had pathogenic/likely pathogenic variants (43%). Genes with variants of unknown
significance (VOUS) which have one or more evidence of pathogenicity following the
American College of Medical Genetics (ACMG) criteria were also reviewed in both ASD
and ASD with comorbid epilepsy groups. We found that most frequently found VOUS
genes have previously been reported as genes related to ASD or other developmental
disorders. These results suggest that when interpreting the NGS results in the clinical
setting, careful observation of VOUS with some pathological evidence might contribute to
the discovery of genetic pathogenesis of neurodevelopmental disorders such as ASD
and epilepsy.
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INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder with core symptoms of persistent deficits in social
communication and restricted, repetitive patterns of behavior,
interests, or activities (APA, 2013). According to recent reports,
ASD no longer seems to be a rare disease; the overall prevalence
is 16.8 per 1,000 children aged 8 years, with overall male-to-
female ratio of 4:1 in the United States (Baio et al., 2018). Autism
spectrum disorder is not simply a disorder but a significant social
problem because the annual costs for ASD patients are
tremendous (Lavelle et al., 2014). Costs may include medical
and nonmedical costs and indirect costs such as parental
productivity loss (Buescher et al., 2014). Accurate diagnosis
and treatment guidance might substantially impact treatment
of the disorder and reduce annual costs.

Autism spectrum disorder is associated with various
coexisting factors including those related to genetics, the
prenatal environmental, and the postnatal environmental (Lord
et al., 2018). While knowledge about the neurobiological basis of
ASD is still insufficient, genetic factors are regarded as crucial
components according to previous studies (Rosenberg et al.,
2009; Hallmayer et al., 2011). Studies of monozygotic twin
concordance and sibling recurrence rates clearly reveal that
genetic factors play important roles in the development of
ASD (Geschwind, 2011; Sandin et al., 2014; Tick et al., 2016).
In this context, identifying the genetic background of each ASD
patient could be the ‘cornerstone’ of proper diagnosis and
individualized treatment. In general, genetic diagnosis has the
benefits of informing prognoses and preventing further
superfluous invasive testing, leading to tailored treatment and
family counseling (Han et al., 2018). In particular, genetic testing
may be a key component in the development of precision
medicine, in hope of predicting treatment outcomes on an
individual basis. Tools for genetic analyses are rapidly
developing and the collection of genetic information is
accelerating tremendously (Geschwind and State, 2015; Loth
et al., 2016).

However, there are inevitable obstacles to defining a genetic
basis of ASD. First, the majority of ASD cases cannot be
explained by a single gene mutation. Previous reports have
indicated that only 10% of ASD cases originate from a rare
variant in a single gene (Persico and Napolioni, 2013). Moreover,
ASD can occur as a result of a combination of common variants
(Gaugler et al., 2014). The fact that common variants are not
causal for disease makes it harder for researchers to define their
clinical importance (Geschwind, 2011; Persico and Napolioni,
2013). Second, several characteristics of autism genetics, such as
an extremely heterogeneous genetic contribution, many different
loci underlying disease, variable phenotypic expression, and lack
of specificity make it difficult to understand the neuropathology
of the condition (Persico and Napolioni, 2013). Solving
heterogeneity may be the most important future task for
ASD researchers.

It is clear that traditional candidate gene studies are not suited
to investigate common gene variants. As next-generation
Frontiers in Pharmacology | www.frontiersin.org 2
sequencing (NGS) technologies developed, whole exome
sequencing (WES) was used to identify diverse genetic
variants, including common variants in ASD (Sanders et al.,
2012; Persico and Napolioni, 2013). The use of NGS, with its
ability to simultaneously analyze multiple genes (in case of WES)
in a single test, is currently being established in clinics and
laboratories (Yohe and Thyagarajan, 2017).

From a genetic perspective, an ASD patient should be
monitored for comorbid epilepsy because ASD and epilepsy
are known to share genetic backgrounds, which may be related
to neuropathophysiology during brain development (Tuchman
and Rapin, 2002; Tuchman and Cuccaro, 2011). Autism
spectrum disorder patients with rare gene variants related to
genetic syndromes such as Rett’s syndrome, are strongly
suspected to have comorbid epilepsy (Canitano, 2007).
Previous studies show that epilepsy in ASD is highly related to
intellectual disability (ID) (Amiet et al., 2008) and associated
with severity of ASD (Ko et al., 2016). To reveal the genetic
background of neurodevelopment, examining the discriminative
characteristics of genetic components of ASD with epilepsy and
ID and comparing them with ASD with no comorbidities is
essential. To investigate genetic variants associated with ASD
and ASD with comorbid epilepsy, we planned a retrospective
review of the medical records and NGS data of ASD patients.
MATERIALS AND METHODS

Participants
We reviewed medical records of ASD patients who underwent
NGS for genetic evaluation, who visited a specialist in an out-
patient clinic for autism at the Severance Children’s Hospital,
from January 1, 2016. In clinical settings, we recommend NGS to
parents when patients show severe autistic symptoms,
morphological problems, or other medical or neurological
comorbidities. Data from 141 patients were collected, and four
patients among them were excluded due to lack of clinical
assessment and follow-ups which are vital for diagnosing ASD.
One hundred and thirty-seven enrolled participants were
clinically diagnosed as ASD by a specialized psychiatrist on the
basis of diagnostic criteria suggested in DSM-5, and several
clinical assessments (see Clinical Assessments) support the
diagnosis. As data were reviewed retrospectively and it was
impossible to fulfill assessments not performed in the clinical
setting, there were missing scores for Intelligence-Quotient (IQ),
the Social Responsiveness Scale (SRS), and the Social
Communication Questionnaire (SCQ), in several participants.
We examined not only NGS and clinical assessment data, but
also checked for comorbid epilepsy and other comorbidities,
history of seizure, and electroencephalogram (EEG) reports. For
the cases with comorbid epilepsy, we followed the diagnostic
decision of neurologists in the Severance Children’s Hospital.
This study was approved by the applicable institutional Review
Boards for research with human subjects at Severance Hospital,
Yonsei University College of Medicine, where this study
was performed.
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Clinical Assessments
All participants had a previous clinical diagnosis of ASD by a
specialized child psychiatrist. The diagnosis of ASD was
established using Autism Diagnostic Interview-Revised (ADI-R)
and Autism Diagnostic Observation Schedule (ADOS), the gold
standard for ASD diagnosis. Clinical autistic characteristics of the
participants were supplemented by the CARS, SRS and SCQ.

The Childhood Autism Rating Scale (CARS) is a 15-item
behavioral rating scale, developed to distinguish ASD and other
developmental disorders and to assess the severity of ASD. Each
item is scored from one to four points, and midpoint scores are
also possible. Higher scores indicate more severe ASD
symptoms. The cut-off score, which distinguishes ASD from
other developmental disorders, is 30 points (Amiet et al., 2008).
The reliability and validity of the Korean version of CARS (K-
CARS) have been verified (Shin and Kim, 1998).

The SRS is a 65-item questionnaire that asks parents and/or
teachers about the characteristics of the social interactions shown
by children over the past 6 months (Constantino et al., 2000).
Each question is scored from zero to three points, depending on
the frequency of the action described in each item. Higher scores
mean a lower social function. We previously confirmed the
clinical validity of the SRS in Korean children and provided
the Korean T-score norm (Cheon et al., 2016). In the present
study, we used total T-score of the participants.

The SCQ is a 40-item screening instrument that is based on
ADI-R, a tool for more in-depth assessment of ASD symptoms,
and selects key items that deviate from normal development
(Chandler et al., 2007). The Korean version of the Social
Communication Questionnaire (K-SCQ) was verified as a
reliable and valid instrument for screening autistic symptoms
in the Korean population (Kim et al., 2015). Each question is
answered with yes or no. Higher scores indicate more severe
symptoms associated with ASD.

The ADI-R is a semi-structured parent interview tool for
parents of children aged 2 years and older (Lord et al., 1994).
This is generally conducted in conjunction with ADOS, which
directly monitors and assesses the child, and is used to
complement the interpretation of results (Lord et al., 2000).

To assess the cognitive levels of participants, we used the
Korean-Wechsler Intelligence Scale for Children-IV (K-WISC-
IV) and the Korean Wechsler Preschool and Primary Scales of
Intelligence-IV (K-WPPSI-IV). We also used Korean-Bayley-III
for children who were unable to perform the Wechsler’s
intelligence scales because of their age or development status.

Next-Generation Sequencing
The xGen Inherited Diseases Panel (Integrated DNA
Technologies, Coralville, IA, USA) including 4,503 candidate
genes was used for exome sequencing. Genes associated with
various neurodevelopmental disorders such as ASD, epilepsy,
seizure disorder, and X-linked ID are included in this panel.

Genomic DNA extracted from individuals’ samples was used
for library preparation and target capture using a custom panel
targeting candidate genes. Massively parallel sequencing was
performed using the NextSeq 550Dx System (Illumina, San
Frontiers in Pharmacology | www.frontiersin.org 3
Diego, CA, USA). Quality control and sequence analysis was
carried out using our custom analysis pipeline. Copy number
analysis was carried out using our custom analysis pipeline (Kim
et al., 2019). The GRCh37 (hg19) build was used as the reference
sequence for mapping and variant calling while using Burrows-
Whee le r a l ignment (BWA) too l (ver s ion 0 .7 .12) .
HaplotypeCaller and MuTect2 in the GATK package (3.8-0)
and VarScan2 (2.4.0) were used to identify single nucleotide
variations (SNV) and insertion and deletions (indels). Databases
used for analyses and variant annotation include Online
Mendelian Inheritance in Man (OMIM), the Human Gene
Mutation Database (HGMD), Clinvar, dbSNP, 1000 Genomes,
the Exome Aggregation Consortium (ExAC), the Exome
Sequencing Project (ESP), and the Korean Reference Genome
Database (KRGDB). Classification of variants followed the
standards and guidelines established by the American College
of Medical Genetics (ACMG) (Richards et al., 2015), with a
scoring algorithm implemented in the DxSeq Analyzer (Dxome,
Seoul, Korea). All pathogenic and likely pathogenic variants were
further confirmed by Sanger sequencing.

Genetic variants that are not met for pathogenic/likely
pathogenic nor benign/likely benign are classified as variants of
unknown/uncertain significance (VOUS) according to the
ACMG guideline. Benign and likely benign variants were
excluded in our NGS clinical reports. If VOUS had one or
more evidence of pathogenicity but unmet criteria for
pathogenic/likely pathogenic, they were regarded as VOUS
with a relatively high probability of pathogenicity. The VOUS
with high probability of pathogenicity were selected by
physicians in laboratory medicine referencing the criteria on
evidence of pathogenicity in the ACMG guideline. Among
VOUS with high probability of pathogenicity, we selected five
or less variants for analysis.

Statistics
To compare demographic characteristics and results of clinical
assessments between patients with and those without
pathogenic/likely pathogenic variants, we used the Chi-squared
test and the independent t-test. Statistical significance was
defined at p < 0.05. Analyses were performed using the
Statistical Package for the Social Sciences software (version
25.0; SPSS Inc., Chicago, IL, USA).
RESULTS

Among 137 patients, only three patients showed no pathogenic/
likely pathogenic variants nor VOUS according to our NGS
clinical reports. Seven cases were identified with pathogenic
variants, and 17 participants had likely pathogenic variants.
The diagnostic yield acquired from the total NGS data was
about 17.51% (24/137). Differences in demographic
information and clinical assessment results are presented in
Table 1. The proportion of females to males was significantly
higher in the pathogenic/likely pathogenic variants group
(62.5%, p = 0.006). The pathogenic/likely pathogenic variants
May 2020 | Volume 11 | Article 585
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group was associated with higher incidence of comorbid epilepsy
(25%, p = 0.008). There were no between-group differences in age
and clinical assessment scores (IQ, SRS T-score, SCQ, CARS).
Characteristics of epilepsy and reports of electroencephalogram
(EEG) in ASD with comorbid epilepsy were listed in
Supplementary Material 1.

By comparing males with females (Table 2), we found that
females appear to have higher scores for the SRS total T-score (p =
0.024) as well as frequently detected pathogenic/likely pathogenic
variants (p = 0.006). The CARS score was also slightly higher in
females (p = 0.045), while age and other scores (IQ, SCQ) showed
no significant statistical differences.

Genes that harbored pathogenic variants included SHANK3,
PTEN, NSD1, PAFAH1B1, and RAI1. Mutation types include exon
deletion and nonsense mutations. We also identified copy number
variants (CNV), chromosome 8p23.2 duplication, and chromosome
15q11.2–q13.2 duplication. These variants were expected to lead to
Frontiers in Pharmacology | www.frontiersin.org 4
loss of genetic function (Richards et al., 2015) which may play a role
in pathogenesis of disease. Genetic information from OMIM were
also described in Table 3. Among pathogenic variants, only
PAFAH1B1 was not previously reported to be related to
neurodevelopmental disorder including ASD, ID, and epilepsy.

Likely pathogenic variants showed various types of mutations
such as copy number variants, exon deletion, nonsense mutation
and missense mutation (Table 4). Both patients with variants in
TSC2 were diagnosed with tuberous sclerosis clinically. Likewise,
both patients with variants inMECP2 were diagnosed with Rett’s
syndrome in clinical setting. While most of genes are known to be
related to ASD, ID or epilepsy, ABCC2, CCDC50 and SLC26A4
were not reported to be related to neurodevelopmental disorder
according to OMIM. Likely pathogenic group showed
significantly lower SRS T-score compared to pathogenic group
(Supplementary Material 2).

Importantly, pathogenic or likely pathogenic gene variants
were found in approximately 43% (6/14) of participants with
comorbid epilepsy. 8p23.2 duplication was the only pathogenic
variant, and variations in Xp22.2p22.33 and the genes NLGN4X,
TSC2, MECP2, SYNGAP1, were classified as likely pathogenic.
Suspected genetic variants of each patient with comorbid
epilepsy were shown in Table 5. There was no significant
differences in IQ, SRS T-score, SCQ and CARS between
patients with pathogenic/likely pathogenic variants and with
VOUS (Supplementary Material 3).

All patients had 0 to 37 VOUS genetic variants, 11.45 variants
on average in our NGS clinical reports. There were several genes
commonly observed with various variations. TSC2, ADGRV1,
RAI1, CDH7, RELN, and NSD1 were the most commonly
reported genes with variants of unknown origin regardless of
mutation types. Genes with VOUS were repeatedly identified
about 1.8 times on average in our data, with standard deviation
of 1.79. Figure 1 shows the most frequently identified genes
presenting VOUS in our patients without considering the variant
type. More specifically, we also examined variants of unknown
significance, including types of mutation and locations of the
variants. As shown in Figure 2, an identical missense mutation
in the FOXP1 gene was found three times among 137 patients,
and other missense mutations were seen twice. These results
suggest that large portion of genes with VOUS were restricted to
missense mutation and have already been reported as genes
related to ASD according to OMIM and SFARI database.
DISCUSSION

Among 137 patients, only three patients showed no pathogenic,
likely pathogenic variants and VOUS. This might be because
patients who had severe symptoms or signs suggesting a genetic
etiology in the clinical setting underwent NGS. Severe symptoms
are usually related to genetic burden in ASD (Pizzo et al., 2019).

According to previous studies, diagnostic yields vary case by
case (Yang et al., 2014; Tammimies et al., 2015; Rossi et al., 2017).
Our yield of 17.51% may be within the predicted range, but the
remarkable differences between males and females are
concerning. The diagnostic yield of the female group was
TABLE 2 | Male–Female comparison.

Male Female p-value

Pathogenic/likely pathogenic variants 9 (10.6%) 15 (28.8%) 0.006
Age 61.93 60.52 0.792
IQ 53.48 52.24 0.616
SRS (total T-score) 82.86 93.91 0.024
SCQ 16.58 17.75 0.434
CARS 31.16 33.25 0.045
Comorbid ID 65 (76.5%) 39 (75.0%) 0.845
Comorbid epilepsy 6 (7.1%) 8 (15.4%) 0.118
There were more females who have pathogenic/likely pathogenic variants (p = 0.006).
Females showed higher SRS T-score (p = 0.024) and CARS score (p = 0.045) on average.
There were no significant differences in age, IQ, SCQ, and comorbidity of ID, epilepsy. IQ,
Intelligence quotient; SCQ, Social Communication Questionnaire; CARS, The Childhood
Autism Rating Scales; ID, Intellectual disability. BOLD: p < 0.05.
TABLE 1 | Demographic data of participants.

Patients
with

pathogenic/
likely

pathogenic
variants
(n = 24)

Patients
without

pathogenic/
likely

pathogenic
variants
(n = 113)

p-value Total
(n = 137)

Male: Female (female/
male ratio, %)

9:15 (62.5%) 76:37
(32.7%)

0.006 85:52

Age (months) 65.21 60.58 0.463 61.39
IQ 50.88 53.51 0.395 53.02
SRS (total T-score) 86.79 86.29 0.933 86.39
SCQ 17.67 16.82 0.639 16.99
CARS 33.184 31.669 0.402 31.935
Comorbid ID 20 (83.3%) 84 (74.3%) 0.349 104

(75.9%)
Comorbid epilepsy 6 (25%) 8 (7.1%) 0.008 14 (10.2%)
Pathogenic/likely pathogenic variants appeared more frequently in the female group
(62.5%) than in the male group (p-value = 0.006). There were no remarkable differences
in age and clinical assessments (IQ, SRS, SCQ, CARS) between the two groups.
Comorbid intellectual disability was prominent in both groups, while comorbid epilepsy
was more frequently diagnosed in pathogenic/likely pathogenic variants group (p = 0.008).
IQ, Intelligence quotient; SCQ, Social Communication Questionnaire; CARS, The
Childhood Autism Rating Scales; ID, Intellectual disability. BOLD: p < 0.05.
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28.8% which was significantly higher than that of the males.
Higher SRS T-scores and CARS scores that indicate severity of
autism symptoms were also significantly high in females. Though
females are less prevalent in ASD (Baio et al., 2018), genetic
burden and symptom severity can be higher than males. Females
with ASD are known to have more genetic load than males (Lai
et al., 2015), and severe clinical conditions also tend to be related
with genetic variants (Lovato et al., 2019). Such reports support
our results which highlight the importance of genetic evaluation
in females with ASD.

Rare Genetic Variants in Autism
Spectrum Disorder
Most pathogenic variants were found in genes such as SHANK3,
PTEN, NSD1, and the 8p23.2 duplications that have already been
reported to be associated with ASD. Most pathogenic variants are
related to specific neurodevelopmental syndromes. Variants in
SHANK3 can accompany Phelan–McDermid syndrome (Berg
et al., 2018); PTEN, Cowden syndrome (Goffin et al., 2001);
NSD1, Sotos syndrome (Kurotaki et al., 2002); and RAI1, Smith–
Magenis syndrome (Slager et al., 2003; Laje et al., 2010). These
syndromes are often reported to be related with ASD (Goffin
et al., 2001; De Rubeis et al., 2014; Connolly et al., 2017). In the
case of the 15q11.2–q13.2 duplication, a previously reported
duplication in 15q11–13 was associated with ASD, and if variants
are inherited from the father, Prader–Willi syndrome should also
be considered (Bolton et al., 2004; Veltman et al., 2005). Autism
spectrum disorder with these syndromes related genes should be
monitored with caution, regarding comorbidities. However, unlike
other genes, variants of PAFAH1B1 have not been previously
Frontiers in Pharmacology | www.frontiersin.org 5
reported as rare variants that affect ASD development. An
animal study demonstrated that mutation in the murine ortholog
of this gene contributes to diminished social interaction in mice
(Sudarov et al., 2013). As the gene plays a role in synaptogenesis
and nervous system development (Wall et al., 2009; Sudarov et al.,
2013), the possibility of ASD pathogenicity should not be
neglected. The 8p23.2 duplication is described in Rare Genetic
Variants in Autism Spectrum Disorder With Comorbid Epilepsy.

Most genes containing likely pathogenic variants were
reported to be associated with neurodevelopmental disorders.
The copy number variants, Xp22.2p22.33 deletion, 15q24
deletion (Adam et al., 2018), and 14q31.3–32.12 deletion
(Crkvenac Gornik et al., 2019) were also reported to be related
to developmental delay. Otherwise, some genes which had not
been considered as ASD related genes were discovered. ABCC2 is
known to trigger Dubin–Johnson syndrome, which causes an
increase in conjugated bilirubin levels (Keitel et al., 2003). The
condition is characterized by black pigment in the liver.
Mutations in SLC26A4 have been related to Pendred
syndrome, leading to sensorineuronal hearing loss (Landa
et al., 2013). The participant with history of comorbid hearing
loss might be due to genetic mutation in high probability, but
whether this genetic mutation is also responsible for ASD
development or not is unclear due to lack of evidence.
CCDC50 with a duplication in exon 11 was reported to be
associated with progressive hearing loss in the Spanish group
(Modamio-Høybjør et al., 2007), but to our knowledge, no
reports were found to be related to CCDC50 with
neurodevelopmental disorders. Further studies are needed to
understand the relationship between these genes and ASD.
TABLE 3 | Genetic characteristics: genes with pathogenic variants.

No. Gene Accession Nucleotide Amino acid Diseases (OMIM) Zygosity Inheritancea

(OMIM)
ACMG

5 SHANK3 Deletion (exon 9–22) Phelan–McDermid syndrome
{Schizophrenia 15}

Hetero

6 **8p23.2 duplication (2.25 Mb)
16 *PAFAH1B1

(LIS1)
NM_000430.3 Exon 4 deletion Lissencephaly 1; Subcortical laminar heterotopia Hetero AD

17 RAI1 NM_030665.3 Exon 6 deletion Smith–Magenis syndrome Hetero AD
46 PTEN NM_000314.4 c.249C > A p.Cys83Ter Cowden syndrome 1

Macrocephaly/autism syndrome
Bannayan–Riley–Ruvalcaba syndrome; Endometrial carcinoma,
somatic; {Glioma susceptibility 2}; Lhermitte–Duclos syndrome;
Malignant melanoma, somatic; {Meningioma}; PTEN hamartoma
tumor syndrome; {Prostate cancer, somatic}; Squamous cell
carcinoma, head and neck, somatic; VATER association with
macrocephaly and ventriculomegaly

Hetero AD,AR PVS1,
PM2,
PM6

68 15q11.2q13.2 duplication (9.5Mbp)
136 NSD1 NM_022455.4 c.6349C >

T
p.Arg2117Ter Sotos syndrome 1

Beckwith–Wiedemann syndrome; Leukemia, acute myeloid
Hetero AD PVS1,

PM2,
PP5
M
ay 2020 |
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Pathogenic variants that were found in seven participants. OMIM, Online Mendelian Inheritance in Man; ExAC, population frequency from The Exome Aggregation Consortium; KRGDB,
population frequency from the Korean Reference Genome Database; AD, Autosomal dominant; AR,Autosomal recessive; XD, X-linked dominant; XR, X-linked recessive; ACMG, The
American College of Medical Genetics and Genomics guideline (Richards et al., 2015); PVS, Very strong evidence of pathogenicity; PM, Moderate evidence of pathogenicity; PP,
Supporting evidence of pathogenicity. aInheritance of the gene described in OMIM. *not previously reported to be associated with neurodevelopmental disorders (ASD, ID, epilepsy).
**genetic variants in ASD with comorbid epilepsy. BOLD: Clinical syndromes and diseases related to neurodevelopmental disorders (ASD, ID, epilepsy).
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TABLE 4 | Genetic characteristics: genes with likely pathogenic variants.

Global
frequency
(ExAC)

Korean frequency
(KRGDB)

Inheritancea

(OMIM)
ACMG

0.00002826 AR PVS1, PM2
0.00007539 0.000803859 AR PP3

XR, XD PM2, PP3, PP5

AD PVS1, PM2
AD

PVS1, PM2
AD PVS1, PM2

PVS1, PM2
AD PM2, PM4,

PM6
AD PM2, PM6,

PP5, PP4
AD PVS1, PM2

XR, XD PM2, PM5,
PP3, PP5

0.0001 0.00401929 AR PP3,PP2,PP5

0.0003 0.000803859 AR PVS1, PP5

– – AD PM2, PP5

Aggregation Consortium; KRGDB, population frequency from the Korean Reference
f Medical Genetics and Genomics guideline (Richards et al., 2015); PVS, Very strong
IM. BOLD: Clinical syndromes and diseases related to neurodevelopmental
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No. Gene Accession Nucleotide Amino acid Diseases (OMIM) Zygosity

39 *ABCC2 NM_000392.3 c.2443C > T p.Arg815Ter Dubin–Johnson syndrome Hetero
*ABCC2 NM_000392.3 c.2302C > T p.Arg768Trp Dubin–Johnson syndrome Hetero

57 MECP2 NM_004992.3 c.403A > G p.Lys135Glu {Autism susceptibility, X-linked 3}
Mental retardation
Rett syndrome
Encephalopathy, neonatal severe

Hetero

60 **Xp22.2p22.33 deletion Hetero
**NLGN4X NM_020742.3 Whole gene deletion Asperger syndrome susceptibility

Autism susceptibility
Mental retardation

Hetero

63 Xp22.31p22.33 deletion Hetero
NLGN4X NM_020742.3 Whole gene deletion Asperger syndrome susceptibility

Autism susceptibility
Mental retardation

Hetero

66 DLGAP2 NM_004745.4 Whole gene duplication Autism spectrum disorder Hetero
69 AUTS2 NM_015570.2 c.2962dleG p.Glu988LysfsTer37 AUTS2 syndrome Mental retardation Hetero
75 SCN2A Exon 15-16 deletion Epileptic encephalopathy, early infantile Hetero
76 KAT6A NM_006766.3 c.3456G > A p.Trp1152Ter Mental retardation Hetero

*CCDC50 NM_178335.2 c.82_83dupAC p.Leu29ProsfsTer40 ?Deafness, Hetero
87 HUWE1 NM_031407.5 c.693+1G > A Mental retardation, syndromic, Turner type Hetero
94 **TSC2 NM_000548.3 c.4744_4746del p.Ile1582dle Tuberous sclerosis-2

Lymphangioleiomyomatosis, somatic
Hetero

95 **TSC2 NM_000548.3 c.2838_122G > A Tuberous sclerosis-2
Lymphangioleiomyomatosis, somatic

Hetero

96 CACNG2 NM_006078.3 c.437-2A > G Mental retardation Hetero
98 15q24 deletion (2.2Mb)
121 **MECP2 NM_004992.3 c.455C > G p.Pro152Arg {Autism susceptibility, X-linked 3}

Mental retardation
Rett syndrome
Encephalopathy, neonatal severe

Hetero

133 14q31.3-32.12 deletion Hetero
138 *SLC26A4 NM_000441.1 c.2168A > G p.His723Arg Deafness with enlarged vestibular aqueduct;

Pendred syndrome
Hetero

*SLC26A4 NM_000441.1 c.919-2A > G Deafness with enlarged vestibular aqueduct;
Pendred syndrome

Hetero

142 **SYNGAP1 NM_006772.2 c.980T > C p.Leu327Pro Mental retardation Hetero

Seventeen participants showed likely pathogenic variants. OMIM: Online Mendelian Inheritance in Man; ExAC, population frequency from The Exome
Genome Database; AD, Autosomal dominant; AR. Autosomal recessive; XD, X-linked dominant; XR, X-linked recessive; ACMG, The American College
evidence of pathogenicity; PM, Moderate evidence of pathogenicity; PP, Supporting evidence of pathogenicity. aInheritance of the gene described in O
disorders (ASD, ID, epilepsy).
o
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TABLE 5 | Genetic characteristics: genes with most suspected variants to be related to ASD with epilepsy.

Zygosity Global
frequency
(ExAC)

Korean
frequency
(KRGDB)

Inheritance
(OMIM)

ACMG

Hetero AD PM2

Hemi 0.0015 0.00643087 PP3, PP5

d with or Hetero PM2

es plus,
Hetero AD PM2

Hetero

Hetero

Hetero PVS1, PM2
Hetero AD PM2, PM4,

PM6
Hetero AD PM2, PM6,

PP5, PP4
Hetero XR, XD PM2, PM5,

PP3, PP5

Hetero PM2
Hetero PM2, PP5

Hetero PM2, PP3
Hetero 0.00001048 PM2

frequency from The Exome Aggregation Consortium; KRGDB, population frequency from the
MG, The American College of Medical Genetics and Genomics guideline (Richards et al., 2015);
nce of the gene described in OMIM. BOLD: Clinical syndromes and diseases related to
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No. ACMG
classification

Gene Accession Nucleotide Amino acid Diseases (OMIM)

6 Pathogenic 8p23.2 duplication (2.2Mb)
20 VOUS SCN3A NM_006922.3 c.5873C > G p.Thr1958Arg Epilepsy, familial focal

Epileptic encephalopathy, early infantile
24 VOUS MECP2 NM_004992.3 c.602C > T p.Ala201Val {Autism susceptibility, X-linked 3}

Mental retardation
Rett syndrome
Encephalopathy, neonatal severe

34 VOUS GRIN2A NM_000833.4 c.3059C > G p.Ser1020Cys Epilepsy, focal, with speech disorder an
without mental retardation

38 VOUS SCN1A NM_006920.4 c.2556+9_2556+10insG Dravet syndrome
Epilepsy, generalized, with febrile seizu
type 2
Febrile seizures, familial, 3A
Migraine, familial hemiplegic

60 Likely
pathogenic

Xp22.2p22.33 deletion

Likely
pathogenic

NLGN4X NM_020742.3 Whole gene deletion Asperger syndrome susceptibility
Autism susceptibility
Mental retardation

84 VOUS ROBO1 NM_002941.3 c.3229C > T p.Gln1077Ter
94 Likely

pathogenic
TSC2 NM_000548.3 c.4744_4746del p.Ile1582del Tuberous sclerosis-2

Lymphangioleiomyomatosis, somatic
95 Likely

pathogenic
TSC2 NM_000548.3 C.2838-122G >

A
Tuberous sclerosis-2
Lymphangioleiomyomatosis, somatic

121 Likely
pathogenic

MECP2 NM_004992.3 c.455C > G p.Pro152Arg {Autism susceptibility, X-linked 3}
Mental retardation
Rett syndrome
Encephalopathy, neonatal severe

122 VOUS ZEB2 NM_014795.3 c.2494G > A p.Ala832Thr Mowat–Wilson syndrome
142 Likely

pathogenic
SYNGAP1 NM_006772.2 c.980T > C p.Leu327Pro Mental retardation

143 VOUS LRP2 NM_004525.2 c.5314G > A p.Val1772Ile Donnai–Barrow syndrome
144 VOUS TUBGCP6 NM_020461.3 c.4009G > A p.Gly1337Arg Microcephaly and chorioretionpathy

Most suspected genetic variant of each ASD patients with comorbid epilepsy. OMIM, Online Mendelian Inheritance in Man; ExAC, populatio
Korean Reference Genome Database; AD, Autosomal dominant; AR, Autosomal recessive; XD, X-linked dominant; XR, X-linked recessive; AC
PVS, Very strong evidence of pathogenicity; PM, Moderate evidence of pathogenicity; PP, Supporting evidence of pathogenicity. aInherita
neurodevelopmental disorders (ASD, ID, epilepsy).
r

n
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Rare Genetic Variants in Autism Spectrum
Disorder With Comorbid Epilepsy
In our study, two cases with TSC2 variation and one case with
MECP2 variation were diagnosed as tuberous sclerosis and Rett’s
syndrome among ASD patients with comorbid epilepsy, upon
evidence of general appearance, clinical manifestation, and brain
magnetic resonance imaging. Heterozygous SYNGAP1 gene
mutations have been associated with ASD, ID, several forms of
idiopathic generalized epilepsy, and delay in psychomotor
development (Pinto et al., 2010; Klitten et al., 2011). Though
some variants (8p23.2 duplication, Xp22.2p22.33 deletion, and
NLGN4X) classified as likely pathogenic, the association with
epilepsy has not been reported so far.

We confirmed a 2.25 Mb duplication in the short arm of
chromosome 8 (8p23.2), including the CSMD1 gene, by
Frontiers in Pharmacology | www.frontiersin.org 8
additional microarray examination. Though various size
duplications of 8p23.2 are known to be associated with ASD
and developmental delay, such as speech delay and learning
difficulties (Glancy et al., 2009; Fisch et al., 2011), there was no
evidence of association with epilepsy. The complement pathway
is tightly controlled in the brain and disruption of microglia-
specific complement receptor 3(CR3)/C3 signaling results in
sustained deficits in synaptic connectivity. It is believed that
deregulation of complement activity could induce aberrant
synaptic elimination, which may influence susceptibility to
both neurodegenerative and psychiatric disorders (Schafer
et al., 2013). Although the mechanism of pathogenesis of
epilepsy is not established, recent studies have reported that
synaptic connectivity is associated with the development of
epilepsy (Chu et al., 2010; Karoly et al., 2018). To date, there is
FIGURE 1 | Most common genes with variants of unknown significance. Among genes with VOUS, TSC2 (16 times) was most frequently observed. After TSC2,
common genes appeared in the order of ADGRV1 (13), RAI1 (12), CHD (11), RELN (9), NSD1/AUTS2 (7) and LAMC3/SHANK2/FOXP1/KATNAL2/VPS13B/
GABRG1/SLC6A4/SCN1A/DOCK4/SCN9A (6).
FIGURE 2 | Repeatedly reported variations of unknown significance. A missense mutation (p.His520Arg) of FOXP1 gene was most commonly found. Only FOXP1
gene variation appeared three times in 137 patients, the rest of missense mutations were found twice each. In perspective of mutation type, one nonsense mutation
(p.Trp2Ter in GABRB3 gene), two in-frame deletions (p.Gln3910_Gln3911del in KMT2D gene, p.His72_His74del in HOXA1 gene), 21 missense mutations were
related to each gene. Most genes have already been reported to be related to ASD according to OMIM and SFARI database.
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insufficient evidence to explain the direct relationship between
duplication of CSMD1 and epilepsy. However, we suggest that
the overexpression of CSMD1 due to 8p23.2 duplication leads to
abnormal synaptic connectivity and it may contribute to the
occurrence of epilepsy.

It is known that deletion of chromosome Xp is associated with
ID and ASD (Shinawi et al., 2009; Willemsen et al., 2012). More
than 100 genes are known to be located on Xp22.2-p22.33. Males
with deletions encompassing Xp22 exhibit a phenotype consistent
with the loss of one or more of the genes located in this region
(Melichar et al., 2007). In females, there are only a few reports that
show de novo chromosomal deletions of Xp22 are associated with
ASD and developmental delay (Thomas et al., 1999; Chocholska
et al., 2006). In addition to the loss of genes located in Xp22,
unfavorable X-inactivation of the intact chromosome would be
another mechanism for the expressed phenotype in females
(Shinawi et al., 2009). Additional tests to confirm the exact
location and extent of the Xp deletion were recommended, but
not performed in our case. NLGN4X is a gene located in the short
arm of the X chromosome and is also known to be related to ASD
and ID (Jamain et al., 2003; Macarov et al., 2007), but not with
epilepsy. In an animal study, Nlgn4 knock-out (KO) mice showed
decreased network response and increased protein expression of
synaptic proteins, such as N-methyl-D-aspartate receptor (Nmdar)
subunit 1 (Nr1), and metabotropic glutamate receptor 5 (mGluR5),
which are involved in synaptic plasticity and excitatory circuit
rewiring (Delattre et al., 2013). Imbalance between excitatory and
inhibitory synapses is one of the main hypotheses explaining the
pathogenesis of epilepsy (Matsumoto and Ajmonemarsan, 1964).
Furthermore, excitation/inhibition imbalances resulting from
neurodevelopmental deficits have been suggested as pathogenic
mechanisms for both ASD and epilepsy (Bozzi et al., 2018).

Interestingly, though estimated as VOUS, some previously
reported epilepsy genes (SCN1A, SCN3A, MECP2, and GRIN2A)
were also detected. Genes may have different mutation types or
location, which leads to different effect sizes on ASD or epilepsy
development, but they still have an important impact on
disease occurrence.

Variants of Unknown Origin
In the development of ASD, multiple loci tend to show relatively
weak genotype–phenotype correlations and act additively (Persico
and Napolioni, 2013). This means that common variants with low
effect sizes should not be ignored considering the heterogeneity of
ASD. Unfortunately until now, studies such as genome-wide
association studies (GWAS), which focus on the contribution of
common variants to disease, have not yield consistent results
(Geschwind, 2011). According to the ACMG guideline, the
VOUS variant can also have one or more evidence of
pathogenicity even it was classified as VOUS. So the NGS results
should be interpreted carefully, as it is possible to suggest new
common variants relevant to ASD pathogenesis.

Except two genes (ADGRV1 and GABRG1), 15 genes frequently
classified as VOUS were also reported multiple times with rare
variants in ASD (Geschwind, 2011; Persico and Napolioni, 2013;
Sener et al., 2016). As shown in Figure 2, except one nonsense
Frontiers in Pharmacology | www.frontiersin.org 9
mutation and two in-frame deletions, most VOUS were missense
mutations. That is, the usual types of VOUS mutation are less likely
to disrupt function of gene. For this reason, even if a mutation
occurs in the same gene, the effect on the development of ASD
might be different depending on the mutation type.

Likewise, ROBO1 which was identified in ASD with comorbid
epilepsy was implicated in developmental dyslexia and
dysfunction of language acquisition system (Hannula-Jouppi
et al., 2005; Bates et al., 2011). In addition to the roles in
guiding axons and the Slit/Robo signaling pathway, ROBO1 is
also involved in cellular processes such as cell migration and
immune cell activation during neuroinflammatory responses
(Mirakaj and Rosenberger, 2017). Recently, it has been
suggested that inflammation and autoimmunity play important
roles in childhood seizures and epilepsies (Korff and Dale, 2017).
In our case, the patient with a nonsense mutation in ROBO1 was
diagnosed with ASD and had clinical manifestations of focal
seizure. This case suggests that although a genetic variation does
not satisfy the criteria of pathogenic/likely pathogenic variants, it
might affect an individual’s phenotype.

Through these results, it is possible to surmise that genes with
known pathogenic variants may often appear with VOUS also.
As variants affect genetic functions such as synaptic and
neuronal plasticity (Ben-David and Shifman, 2012), the
influence on ASD would be exerted when loss of function
occurred, even though the effect may vary by location and type
of mutation. It is necessary not to overlook genes with VOUS if
the gene has been previously reported with pathogenic variants
in neurodevelopmental disorders, including ASD.

Heterogeneity has been a great challenge for developing
tailored treatment of ASD as there are a large number of genes
related to ASD, and loss of function differs according to each type
of mutations. Through the advancement of genetic analysis
technology, NGS results are being used in clinical fields, but it
is still difficult to interpret and identify the clinical significance.
To provide proper management to ASD individually,
discrimination of the pathogenic variant among multiple
variants should be achieved. Our results show that it is
necessary to notice genes with VOUS although their function
is not clearly defined yet. Especially in ASD presenting
heterogeneous clinical manifestation and frequent comorbid
disorders, results of genetic analysis should be performed with
caution. The VOUS in ASD related genes involved with unclear
mutation, or non-ASD related genes with clinically relevant
phenotype may be of primary importance in investigating
genetic data (Lovato et al., 2019). Efforts to identify the
function of genes with VOUS will lead to discovering genetic
pathogenesis of neurodevelopment disorder in the future.

There are several limitations to this study. First, as this study
reviewed medical records retrospectively, clinical assessment could
not be performed without bias. This may have influenced the
statistical results of the demographic data. Second, in cases of age
under 4 years, we could estimate intellectual disability only by Bayley
Scales of Infant Development. Third, as our participant group mostly
showed severe phenotypes (SRS T-score 86.39 on average), further
studies are needed to compare differences in genetic components
May 2020 | Volume 11 | Article 585
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according to severity of ASD phenotype. Furthermore, as we analyzed
the clinical NGS reports retrospectively, we could not show data from
typically developing control group. To define the pathogenicity of
variants of genes, comparing the result with that of normal
population might be helpful. Finally, as medical records were
reviewed cross-sectionally, we could not evaluate the development
of comorbidities including epilepsy.

Despite the limitations mentioned above, there are several
strengths in our study. First, to our knowledge, this is the first
NGS study in ASD patients with or without comorbid epilepsy in
Korea. As all patients are Korean, our results are not confounded by
population genetic heterogeneity. Second, because NGS was carried
out only in ASD patients who had severe phenotypes, comorbid
disorders, or suspicious general appearance in a clinical setting,
genetic variants thought to impact ASD development were able to
be easily obtained. Third, we found some genes that have not
previously been reported but are possibly pathogenic in ASD.
Finally, by considering comorbid epilepsy, we confirmed genetic
overlaps in ASD and epilepsy, even though genetic variations are
currently known to be related just with either ASD or epilepsy.

In conclusion, we suggest that rare variants (pathogenic/likely
pathogenic) and common variants (VOUS) are both necessary in
investigating individuals’ genetic characteristics in ASD and
epilepsy. Pathogenic/likely pathogenic variants might be useful
in confirming genetic syndrome, predicting comorbidity, and
treatment planning. The VOUS might also influence the
phenotype characteristics of ASD and epilepsy, even though
the evidence and possibility are not strong enough. Careful
efforts in interpreting the VOUS might contribute to
understand the genetic cause of ASD and epilepsy.
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