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Pregnancy is a complicated and delicate process, the maternal body undergoes changes
on hormones, immunity, and metabolism during pregnancy to support fetal development.
Microbiomes in the human body mainly live in the intestine, and the human gut
microbiomes are complex, which composed of more than 500 to 1500 different
bacteria, archaea, fungi, and viruses. Studies have shown that these microbiomes are
not only involved in the digestion and absorption of food but also indispensable in
regulating host health. In recent years, there has been increasing evidence that
microbiomes are important for pregnant women and fetuses. During pregnancy, there
will be great changes in gut microbiomes. Regulating gut microbiomes is beneficial to the
health of the mother and the fetus. In addition, many complications during pregnancy are
related to gut microbiomes, such as gestational diabetes, obesity, preeclampsia, digestive
disorders, and autoimmune diseases. Moreover, the microbiomes in mother's milk and
vagina are closely related to the colonization of microbiomes in the early life of infants. In
this review, we systematically review the role of maternal microbiomes in different
gestational complications, and elucidate the function and mechanism of maternal
microbiomes in the neural development and immune system of offspring. These will
provide a clear knowledge framework or potential research direction for researchers in
related fields.

Keywords: pregnancy, complication, microbiomes, offspring, mechanism
INTRODUCTION

Pregnancy is a unique event with a lot of hormonal, immune, and metabolic changes in the body
(Zhang et al., 2019). Some changes of the body during pregnancy may be closely related to the
changes in the composition and diversity of gut microbiomes (GMs) (Barbour et al., 2007; Gohir
et al., 2015; Khan et al., 2019). Changes in the composition and diversity of GMs may ultimately
affect the host's immunity, metabolism, digestion, and neurodevelopment (Carding et al., 2015;
Pedersen et al., 2016). Therefore, focusing on the GMs may yield a positive insight into pregnancy.
The composition and diversity of the maternal GMs change progressively every 3 months of the
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gestational period (Smid et al., 2018). However, GMs are
basically unchanged during the first 3 months of pregnancy,
such as Gram-positive and Gram-negative bacteria (de Brito
Alves et al., 2019). The human gastrointestinal tract contains
approximately 500~1,000 microbiomes and more than 3 million
genotypes (Lozupone et al., 2012). The ratio of microbial cells to
human cells is 10:1, and the genotype ratio is 100:1 (Vrieze et al.,
2010). Researches showed that GMs play a vital role in human
immunity and digestion, and are involved in the development of
chronic diseases such as diabetes, hypertension, and
inflammatory bowel disease (Hooper et al., 2012; Dolan and
Chang, 2017; Lezutekong et al., 2018; Zhao et al., 2018).
Increasing evidence indicated that the structure and
composition of GMs are generally determined by the host's
genetic factors, environmental factors, and dietary habits
(David et al., 2014; Rothschild et al., 2018). During pregnancy,
changes in the diversity and composition of GMs may occur
naturally in multiple parts of the mother's body, including the
oral cavity, vagina, intestine, and breast milk (Nuriel-Ohayon
et al., 2016; Zhou and Xiao, 2018). However, the relationship
between maternal GMs and the complex physiological
conditions during pregnancy is still insufficiently discussed.
Many scholars have begun to study the relationship between
GMs imbalance and complications during pregnancy.

Gestational GMs are not only closely related to the health of
pregnant women but also affect the health of offspring. The most
important link between mother and fetus is the placenta, and
placental microbiomes include Tenericutes, Fusobacteria,
Bacteroidetes, and Firmicutes, all of which are nonpathogenic
bacteria (Aagaard et al., 2014). However, factors such as maternal
gestational diabetes, obesity, vaginal infections, and the use of
antibiotics have led to changes in the composition of the
placental microbiomes (Pelzer et al., 2017). For example, recent
studies have reported that excessive weight gain during
pregnancy is associated with risk factors such as disorders of
placental microbiomes and preterm birth (Antony et al., 2015).
In addition, in the postpartum environment, the relationship
between the GMs of infant and breast milk microbiomes has also
attracted increasing attention. A prospective study showed that
the bacterial species in mother's breast milk are the most
abundant in the GMs of offspring in the first month after the
baby was born (Pannaraj et al., 2017), suggesting that
breastfeeding is closely related to GMs of the infant in early life.

Therefore, it can be reasonably inferred that the strategy of
regulating maternal GMs during the prenatal and early postnatal
life of infants can be used as an innovative treatment method to
prevent and/or control adverse maternal complications and
offspring health. In this way, the use of probiotic interventions
to regulate maternal microbiomes has become a safe strategy that
can restore the community of symbiotic microbiomes and
provide beneficial effects on maternal, fetal, and infant health
(Sanz, 2011; Swartwout and Luo, 2018).

In this review, we introduce the role of GMs in different
gestational complications and the function of maternal
microbiomes in offspring. The factors that influence the
microbiomes of pregnant women may provide a novel
Frontiers in Pharmacology | www.frontiersin.org 2
therapeutic target in the future. Understanding the adaptations
of microbiomes and the mechanisms of how they can be
modulated may be beneficial in gestational management.
THE ROLE OF GMs IN GESTATIONAL
COMPLICATIONS

Gestational Diabetes Mellitus
There are two types of diabetes during pregnancy, however, only
Gestational diabetes mellitus (GDM) is discussed within this
section so we would simply omit the other type. GDM is diabetes
with normal glucose metabolism or impaired glucose tolerance
before pregnancy, which occurs or is diagnosed only during
pregnancy and is associated with many adverse maternal and
neonatal outcomes (Group et al., 2008; Schneider et al., 2011;
American Diabetes, 2018). More than 80% of diabetic pregnant
women have GDM, the incidence of GDM in countries around
the world is reported as 1% to 14%, and the incidence rate in
China is 1% to 5%, which has increased significantly in recent
years (Sacks et al., 2012; Zhu and Zhang, 2016). GDM patients
with glucose metabolism can return to normal after delivery, but
they will have an increased chance of developing type 2 diabetes
in the future (Lauenborg et al., 2004; Bellamy et al., 2009). The
clinical course of diabetic pregnant woman is complex, both
mother and child have risk, should be given attention (Vohr and
Boney, 2008; Damm et al., 2016).

In recent years, the role of GMs in GDM has received
increasing attention. Reports showed that, compared with
pregnant women with normal blood sugar, the abundance of
Parabacteroides, Dialister, Akkermansia, Roseburia, Bacteroides,
Methanobrevibacter smithii, Eubacterium species, Alistipes
species, Bifidobacterium species was reduced (Kuang et al.,
2017; Cortez et al., 2019), and the abundance of Firmicutes,
Klebsiella variicola, Collinsella, Rothia, Ruminococcus,
Actinobacteria, Parabacteroides distasonis, Desulfovibrio was
increased (Crusell et al., 2018; Ferrocino et al., 2018).
Moreover, one study showed that placental microbiomes in
patients with GDM changed significantly compared to those
with normal blood sugar (Bassols et al., 2016). Compared with
healthy pregnant women, the relative abundance of
Pseudomonadales order and Acinetobacter genus in the
intestinal flora of GDM patients is reduced. The GMs of
patients diagnosed with GDM in the third trimester have
previously exhibited a typical flora disorder, which persists
even after about 8 months postpartum (Crusell et al., 2018).
These data suggest that GMs may play an important role in
GDM. Adverse pregnancy complications in pregnant women are
closely related to intestinal permeability, such as GDM, insulin
resistance, inflammatory response and hyperglycemia (Flint
et al., 2012; Navab-Moghadam et al., 2017). In general, the
imbalance of GMs is the main cause of impaired intestinal
permeability (Navab-Moghadam et al., 2017). In addition, the
study by Bassols et al. showed that the reduced relative
abundance of Acinetobacter genus is related to a decrease in
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the blood eosinophil count and a decrease in the expression of
several antiinflammatory cytokines in the placenta, such as
metallopeptidase inhibitor 3 and IL-10 (Bassols et al., 2016).
Therefore, GMs may predict the development and prognosis of
GDM. Properly regulating the GMs of pregnant women may be
an effective method for the treatment of GDM. However,
relevant mechanistic or interventional trials are still lacking
and further prospective trials are needed.

Gestational Obesity
Gestational obesity generally refers to obesity caused by a
woman's weight gain exceeding the normal weight gain range
during pregnancy. Gestational obesity can be divided into two
phases: obesity during pregnancy and postpartum obesity
(postpartum weight retention). The standards adopted by the
American Institute of Medical Research (IOM) in 2009 are used
in China to determine whether the degree of weight gain during
pregnancy is abnormal (Table 1). Gestational obesity not only
adversely affects pregnant women, but also the fetus, including
GDM, hypertension during pregnancy, subinvolution of uterus,
giant baby, and neonatal congenital defects (Poston et al., 2016;
Zambrano et al., 2016).

Over the past few decades, it has been generally agreed that
the main factor associated with gestational obesity is hormones.
However, in recent years, the relationship between GMs and
gestational obesity has received widespread attention. GMs
during pregnancy can be regarded as a metabolic organ of the
human body, and its imbalance may cause obesity and related
metabolic disorders (Kalliomaki et al., 2008). A prospective
follow-up study showed that excessive weight gain during
pregnancy was associated with a high concentration of
Bacteroides spp. in the intestine (Collado et al., 2008).
Santacruz et al. found that in the gut of overweight pregnant
women, the abundance of Enterobacteriaceae and Escherichia
coli decreased significantly, while the abundance of Bacteroides
and Bifidobacterium increased (Santacruz et al., 2010). The study
further showed that the abundance of these microbiomes is
related to weight gain and biochemical parameters such as
transferrin, high-density lipoprotein cholesterol, triglycerides,
plasma cholesterol, and folic acid. These studies indicate that
GMs are closely related to gestational obesity, and the intestine
may be an important organ for regulating maternal lipid
metabolism. Therefore, regulating GMs to improve maternal
obesity may be a promising and novel strategy, and further
prospective trials are needed.
Frontiers in Pharmacology | www.frontiersin.org
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However, the mechanism by which GMs improve gestational
obesity is not clear. By consulting the literature, we have
compiled the possible mechanisms that currently exist as
follows (Collado et al., 2008; Kumar et al., 2014; Barlow et al.,
2015; Khan et al., 2016; Soderborg et al., 2016; Gu et al., 2017):
(1) Chronic inflammation results in endotoxin released into the
blood after bacterial death leading to endotoxemia. For example,
lipopolysaccharides (cell wall components of Gram-negative
bacteria) are closely related to insulin resistance and
inflammatory responses. (2) Disorder of GMs alters epigenetic
modifications. (3) Decreased probiotics and increased harmful
bacteria may increase the intestinal capacity for absorption and
monosaccharide uptake. (4) Changes in gut microbial
metabolites. For example, bacterial metabolites SCFAs can
regulate hormone metabolism, inhibit the body's inflammatory
response, and change the composition of intestinal immune cells.
(5) Certain GMs can inhibit the production of adipose cytokines
induced by fasting, which can inhibit protein lipase, leading to
the accumulation of fat in peripheral tissues to form obesity. (6)
Activation of liver endocannabinoid (eCB) and ChREBP/
SREBP-1system. (7) Metabolism of primary bile acids in the
small intestine to secondary bile acids.

In summary, GMs play a crucial role in gestational obesity,
but its mechanism remains to be further explored. Taking
advantage of the double-edged sword of GMs may yield
unexpected results in managing gestational obesity.

Preeclampsia
Preeclampsia refers to increased blood pressure and proteinuria
after 20 weeks of pregnancy, and symptoms such as headache,
dizziness, nausea, vomiting, and epigastric discomfort may also
occur (Brown et al., 2018). It is the second leading cause of
maternal death in the world currently (Huppertz, 2008;
Ghulmiyyah and Sibai, 2012; Mol et al., 2016). The incidence
of preeclampsia is about 5% of pregnant women, and it is more
common in primiparas and pregnant women with hypertension
and vascular disease (Hutcheon et al., 2011; Ananth et al., 2013).
The cause of preeclampsia is not yet clear. At present, the related
risk factors are weight, pregnancy hypertension, first pregnancy,
age, and history of preeclampsia. However, the combination of
these risk factors can only predict the occurrence of preeclampsia
in clinical practice in 30% of pregnant women (Odibo et al., 2015;
Mol et al., 2016).

In recent years, great breakthroughs have been made in the
etiology of preeclampsia with the efforts of researchers. The study
by Kell et al. has shown that the mechanisms leading to the
development of preeclampsia include abnormal trophoblast
invasion into the placenta, oxidative stress, antiangiogenic
response, and increased proinflammatory cytokines (Kell and
Kenny, 2016). In addition, researchers have found that the
placenta plays a key role in the pathogenesis of preeclampsia
and adversely affects the fetus. This may be due to obstructed
utero-placental blood flow, which increases the risk of preterm
and low birth weight fetuses (Salmani et al., 2014; Ilekis et al.,
2016; Carter et al., 2017).

In addition to the above, GMs have recently been linked to the
etiology of preeclampsia. The identification of placental
TABLE 1 | Criteria for obesity during pregnancy in China.

Weight
status before
pregnancy

Weight gain during pregnancy

Insufficient weight
gain during

pregnancy (kg)

Normal gain
during

pregnancy
(kg)

Overweight gain
during pregnancy

(Gestational obesity)
(kg)

Thin <12.5 12.5~18.0 >18.0
Normal <11.5 11.5~16.0 >16.0
Overweight <7.0 7.0~11.5 >11.5
Fat <5.0 5.0~9.0 >9.0
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microbiomes in pregnant women with preeclampsia indicates
the abundance of several types of bacteria in the placenta is
related to gastrointestinal infection, respiratory infection or
periodontitis, respectively. For example, Escherichia, Bacillus,
Salmonella, and Listeria are associated with gastrointestinal
infections, Anoxybacillus, and Klebsiella are associated with
respiratory infections, Dialiste, Variovorax, Porphyromonas,
and Prevotella shahii are associated with periodontitis
(Amarasekara et al., 2015). In addition, studies have shown
that the abundance of pathogenic bacteria (Bulleidia moorei
and Clostridium perfringens) in the intestine of preeclampsia
women is increased, while the abundance of probiotics
(Coprococcus catus) is decreased compared with healthy
pregnant women (Lv et al., 2019). The above evidences suggest
that: (1) The imbalance of placental microbiomes may be closely
related to the occurrence and development of preeclampsia. (2)
GMs play a vital role in the preeclampsia of pregnant women.
Therefore, detecting intestinal and placental microbiomes in
pregnant women with preeclampsia may provide a new idea
for improving clinical symptoms. In addition, probiotic
interventions may be an effective way to protect pregnant
women from suffering headaches, dizziness, nausea, or
vomiting. However, the above data only show that GMs is
related to preeclampsia, and the specific mechanism remains to
be further explored.

Disease of Digestive Tract
The most common digestive tract diseases are tumors, as well as
enteritis and gastritis. But the scope of our discussion here does
not include tumors. Studies have reported that digestive tract
management during pregnancy is the most challenging for
gastroenterologists, at which time multiple reactions occur in
the gastrointestinal tract, such as esophageal reflux, constipation,
nausea, and vomiting (McCarthy et al., 2014). The incidence of
vomiting during pregnancy is about 50%, and the incidence of
nausea is about 50% to 80% (Matthews et al., 2015). A few
pregnant women have severe early pregnancy reactions, frequent
nausea, and vomiting, resulting in fluid imbalance and metabolic
disorders, and even endanger the life of pregnant women, which
is called hyperemesis gravidarum and the incidence is about 1.2%
(Einarson et al., 2013). At present, the treatment of digestive tract
diseases during pregnancy is mostly symptomatic, and the
mechanism of their occurrence is unclear.

Studies on the relationship between digestive tract diseases
and GMs have been available in the past, but few have studied the
relationship between digestive tract diseases during pregnancy
and GMs. Recent studies have shown that the relative abundance
of Blautia and Collinsella in the intestine of pregnant women
with gastrointestinal disorders is significantly reduced, and the
abundance of Acinetobacter, Enterococci, and Paenibacillus is
increased. The author further revealed that Blautia and
Collinsella may be served as a new biomarker for digestive
disorders in pregnancy (Jin et al., 2019). In addition, increasing
evidences indicate that disorders of the maternal GMs increase
the prevalence of colitis in the offspring in adulthood. Xie et al.
found that high-fat diets in mice during pregnancy altered the
intestinal flora of offspring and exacerbated dextran sodium
Frontiers in Pharmacology | www.frontiersin.org 4
sulfate (DSS)–induced colitis in offspring (Xie et al., 2018).
Adult mice colonized with Lactobacillus rhamnosus (LGG)
showed increased IgA production and decreased susceptibility
to intestinal injury and inflammation induced in the dextran
sodium sulphate model of colitis. Thus, neonatal colonization of
mice with LGG enhances intestinal functional maturation and
IgA production, and confers lifelong health consequences on
protection from intestinal injury and inflammation (Yan et al.,
2017). Not only that, a population-based cohort study suggested
that exposure to antibiotics during pregnancy increases the risk
of offspring from inflammatory bowel disease (Ortqvist
et al., 2019).

To sum up, the GMs are closely related to maternal and
offspring digestive tract diseases. However, the role of GMs in
maternal digestive tract diseases has not yet been clearly
elucidated. The effect of maternal GMs on offspring's digestive
tract disease is well established. Improving the GMs imbalance
during pregnancy and strengthening the management and
monitoring of GMs may be a potential method for treating
digestive diseases in pregnancy, which will reduce the probability
of offspring suffering from digestive diseases.

Autoimmune Diseases
Autoimmune diseases refer to the disease caused by the body's
immune response to autoantigen, which leads to auto tissue
damage such as rheumatoid arthritis (RA) and systemic lupus
erythematosus (SLE) (Davidson and Diamond, 2001; Yao et al.,
2018; Yao et al., 2019). There are more than 70 diseases classified
as autoimmune diseases at present, and their prevalence in the
general population is about 7% (Cooper et al., 2009). Many
autoimmune diseases have a significantly higher incidence in
women than men, including SLE and RA, which may be caused
by female sex hormones regulating the immune system through
sex hormone receptors (Adams Waldorf and Nelson, 2008; Cai
et al., 2019; Tsao et al., 2019). During pregnancy, the mother
undergoes a series of physiological changes to ensure the healthy
growth of the fetus, including immune, hormonal, and metabolic
changes (Kumar and Magon, 2012). In recent years, more and
more evidences showed that there is a correlation between
pregnancy and autoimmune diseases (Tincani et al., 2016).

Among the many factors related to pregnancy affecting
autoimmune diseases, GMs have attracted widespread
attention. It has been reported that the imbalance of GMs is
associated with a variety of autoimmune diseases, such as SLE
and RA (Mu et al., 2015). On the one hand, GMs disorder does
exist in animal models (adjuvant arthritis model, collagen-
induced arthritis model, lupus-prone mouse model) and
human patients (Hevia et al., 2014; Zhang et al., 2014; Luo
et al., 2018). On the other hand, the use of probiotics and
antibiotics has been shown to regulate GMs (Mu et al., 2017a;
Mu et al., 2017b; Manfredo Vieira et al., 2018). In a study of SLE,
the authors found that changes in the GMs during pregnancy
and lactation interfered with the autoimmune response (Mu
et al., 2019). However, the study did not explore the mechanism
of changes in GMs during pregnancy in SLE. Therefore, further
prospective or interventional studies are needed to better
understand the complex relationship between pregnancy and
May 2020 | Volume 11 | Article 643
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lupus. According to these reports, we speculate that intestinal
microbiomes are closely related to RA in pregnancy, even though
there are no published reports. A study on RA revealed that a
single bacterium restores microbiomes imbalances to protect the
bones of RA rats from damage (Pan et al., 2019). In addition,
changes in the composition and structure of the GMs during
pregnancy have been well recognized. Therefore, it is of far-
reaching clinical significance to explore the role and mechanism
of GMs in pregnancy with autoimmune diseases. GMs
intervention for pregnant women with autoimmune disease
may be a new clinical treatment, and further prospective trials
are needed.
THE ROLE OF MATERNAL MICROBIOMES
IN OFFSPRING

Effects of Maternal Microbiomes on the
Offspring's Immune System
Maternal microbiomes are not only closely related to gestational
complications, they are also vital to the health of the fetus. The
development of babies' GMs is related to the existing microbiomes
in many parts of mother's body. The microbiomes in these parts of
the mother's body can be transmitted vertically to offspring,
including the intestine, skin, breast milk, and vagina (Nyangahu
et al., 2018). Studies have shown that the most significant periods
are childbirth and postpartum, especially when infants are
exposed to maternal skin, vagina, and feces (Mackie et al.,
1999). In previous research, the idea that the uterine
environment was sterile (Funkhouser and Bordenstein, 2013)
has been questioned in recent years (Jimenez et al., 2008). Theis
et al. found there are unique microbiomes in the placenta, which
have not been reported before (Theis et al., 2019). However, recent
evidence suggests that the microbiomes of pregnant women have
a strong effect on the progeny microbiomes, whether or not
placental microbiomes are actually present. Studies have
expounded that the mother's GMs can better adapt to the baby's
gut environment and live longer compared to nonmaternally
derived flora (Ferretti et al., 2018). A mouse experiment also
showedmost of the bacteria in the meconium sample matched the
mother's oral bacterial sample (genetically labeled) (Jimenez et al.,
2008). These data reveal the importance of maternal microbiomes
(not just GMs) to the fetus.

Furthermore, studies have shown that transient changes in
maternal microbiomes during pregnancy drive the fetus's
immune planning (Gomez de Aguero et al., 2016). A perinatal
study showed that after treating pregnant mice with a large
number of antibiotics, their offspring lacked IL-17–producing
cells and IL-17 transcripts in the small intestine (Deshmukh
et al., 2014). Similarly, in another study, after treating pregnant
mice with three antibiotics, the offspring's GMs diversity
reduced, and IL-17-IFN-g–producing CD4+ and CD8+ cells in
mesenteric lymph nodes decreased (Hu et al., 2015). These
indicate that maternal microbiomes play an important role in
enteric immune system of offspring.
Frontiers in Pharmacology | www.frontiersin.org 5
In addition to the effects on the baby's enteric immune
system, maternal microbiomes also affect the offspring's
peripheral immune system. Gonzalez-Perez et al. observed that
after treatment of dams with antibiotics during pregnancy and
lactation, their pups lacked production of IFN-g by CD8+ T cells,
and the distribution of dendritic cells and NK cell subsets
changed (Gonzalez-Perez et al., 2016). In a mouse model of
autoimmunity based on the NLRP3 inflammasome mutation
R258W, the maternal microbiomes were required for neonatal
IL-1b and tumor necrosis factor-a (TNF-a) responses in the skin
(Nakamura et al., 2012). The effect of perinatal maternal
microbiomes on the immune system of offspring may be due
to the effect of microbiomes on the development of immune cells
(Josefsdottir et al., 2017). Joana Torres et al. found that aberrant
microbiomes composition persists during pregnancy with IBD
and alters the bacterial diversity and abundance in the infant
stool (Torres et al., 2020). The research of Nyangahu et al.
indicates that perturbations to maternal microbiomes dictate
neonatal adaptive immunity (Nyangahu et al., 2018).

Therefore, from the data above, it can be seen that maternal
microbiomes play a vital role in the offspring's immune system.
Regulating the microbiomes of pregnant women is of great
significance to the offspring's health, which may provide a
novel insight into the management of pregnant women in
clinical practice.

Effects of Maternal Microbiomes on the
Offspring's Neurodevelopment
The relationship between the gastrointestinal environment and
the state of brain has been proven in the past, but the existence of
the microbial-gut-brain axis has only received attention in the
last decade (Bienenstock et al., 2015). There are many
microbiomes are symbiotic with humans, these symbiotic
microbiomes and their microbial groups are closely related to
the host's brain and nerve development (Dinan and Cryan,
2017). In recent years, scholars found that the structural
changes of microbiomes in the host are related to their
neurological disorders, such as anxiety, autism, depression, and
stress (Vuong and Hsiao, 2017). As early as 30 years ago, the role
of the perinatal environment in heredity attracted attention,
which could affect the offspring's health in adulthood (Barker,
2004). By understanding the Barker hypothesis, it has recently
been further suggested that perinatal microbiomes play an
important role in planning adult brain health (Codagnone
et al., 2019).

Not only that, increasing evidence reveals microbiomes are
critical in host neurodevelopment. A study of germ-free mice
showed that the lack of regulatory effects of microbiomes leads to
abnormal brain development in mice, such as abnormal growth
of microglia, high myelinization of the prefrontal cortex, and
increased permeability of the blood-brain barrier (Clarke et al.,
2013; Braniste et al., 2014; Thion et al., 2018). In microbial
deficiency mice, the expression of genes related to neural
development is affected, including neuronal plasticity and
neurotransmission in the hippocampus (Stilling et al., 2015;
Chen et al., 2017). These changes in neurophysiology will
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eventually translate into anxiety, increased stress response,
cognitive deficits, visceral pain response, and changes in fear
(Gareau et al., 2011; Luczynski et al., 2017; Hoban et al., 2018). In
addition, studies showed that changes in the structure of
perinatal microbiomes regulate gene expression, function, and
morphology of progeny microglia, these effects will appear in the
early stages of embryo development. These data reveal that the
colonization of microbiomes in early life has a huge impact on
the neural development and function of offspring.

In terms of genetic research about maternal microbiomes,
experiments indicated that microglial status can be regulated in
microbially depleted mice during adulthood, and three independent
studies emphasized the role of maternal microbiomes in guiding
embryonic microglial development. What's more, the gene
expression changes of germ-free mouse microglia were more
obvious in adult microglia than in neonatal microglia compared
with the conventional control group (Matcovitch-Natan et al.,
2016). These findings suggest that microbiomes are important for
microglia development from adulthood to adult phenotype.
Nonetheless, 240 genes are expressed differently even in newborn
microglia, suggesting that the maternal microbiomes may direct
microglia maturation during prenatal development. Consistent with
this, 19 differentially expressed genes were detected in microglial
cells harvested from germ-free embryo (14.5-day-old), indicating
that the maternal microbiomes have little effect on microglial
progenitor cells (Thion et al., 2018). So, why are there differences
of opinion on the effects of maternal microbiomes on offspring? The
main reason is that the research phase of pregnancy is different. It is
now widely believed that the moment of birth is the first
opportunity for large-scale colonization of neonatal bacteria
(Biasucci et al., 2008; Backhed et al., 2015). Therefore, the mode
of delivery has a huge impact on the establishment of infant
microflora. Numerous studies have begun to link childbirth
patterns to the unique trajectories of neonatal microbial
development (Biasucci et al., 2008; Backhed et al., 2015). Studies
revealed that newborns born by cesarean section (without exposure
to the birth canal) at birth are unable to obtain vertical transmission
of bacteria and viruses from the mother's vagina (Backhed et al.,
2015; McCann et al., 2018). In addition, it should be emphasized
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that the changes in the progeny microbial structure due to different
delivery methods are temporary. However, the composition and
abundance of intestinal micro-organisms in infants born by vaginal
delivery are significantly higher than those in newborns born by
cesarean section (Biasucci et al., 2008; Azad et al., 2013; Jakobsson
et al., 2014; McCann et al., 2018).

So, how do microbiomes affect the neurodevelopment of
offspring? The possible mechanisms are as follows: (1) Toll-like
Receptors (TLRs) signaling on neuronal proliferation: TLRs can
perform innate immune recognition on the components of
microbiomes; TLRs are expressed in all subtypes of brain
resident cells, including intact expression in astrocytes,
neurons, and oligodendrocytes (Hanke and Kielian, 2011;
Kawai and Akira, 2011). (2) Cytokine signaling on
neurogenesis: In the brain, cytokines have different effects on
neurodevelopment. For example, IL-4 inhibits the proliferation
of mouse embryonic neural precursor cells (NPCs), IL-34 and
CSF-1 promote neuronal proliferation, and IL-6 promotes the
occurrence of fetal striatum cells; maternal intestinal
microbiomes can fully change germ-free mouse intestinal
cytokines distributed (Pronovost and Hsiao, 2019). (3)
Complement proteins in synaptic refinement: The complement
system contributes to the clarity of cells and humoral-mediated
pathogenic microbiomes (Ricklin et al., 2016). Synaptic
complement proteins play an important role in the early
development of neurons. For example, complement protein C3
is localized to the axons of retinal geniculate cells and depends on
upstream complement proteins C1 and C4 (Sekar et al., 2016).
CONCLUSION

In summary, GMs play a vital role in a variety of complications in
pregnant women. Current researches reveal that the abundance and
composition of some GMs are altered during pregnancy
complications. Maternal GMs could affect pregnant women's
physiological metabolism, immune system or inflammatory
response (Table 2). However, in terms of impact on offspring, it
is thought that the effect of maternal GMs on the fetus is not
TABLE 2 | Changes of gut microbiomes in pregnancy complications and its mechanisms.

Complications
of pregnancy

Increased abundance of
microorganisms

Decreased abundance of
microorganisms

Mechanisms References

Gestational
diabetes

Firmicutes, Klebsiella variicola,
Collinsella, Rothia, Ruminococcus,
Actinobacteria, Parabacteroides
distasonis, Desulfovibrio

Parabacteroides, Dialister, Akkermansia,
Roseburia, Methanobrevibacter smithii,
Eubacterium species, Alistipes species,
Bacteroides Bifidobacterium species

Intestinal permeability,
anti-inflammatory
cytokine levels, etc.

Bassols et al., 2016; Navab-
Moghadam et al., 2017; Crusell
et al., 2018; Ferrocino et al., 2018

Gestational
obesity

Bacteroides, Bifidobacterium Enterobacteriaceae, Escherichia coli Microbial metabolites,
inflammatory
responses, epigenetic
modifications, etc.

Santacruz et al., 2010; Barlow et al.,
2015; Khan et al., 2016; Soderborg
et al., 2016; Gu et al., 2017; Collado
et al., 2008

Preeclampsia Bulleidia moorei, Clostridium
perfringens

Coprococcus catus Future research is
needed

Lv et al., 2019

Disease of
digestive tract

Acinetobacter, Enterococci,
Paenibacillus

Blautia, Collinsella Future research is
needed

Jin et al., 2019

Autoimmune
disease

Firmicutes, Acholeplasmatales,
Desulfovibrionales

Verrucomicrobia, Bacteroidales, Autoimmune response Pan et al., 2019
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significant. Maternal microbiomes that affect offspring are mainly
those in the vagina or milk. In addition, the mode of childbirth is
also important for the colonization of microbiomes in the baby,
because the moment of birth is the first opportunity for large-scale
colonization of neonatal bacteria. Nevertheless, the transmission of
maternal microbiomes is closely related to the offspring's immune
system and neurodevelopment. Therefore, exploring the role and
mechanism of GMs in pregnancy complications and offspring is
very meaningful for managing their health. The limitation here is
that most of the current studies on the role of maternal
microbiomes in pregnancy complications or offspring are only
relevance studies, and still in infancy, further mechanistic and
interventional trials or prospective studies are needed.
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