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Introduction: The increasing availability of healthcare data and rapid development of big
data analytic methods has opened new avenues for use of Artificial Intelligence (AI)- and
Machine Learning (ML)-based technology in medical practice. However, applications at
the point of care are still scarce.

Objective: Review and discuss case studies to understand current capabilities for
applying AI/ML in the healthcare setting, and regulatory requirements in the US, Europe
and China.

Methods: A targeted narrative literature review of AI/ML based digital tools was
performed. Scientific publications (identified in PubMed) and grey literature (identified on
the websites of regulatory agencies) were reviewed and analyzed.

Results: From the regulatory perspective, AI/ML-based solutions can be considered
medical devices (i.e., Software as Medical Device, SaMD). A case series of SaMD is
presented. First, tools for monitoring and remote management of chronic diseases are
presented. Second, imaging applications for diagnostic support are discussed. Finally,
clinical decision support tools to facilitate the choice of treatment and precision dosing
are reviewed. While tested and validated algorithms for precision dosing exist, their
implementation at the point of care is limited, and their regulatory and commercialization
pathway is not clear. Regulatory requirements depend on the level of risk associated with
the use of the device in medical practice, and can be classified into administrative
(manufacturing and quality control), software-related (design, specification, hazard
analysis, architecture, traceability, software risk analysis, cybersecurity, etc.), clinical
evidence (including patient perspectives in some cases), non-clinical evidence (dosing
validation and biocompatibility/toxicology) and other, such as e.g. benefit-to-risk
determination, risk assessment and mitigation. There generally is an alignment between
the US and Europe. China additionally requires that the clinical evidence is applicable
to the Chinese population and recommends that a third-party central laboratory evaluates
the clinical trial results.
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Conclusions: The number of promising AI/ML-based technologies is increasing, but few
have been implemented widely at the point of care. The need for external validation,
implementation logistics, and data exchange and privacy remain the main obstacles.
Keywords: software as a medical device, Artificial Intelligence and Machine Learning in medical practice, chronic
disease management, clinical decision support tools, precision dosing, real-world evidence, model-informed
precision dosing
INTRODUCTION

The healthcare industry is changing rapidly due to increasing
demand and new technological developments. Medicinal and
therapeutic options are becoming more complex and personalized,
causing regulatory and health technology assessment,
reimbursement, and therefore, healthcare accessibility to be
challenge in most countries.

In today's medical practice, patient support tools and Model-
Informed Precision Dosing (MIPD) offer practitioners an
additional arsenal for overseeing an individual's best treatment
options. Digital disease management platforms are aiming to
improve patient outcomes, leveraging the best medical care
options, and augmenting physicians' knowledge processing,
while reducing overall healthcare costs. As such, there are
numerous opportunities for Artificial Intelligence (AI)- and
Machine Learning (ML)-based solutions to enhance and
personalize medical practice.

While there has been an increasing trend in the digital
transformation of healthcare, the initial exuberance is now
maturing. Large pharmaceutical companies are heavily
investing in the digital transformation and are creating digital
health departments. They now list Google and IBM as their main
future competitors. The equity markets have grown from an
investment of $9.5 billion in digital health applications in 2018 to
an estimated $20 billion today (Zion, 2019). The increasing
availability of healthcare data and rapid development of big
data analytic methods opened new avenues for use of AI and ML
at the point of care. The Food and Drug Administration (FDA) is
on board. FDA has recently issued a statement on new steps to
advance digital health policies (FDA, 2019f) that encourage
innovation and enable efficient and modern regulatory
oversight and proposed a regulatory framework for AI- and
ML-based software as medical devices (FDA, 2018e).
INTRODUCTION TO MACHINE LEARNING

McCarthy defined AI as “the science and engineering of making
intelligent machines, especially intelligent computer programs”
(McCarthy, 2007). ML is a subset of AI in which the algorithm
allows computer programs to improve without additional
programming. Instead, the software learns through inferential
experience (Mitchell, 1997; Expert System, 2017).

Typical tasks of ML algorithms include classification,
prediction, pattern recognition, and clustering and feature
identification. In the healthcare arena, this includes for
in.org 2
example classifying patient profiles (e.g. responders vs. non-
responders to a treatment), defining proxies for diagnosis or
prognosis, predicting long term outcomes or interpreting
medical images. Unsupervised ML recognizes patterns in data
without pre-specified structure. Conversely, supervised learning
algorithms are trained on labeled structured data.

Another categorization of ML methods differentiates classical
learning algorithms from Deep Learning:

1. Classical ML algorithms: they include the most common ML
algorithms such as regression models, Support Vector
Machines as well as tree-based methods. Common types of
tree-based models are Decision Trees, Random forest, and
Gradient Boosting. These models split the set of data points
in subsequent steps based on the values of selected features,
aiming to identify homogeneous subsets of data points from
the overall heterogeneous set. The goal is to identify and
cluster subsets that are highly comparable in the features
describing them, as well as their outcome.

2. Deep Learning (DL) algorithms: also simply called Neural
Networks, deep learning models create complex
combinations of the original features in subsequent
combinations layers. The more layers, the ‘deeper' the
model, hence the name. The major advantage of this type
of models is to identify higher level features that have far
more predictive value than the original features. Common
applications include medical image analysis and natural
language processing applied to large text mining and big
medical database curation. Box 1 presents the process
involved in developing a machine learning model.
BOX 1 | Process of Developing a Machine Learning Model.

Developing a ML algorithm is a step-wise process that allows to classify
subjects or predict outcomes from a set of raw data:

1. Data Preprocessing: in the preprocessing phase the raw data is
analyzed and cleaned. Corrupt data points are identified and removed,
data points (e.g. individual cases where an outcome is to be predicted)
and relevant variables are selected, and the data (often from multiple
data sources) is transformed into a single dataset which has a tabular
format.

2. Feature Engineering: the raw variables in the data are transformed into
features. This process is characterized by manipulating and combining
raw features to increase their predictive value (e.g. combining weight and
length of a patient to produce the more relevant BMI). Categorical
variables are converted into dummy features, and numerical features
can be normalized or converted into categories (e.g. transforming the
numerical age to 5 age-categories)

3. Modeling: after transforming the data into a format that can be analyzed
by a ML model, an initial model is trained (the different types of models
June 2020 | Volume 11 | Article 759
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are presented in the section below). The predictive performance of this
standard, non-optimized model is usually used as a benchmark to
assess the added value of different optimization techniques.

4. Evaluation: the performance of the model is evaluated, and the predictive
value of the different features is analyzed. Based on these evaluations,
developers go back to the feature engineering to manipulate the features
and increase their predictive value in a hypothesis-based approach from
the insights of the modeling.

5. Model optimization: in the optimization phase a number of different types
of ML models are developed and evaluated. Based on the type of data/
problem, amount of data, and experience of the developers make some
models more suitable than others. The final selection for a type of model
is, however, predominantly based on trial-and-error and learning which
type of model provides the best performance for the specific problem.
After the most suitable type of model is selected, the hyper-parameters
(internal settings) of the model are optimized by testing different
configurations.
This article presents a selection of typical clinical applications
of ML. First, tools for monitoring and remote management of
chronic diseases are presented. Second, imaging applications for
diagnostic support are discussed. Third, CDSS (Clinical decision
support software) to facilitate precision dosing are reviewed. In
addition, evidence scope and regulatory requirements in the
United States (US), Europe, and China for applying AI/ML-
based tools and devices in the healthcare setting are discussed.
MATERIALS AND METHODS

A case series that is backed up by non-systematic searches in
academic databases and internet search engines is presented. To
identify regulatory requirements for introducing ML-based
solutions to the market, a targeted search and a narrative
review were performed on the websites of regulatory agencies
in the US, Europe, and China.
RESULTS

Four use cases representing a spectrum of clinical situations were
selected and described below.

Case 1: Home Monitoring and Remote
Management
Wearable technologies to detect motion, heart rate, and other
functional or physiological variables are widely available by
many providers (such as Fitbit®, Apple Watch®, Garmin®, and
Samsung Galaxy®, among others). Devices such as fitness devices
and smart watches are commonplace, with one in six consumers
in the US (Statista, 2019). Given the increasing needs and value
of real-world and real-time healthcare data, there has been
growing interest in such technologies for monitoring chronic
diseases as well as for earlier detection or alerts of clinical events
such as atrial fibrillation or stroke. Wearables for diabetes
management will most likely be one high-impact use case in
iers in Pharmacology | www.frontiersin.org 3
the short term. As wearable insulin measuring devices are already
widely available, the next step could be the automation of insulin
administration, with minimal human intervention.

For example, Tandem Diabetes Care has gained approval in
the US and Canada for their t:slim X2™ insulin pump with
Basal-IQ™ technology (FDA, 2018f; Tandem, 2019b). Basal-IQ
technology, a predictive low-glucose suspend algorithm, utilizes
sensor values from an integrated Dexcom G6 continuous glucose
monitor (CGM) to help reduce the frequency and duration of
low-glucose events (hypoglycemia). Dexcom G6™, which is also
an independently functioning constant glucose monitor, is
provided by Dexcom Inc. (Dexcom, 2019). Using Dexcom
G6™ CGM values, the Basal-IQ™ feature predicts the glucose
level 30 min ahead and suspends insulin when the glucose level is
predicted to drop below 4.4 mmol/L (80 mg/dl) or if the glucose
level is currently below 3.9 mmol/L (70 mg/dl). The system
resumes insulin administration once the sensor detects that the
glucose values start to rise. Integrated with the Dexcom G6
CGM, the Basal-IQ is based on simple linear regression
algorithm that predicts glucose levels 30 min ahead based on
three of the last four consecutive CGM readings. The feature
works with no finger sticks blood draw required (if glucose alerts
and CGM readings do not match symptoms or expectations, a
blood glucose meter should be used to make treatment
decisions). t:slim X2™ can suspend insulin for up to 2 h
within a 2.5-hour rolling window (Tandem, 2019a).

As part of the approval process in the US and Canada,
Tandem Diabetes Care has also conducted several studies on
the technology (Rajani et al., 2015; Brown et al., 2019). Firstly, a
six-week randomized pivotal crossover study comparing two 3-
week periods of at-home insulin pump use, one period using the
t:slim X2™ pump with Basal-IQ™ technology, and another
period using a CGM-integrated t:slim X2™ pump without
automated insulin suspension. The use of Basal-IQ™

technology reduced the number of sensor glucose readings
below 3.9 mmol/L (70 mg/dl) by 31% compared to the control
period using a standard CGM-integrated t:slim X2™ pump
without automated insulin suspension. Marked reduction of
sensor time below 3.9 mmol/L (70 mg/dl) was accomplished
without any increase in the frequency of hyperglycemia, and
patients described the system as simple to learn and use
(Forlenza et al., 2018). Secondly, data published on real-world
use of Basal-IQ technology has demonstrated even greater
reductions in time spent below 3.9 mmol/L (70 mg/dl) than
those seen in the pivotal trial (Muller et al., 2019).

Case 2: Feature Detection and Diagnosis
Support
Another major area of AI/ML applications is AI-based diagnosis
support. Such technologies may process any clinical and
nonclinical data as well as images, such as X-ray, computer
tomography (CT), magnetic resonance imaging (MRI),
ophthalmic images, etc.

The volume of medical images requiring interpretation have
been increasing systematically in the recent decades, reaching
for example 1 billion radiographic examinations annually
June 2020 | Volume 11 | Article 759
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(Waite et al., 2017) and exerting a pressure on the healthcare
systems to secure an increasing number of radiologists. Even
when radiologists are available and extensively trained, the
interpretation of medical images is still prone to biases and
errors whose rates have not diminished for decades (Waite et al.,
2019); these commonly lead to misdiagnosis (Goergen et al.,
2015). ML holds the promise of breaking this impasse by efficient
and accurate analysis of large volumes of medical imaging data,
hence with substantial physician's time saving. A clear advantage
of ML methods is that they can be directly applied to image,
without the need to extract numeric variables, and feature
extraction and classification can happen simultaneously.

One of the most sophisticated AI-based diagnosis support is
CT-Flow (HeartFlow®) software for non-invasive diagnosis and
management of coronary artery disease (CAD) based on a
coronary computerized tomography angiography (CCTA)
scans and patient characteristics (HeartFlow, 2019).
HeartFlow's coronary vascular physiologic simulation software
was cleared by the FDA via the De Novo (DEN130045)
regulatory pathway on November 26, 2014 (classification
product code PJA; regulation number 21 Code of Federal
Regulations (CFR) 870.1415, class II, 510(k) regulatory
pathway). Traditionally, coronary angiography is used to
evaluate the flow of blood in the blood vessels, this approach
generates risk of adverse events, including death. HeartFlow®

provides a safe alternative—if signs of CAD are present in a
CCTA, the images are sent to a cloud-based HeartFlow® server
for post-processing by a set of algorithms, supported by trained
analysts. ML and DL algorithms are then used to build a
physiological model of a patient's heart based on the CT scan
and computational fluid dynamics. These are applied to estimate
blood pressure, velocity, and flow, and thereby assess the blood
flow in the coronary arteries. In the final step a personalized,
color-coded 3-dimensional model of a patient's coronary arteries
is constructed, indicating functional information about each
blockage to a physician. The model is stored in the system and
fed into the DL algorithm, contributing to its improved
performance in future applications. Schematic outline of this
analytical process is provided on the manufacturer's website
(HeartFlow, 2019).

Another example is IDx-DR, an autonomous system for
diagnostic screening of patients with diabetes for diabetic
retinopathy, a serious condition of retina that can lead to
blindness, based on fundus images of the eye (IDx-DR, 2019).
IDx-DR's diabetic retinopathy detection device received FDA
clearance on April 11, 2018 via the De Novo (DEN180001)
regulatory pathway (classification product code PIB, regulation
number 21 CFR 886.1100, class II, 510(k) regulatory pathway;
(FDA, 2018a)]). IDx-DR's software contains two types of ML
algorithms: the first one for image processing, outputting a
binary classification of whether the images are of sufficient
quality to be properly analyzed by the diagnostic algorithm
and the second one using multilayer convolutional neural
networks and a multiscale feature bank detector, to distinguish
between patients suffering from more than mild diabetic
retinopathy (and should therefore be referred to a specialist)
Frontiers in Pharmacology | www.frontiersin.org 4
and patients who do not (and therefore should be re-screened in
a year). This solution is autonomous, meaning that it does not
technically require a clinician to make a medical decision.
Finally, OsteoDetect is a software device used to help clinicians
diagnose and locate wrist fractures. Similarly, as in the case of the
IDx-DR, the tool first determines whether an X-ray image is
eligible for processing, and if yes, it applies an ML-based
algorithm to this set of images in order to establish the
probability (confidence) of bone fracture. If the fracture is
deemed present, another algorithm will also map the X-ray
image, highlighting the location of the alleged fracture
(conditional probability map). This device is intended as an
adjunct tool, meaning that it is only a decision support,
presenting to a physician both the unaltered and altered
radiographic images for a final clinical decision.

AI-based diagnosis support can be considered as a
classification method. Hence predictive power and Receiver
Operator Characteristics Area Under the Curve (ROC AUC) of
such algorithms are typically evaluated based on a “ground
truth” established via majority vote of three board-certified
specialists. The established sensitivity and specificity of the
featured examples is around 90% (Danad et al., 2017; Driessen
et al., 2019). IDx-DR achieved sensitivity of 0.87 and specificity
of 0.91 (Abramoff et al., 2018). Heart Flow compared to
alternative non-invasive tests such as Coronary computed
tomography angiography (CCTA), single-photon emission
computed tomography (SPECT), and stress echocardiography
(SE) with ROC AUC 0.94 when evaluated in a prospective study
with 208 patients and 504 vessels (sensitivity 0.90 and specificity
of 0.86) (Driessen et al., 2019). In the case of OsteoDetect where
the result is a conditional probability map, the accuracy of
localization is established using a centroid method, analyzing
how far the actual fracture is located from the area pointed out by
the device.

Another parameter of interest is whether and by how much a
device-made or machine-assisted tool exceeds the quality of
prediction of non-specialist human graders, such as general
practitioners. For example, OsteoDetect improves the ROC
AUC by 0.049 (FDA, 2018c). HeartFlow Analysis improves
ROC AUC by 0.11, 0.12, and 0.24 compared to CCTA, SE, and
SPECT, respectively (Driessen et al., 2019).

This is typically established in observational studies (both
retrospective and prospective) using several hundred to several
thousand images. However, prospective clinical trials have also
been conducted. One prospective clinical trial includes
HeartFlow's Prospective Longitudinal Trial of FFRCT: Outcome
and Resources Impact (PLATFORM NCT03310619) trial, which
included 584 patients with new onset chest pain and
intermediate likelihood of CAD (ACC, 2019, April 17).
Another prospective clinical trial includes HeartFlow's
Prospective Randomized Trial of the Optimal Evaluation of
Cardiac Symptoms and Revascularization (PRECISE
NCT03702244) trial, which included approximately 2,000
patients with stable typical or atypical symptoms suggesting
possible CAD (Douglas et al., 2015; Douglas et al., 2016). The
advantages of a prospective study is that it allows for safety
June 2020 | Volume 11 | Article 759
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follow-up and establishes whether the patient in whom invasive
coronary angiography was deferred based on the results of Heart
Flow analysis experiences adverse events within one year
(Douglas et al., 2016).

The algorithms are typically incorporated in a client software
installed on local computers at the point of care. Analysis can be
made locally or be transferred via internet to an external server of
the device provider for analysis. For example, HeartFlow®

contains an application that transfers images via Digital
Imaging and Communications in Medicine (DICOM®)
protocol to Amazon Web Services Cloud from a local
computer or directly from a CT scanner. Whenever medical
data are transferred, controls need to be implemented to assure
data privacy and other aspects of computer security. User-
experience studies can be conducted to determine an optimal
way of interaction between the device and its operator. The
systems operators at the point of care need to be trained. The
training can be as minimal as 4 h in total, in the case of general
practitioners who had never undergone ocular imagining
training to use IDx-DR.

All of the devices previously described are regulatory-agency
approved (Software as Medical Device [SaMD]) and currently
marketed. All of them were developed with an intention to
optimize healthcare, either by sparing the risk and cost
associated with a diagnostic procedure (e.g., HeartFlow®) or
by shifting the point of clinical decision making from specialist
to primary/emergency care (e.g., IDx-DR and OsteoDetect), or
by reducing the need for training among specialists
(e.g., OsteoDetect).

Case 3: Clinical Decision Support System
A promising field for the application of ML in medicine is choice
of treatment. An example of this application is a clinical decision
support software developed by Pacmed, a medical ML developer
from the Netherlands. The application is built for the support of
physicians in prescribing antibiotics for patients with urinary
tract infections.

The guidelines in prescribing treatment choices, which are
based on clinical studies such as randomized clinical trials
(RCTs), are rather homogeneous (Lugtenberg et al., 2009). Due
to the exclusion criteria for these studies concerning
comedication, comorbidities, and risk minimization, a non-
representative study population is included.

Using ML, a CDSS that generates personalized guidelines for
every individual of the actual population was developed. To this
end, the characteristics of over 200,000 patients, including age,
gender, disease characteristics, comedication, comorbidities,
diagnostic results, and the details of previous urinary tract
infection episodes, were analyzed. By combining this with the
type of antibiotics prescribed and whether this intervention was
successful for every individual case, an ML algorithm was able to
predict the chances for the successful elimination of the infection
for the different treatment choices.

The development of such a CDSS knows numerous
challenges. First, accumulating a sizable dataset via individual
physician's practice is near impossible. Therefore, an aggregated
dataset, collected by the Dutch healthcare research organization
Frontiers in Pharmacology | www.frontiersin.org 5
NIVEL, was used for the development. Collaboration with such a
trusted third party also ensures the privacy of included patients
due to the level of anonymization applied by the researchers
aggregating the dataset.

Second, the successful implementation of a new CDSS in the
healthcare system requires adequate validation and certification
of the system. The developers are currently validating the system
in an implementation pilot study where the system is tested in
120 practices. Based on the results of this pilot study, the external
validity of the system will be assessed (the extent to which the
model generalizes to the new unseen population). When this
study is concluded positively, the developers can initiate the final
step before market introduction, which is the application for CE-
certification (applicable to the European Union [EU]) for
medical devices.

The third challenge in this development are the limitations in
the pilot study for integrating the new system in the existing
software that the health care practictioner uses. Full integration
in the existing software is often not feasible for a pilot study,
which means that the developers have to account for the
suboptimal user experience of the system. As such, the pilot
study is to be used in parallel to the existing software requiring
registration information in both systems. The results of the pilot
study, in terms of usability, actual use, and impact, therefore,
have to be corrected for the fact that the system that was used
provided barriers for use that would not be present in the
implementation of the actual system.

Case 4: Precision Dosing
All prescribers recognize the feeling of frustration when drug
therapy fails for their patients and the feeling of regret when
prescriptions cause adverse drug reactions or intolerable adverse
effects. These two outcomes occur ubiquitously in clinical
medicine despite drugs being prescribed, in most cases, as
directed by the manufacturer and/or clinical practice
guidelines. Such adverse clinical outcomes are not trivial,
costing around $US 42 billion globally per year (WHO, 2017).
There have been renewed efforts to individualize drug therapy
for patients since the Precision Medicine Initiative was
announced by the Obama administration in 2015 (Terry,
2015). This partly involves CDSS to optimize therapeutic
pathways and drug selection (see Case 3), but also recognition
of the importance of drug dose as a determinant of clinical
outcomes. Precision dosing has recently been defined as “dose
selection by a prescriber for an individual patient at a given time”
(Polasek et al., 2018). This definition covers initial dose selection
following the decision to commence drug therapy, and review of
dose based on the benefits/risks of ongoing treatment. Advanced
quantitative approaches for precision dosing are available, and
these are now collectively being described as “MIPD” (Wright
et al., 2019).

Drug therapy outcomes are improved using MIPD for drugs
with narrow therapeutic indices (TIs) in difficult-to-dose patients
for whom the clinical stakes are high, such as anti-microbial use
in patients who are hemodynamically unstable critically ill
(Rawson et al., 2018). The most successful MIPD approach is
the use of population pharmacokinetic/pharmacodynamic
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models (pop PK/PD) with Bayesian priors that are updated post-
dose with plasma concentrations from therapeutic drug
monitoring (TDM) to generate PK parameters for the drug in
the individual patient, thus allowing Bayesian forecasting of the
dose needed to obtain the target plasma concentration. A recent
example highlighting the value of this approach to precision
dosing is the RCT of paclitaxel-based chemotherapy in advanced
non-small cell lung cancer comparing MIPD with traditional
dosing based on body surface area (BSA). In this clinical study,
which involved >300 patients, there were significantly lower rates
of paclitaxel-induced toxicities (grade 4 neutropenia and > grade
2 neuropathy) in the MIPD arm compared to the BSA arm,
without compromising efficacy (Zhang et al., 2019). In contrast
to Bayesian forecasting, the use of AI/ML-derived algorithms as
DSTs for precision dosing has received relatively little attention.
By way of example, two cases from the literature are now
presented where AL/ML was used to inform dose selection in
clinical practice.

Several Artificial Neural Networks-based (ANN) software can be
used for precision dosing. An “anemia control model” (ACM) was
recently constructed and used to support the dosing of darbepoetin,
an erythropoietin-stimulating agent (ESA), in patients with anemia
and end-stage kidney disease who require hemodialysis (Barbieri
et al., 2015; Barbieri et al., 2016). The clinical goal was to achieve
stable hemoglobin (Hb) concentrations within a target Hb range,
thus improving the symptoms of anemia such as shortness of
breath, fatigue, and exercise intolerance. As the lifespan of
erythrocytes is about three months, darbepoetin dose during these
months is considered in the ACM simulations, together with
sampling times, dialysis treatment, and inflammatory markers,
iron studies, and other biochemistry results. The software
simulates the effect of different ESA doses and determines the
optimal dosing regimen to obtain the target Hb concentration.
The software learns through the data encountered. The
computational model is composed of layers of connected units
called neurons, exchanging information through weighted
connections. The ACM was initially built and retrospectively
tested on data from >3,000 patients undergoing hemodialysis,
showing that 90 to 93% of a test dataset had a percentage of error
lower than 1 g/dl in Hb concentration (Barbieri et al., 2015). The
ACM was then further tested by comparing a control phase of
standard of care (n = 640) and an observational phase (n = 752), in
which nephrologists were provided darbepoetin dose suggestions by
the ACM (note that the nephrologists could accept or reject the
ACM suggestions). The main findings of the study were: (1) the
monthly darbepoetin doses were lower (0.62 µg/kg/month versus
0.46 µg/kg/month), (2) the percentage of patients with target
hemoglobin were higher (70.6 to 82.3%), and (3) hemoglobin
fluctuations were lower (intrapatient standard deviation [SD]
from 0.95 to 0.83 g/d) in the observational part of the study
compared to the control phase (Barbieri et al., 2016). Thus, AI/
ML-based precision dosing of darbepoetin was superior in the
management of anemia in patients with end-stage renal disease
requiring dialysis, compared to experienced nephrologists.

A recent study published in Nature Medicine described the
development and performance of another AI-supported model for
Frontiers in Pharmacology | www.frontiersin.org 6
precision dosing, this time using reinforcement learning
(Komorowski et al., 2018). Reinforcement learning is a category
of AI in which a virtual agent learns from trial-and-error approach
using an optimized set of rules—a policy that maximizes an
expected return (Bennett and Hauser, 2013). An “Artificial
Intelligence Clinician (AI Clinician)” was used to guide the
selection of vasopressor doses and intravenous (IV) fluids for
patients with sepsis in the intensive care unit (ICU). The AI
model was highly multifactorial, including a large number of
clinical and biochemistry parameters. It was developed and
implemented based on admissions in ICU databases in the US,
with 80% of the data used for development and 20% for validation.
In the validation cohort, in-ICU, in-hospital, and 90-day mortality
were significantly lower when prescribers followed the AI Clinician's
suggestions on vasopressor doses and IV fluid administration. These
data suggest that AI/ML-based precision dosing exceeds by many-
fold the lifetime experience of human clinicians in the improvement
of clinical outcomes in the ICU.

As an epilogue to these two examples, an important application
of AI/ML in the field of precision dosing is to improve the definition
of precision dosing targets e.g., plasma drug concentrations,
biomarkers of pharmacodynamic effects, etc. This is currently
done by understanding PK/PD relationships using various
modeling approaches, predominantly during drug development,
such that the “sweet spot” for the dose that generates the best
balance of benefit/risk for a particular type of patient is determined.
The data are then used in an argument to support a limited number
of dose options when seeking marketing approval. Since AI/ML
approaches can accommodate very large datasets, precision dosing
targets based on real world evidence of clinical outcomes are likely
to be superior to those determined from limited datasets in drug
development. Furthermore, it is envisaged that AI/ML will be
increasingly important to support Bayesian forecasting for MIPD
based on traditional pop PK/PD models and TDM e.g., DoseMe®,
InsightRx®, and TDMx® software. Various AL/ML approaches
could be incorporated into software to enable learning and model
optimization during clinical use.
REGULATORY REQUIREMENTS FOR
AI/ML SOLUTIONS

When AI/ML is applied to the “treatment, diagnosis, cure,
mitigation, or prevention of disease” the software is referred to
as SaMD in the US (FDA, 2019a; IMDRF, 2013), and referred to
as Medical Device Software (MDSW) in the EU (EU
Commission, 2019). Regulatory requirements depend on the
level of risk associated with the use of the device. Generally,
medical devices comprising algorithms are the highest risk class
if their use involves surgical invasion, surgical implantation, or
administration of certain drugs to patients who are medically
compromised. Most devices using a software algorithm are
moderate risk, and a few are considered low risk.

The regulation of AI/ML systems presents specific challenges.
The level of self-learning, whether it is supervised learning on
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curated data, reinforcement learning, or possibly unsupervised
learning, impacts the challenges present for the manufacturer of
the software. This would include software safety and the
definition of the intended use, keeping the initial clinical
evaluation of the software valid. A controlled design process
that uses AI/ML in the development and collection of data
during clinical use, which could be used in the development of
the next version of the software, is a way of keeping control. The
regulation of software with continuous learning represents a task
for the future.
DISCUSSION

A recent review by McKinsey and company (Batra et al., 2018)
outline the point of consideration and potential benefits/risks of
application of AL and especially for ML and DL technologies in
various industries. Nine layers are identified as the type of ML/
DL technology where companies from heal thcare ,
pharmaceutical, and medical devices sectors can provide a
particular single/double and multiple layers. Definition and
examples of each of layer such as (1) accelerator (hardware),
(2) head node (hardware), (3) interface, (4) framework
(platform), (5) algorithm (platform), (6) architecture
(platform), (7) methods (training), (8) data types (training),
and (9) solution + use case (services). Of the AI demand and
opportunity in various industries, healthcare has been identified
to consist of a global market size of $5 to $10 trillion USD, with
over 50 use cases, over $1.0 billion USD start-up equity, and 15 to
20% economic impact (where economic impact is the sum of the
value related to all use cases divided by the global industry size).
By comparison, pharmaceutical and medical products
encompass <$5 trillion USD, 10 to 30 use case, <$0.5 billion
USD for business start-up, but surprisingly providing >20%
average AI economic impact (where the economic impact is
defined as the sum of the value related to all use cases divided by
the global industry size) (Batra et al., 2018).

Potential and Opportunities of AI/ML
Solutions
ML, embedded in medical devices or as a standalone software,
has a potential to transform clinical practice and enhance patient
outcomes while cutting down the healthcare costs (Hlatky et al.,
2013; Padhy et al., 2019). This transformative potential will be
realized whenML algorithms: (1) replace a physician in making a
clinical diagnosis, (2) help resolve a clinical question in the
primary rather than specialist care setting, (3) make it possible
to effectively monitor a patient at home instead of at a hospital,
and (4) make an accurate judgment about the type of treatment
and dose of a drug.

Above we provided examples of marketed AI/ML-based
solutions across clinical continuum that hold to this promise.
These are either autonomous, meaning that they do not
technically require a physician to make a medical decision
(t:slim X2 insulin pump, IDx-DR) or adjunct, meaning that
they support decision making by providing additional evidence
Frontiers in Pharmacology | www.frontiersin.org 7
or recommendation, for consideration of a physician (all other
presented examples). The support from AL/ML algorithm to
continue learning and evaluating the data will shorten the time
and lower the cost to provide health solution (e.g., diagnosis of a
disease), improve accuracy from human-alone interpretation/
evaluation, accelerate the solution for patients as compared to
traditional approach, and prevent disease worsening or save life.
Such solutions can bring measurable savings. For example, Skin
Analytics® software for the identification of potentially
cancerous skin lesions, reduced onwards referrals from
primary to specialist care by around 50% (Phillips et al., 2019).
A National Health Service (NHS) study conducted in Bristol in
2011, found that reducing the onward referral around this level
could save £43,000 per 100,000 population (NHS, 2019).

Some of the benefits of the AI/ML solution include knowledge
continuum integration with fast growing global databases that
collate continuous collection of patient data as part of the AI/ML
solutions and during the process of system learning from
emerging data. AI/ML might also provide recommendation to
potential imperfection of current data collection methods, which
allows gap analysis of current sample collection approach. In
parallel, due to the big data element, uncountable combinations
of patient demographic to disease pathology and progression will
advance the understanding of variability in identifying a certain
disease and the variability in the response of the disease to the
designated treatments.

Challenges for AI/ML Solutions
Even though the number of promising AI/ML-based
technologies is increasing, still, only a few have been
implemented widely at the point of care. Challenges occur
primarily at the stage of access to data for algorithm
development, algorithm validation and implementation at the
point of care.

Data Availability and Quality
One of common obstacles in development of ML-based solutions
based on retrospective data is access to suitable, large data for
model training and validation. While the strengths of ML are
particularly visible when algorithms are developed and validated
on large databases, such as Electronic Medical Record (EMR) or
clinical registries, access to such databases is limited by data
protection policies and high costs. Currently existing European
data protection laws and data governance models, for which the
General Data Protection Regulation (GDPR) sets the minimal
standard, require that a specific consent be given by a patient for
each use of their data. Many data sources were consented only for
the original, specific purpose of their collection. Absence of a
broad consent for future data repurposing can therefore limit
usability of high quality clinical data. Even when consent for data
repurposing is granted, another data protection and privacy
challenge is difficulty in pseudo-anonymization of images,
which are always marked with a patient identifier, and
therefore, require additional processing before they can be
reused, which increased the cost of data access and prolongs
the timelines.
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Once access to such data is granted, a quality challenge
remains, as clinical databases were typically not designed with
development of an ML-based algorithm and then software in
mind. As an effect, data incompleteness or a discrepancy between
clinical practice and the information captured in the database
can occur. For example, information about non-adherence is
typically missing, but could result in inefficacy of the prescribed
therapy. Objective clinical outcome data can also be missing, in
which case a surrogate for clinical outcome could be considered.
For instance, when a patient with UTI does not return to the
physician, it means that the infection was likely resolved.
However, it cannot be precluded that the patient migrated or
died. Requested information may not always be available to the
reporter, or the description of the data itemmay not be fully clear
for the reporter. The provided information could be a random
number or a default option and may not be accurate.

It can be of interest to pool data across centers/systems/
regions, which could result in challenges regarding data
integration and harmonization. Finally, crucial clinical
information might have been captured in free text. Data
mining techniques could then be considered, but these may
not be sufficiently accurate. Manual data processing is a resource
intensive alternative, which would require review of clinical
reports, covered by a confidentiality arrangement.

External Validation and Validity
ML algorithms per design achieve a high level of internal validity
that might be spurious (Pafitis et al., 2019) therefore, their
validation is necessary, ideally a cross-validation at the stage of
development (using a split sample) and external validation
before regulatory submission. To obtain trustworthy estimates,
sensitivity and specificity of ML algorithms should be tested in a
real-world setting of usual care. Factors such as the type of device
used for imaging, level of training of operators, selection of
participants to the study can otherwise elevate sensitivity and
specificity obtained from an RCT. In case of analysis of images,
interoperability plays a role and differences between images
generated using different devices on the market need to be
reconciled by calibrating the ML algorithm to each image-
capturing device.

These technical aspects are, however, just one facet of validity.
Another one is that despite the development of better drugs,
many drugs still do not work in real-world patients, either
because the drug is being used differently or the patient
population is more selective than those in the clinical trials.
Therefore, while selecting databases for the development of ML
algorithms, it is important to ensure that the test data will be
representative for the target patient group. Heterogeneity of
datasets used for development and validation can be a threat to
the validation but can be addressed through a thorough statistical
design of the study, e.g., through bridging.

Implementation at the Point of Care
As a prerequisite for successful implementation at the point of
care, it is important that the algorithm is readily accessible and
easy to use. The software would ideally be integrated with the
EMR and should be available to the end-user as part of the
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standard workflow at the point of care. Particularly in support of
a multidisciplinary decision-making process, integration with
other clinical decision support software can support
effective implementation.

The output of the algorithm should foster optimization of
treatment or diagnosis. The output should therefore be aligned
with daily clinical practice. As an example, if the software
indicates that the optimal dose would be 1.5 tablet while the
tablet is not divisible, the algorithm will not successfully support
dose selection.

From an end-user perspective, ML algorithm-based
information should be appropriately interpreted. A typical
pitfall can be, that the results are considered as irrefutable.
However, a clinical case might ‘fall out of data', i.e. might not
be represented by the data that were used to develop the ML
algorithm. Another pitfall is, that the ML algorithm may not be
based on causal relationships, while clinicians are used
to causalities.

Data privacy plays a critical role not only at the development
stage, but also after deployment of the ML solution at the clinic,
especially if prospectively collected patient data need to be
transferred to a centralized server for analysis. Providers of
such solutions need to assure an appropriate level of data
protection and computer security.

Ethics of the AI/ML-Based Solutions
AI/ML based solutions are prone to all types of biases in classical
computer systems—the preexisting social biases influencing the
way a software is designed, the biases emerging from how
software is being used, and purely technical biases (Friedman
and Nissenbaum, 1996). In this context, the critical ethical
question is whether the algorithm can be trusted—and not
only whether it produces technically “true” results but also if it
acts in the best interest of patients in the way that a physician
does Char et al., 2018; Gubbi et al., 2019). One prominent
problem with algorithm's fairness is the potential for
discrimination of certain groups of patients, particularly if such
patients were not properly represented in data used for the
algorithm development. The problem, though, is that ML-
based algorithms with their “black-box” character are
inscrutable by design which makes it very difficult to discover
their malfunctioning resulting in unfairness (Mittelstadt et al.,
2016). EU addressed this problematic in the GDPR, where the
concepts of “right to explanation” and “Explainable AI” are
introduced. The idea behind them is that an individual who is
affected by a result produced from an AI/ML algorithm has the
right to know the reasons behind the result (i.e., gets at how AI
arrives at the decisions it does; how the decision was arrived at).
The process and rationale for the outcome should therefore be
disclosed as an explanation to individuals or subject experts.
Another regulation contained in the GDPR is Article 22, which
states that “individuals have a right not to be subject to a decision
affecting them in a significant way if this decision is made by an
automated system without human input” which could be
interpreted as a rationale against use of autonomous ML-based
system not requiring clinician input on the European market.
Finally, it is also possible that an AI/ML algorithm is
June 2020 | Volume 11 | Article 759

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Angehrn et al. Machine Learning in Healthcare
intentionally designed in a biased way, e.g. to favor diagnoses
which are more profitable in certain healthcare systems
(Char et al., 2018) or to recommend treatments produced by
a particular company. Last but not least, a question needs to
be asked about the role, responsibility and accountability of a
physician in the emerging clinical practice where automatization
and ML-based decisions will play an increasing role. Real-life
examples are still scarce but the literature points to a number of
anticipated problems. These range from dispersed or even
removed responsibility in case a ML-based solution—created,
approved and applied by a long and often opaque chain of actors
—malfunctions (Mittelstadt et al., 2016), up to a blunt
speculation whether AI superior performance in quickly and
objectively analyzing complex and large volume evidence will
eventually render physicians obsolete (Goldhahn et al., 2018).

Regulatory Requirements
Regulatory oversight of AI/ML appears focused on ensuring
safety through a system of verifications. Some concepts (Japan)
aim at verifying the software itself (Banks, 2019), while others
(US) are aimed at verifying the operational excellence of the
business entity that developed the software.

Regulatory requirements in the US, Europe and China
depend on the level of risk associated with the use of the
device in medical practice, and can be classified into
administrative (manufacturing and quality control), software-
related (design, specification, hazard analysis, architecture,
traceability, software risk analysis, cybersecurity, etc.),
clinical evidence (including patient perspectives in some cases),
non-clinical evidence (dosing validation and biocompatibility/
toxicology) and other, such as e.g. benefit-to-risk determination,
risk assessment and mitigation.

Generally, there is an alignment between the US and Europe.
The differences include the addition of a Clinical Evaluation
Report and the potential for additional clinical evaluation
required for class IIa and class IIb devices in Europe. China
additionally requires that the clinical evidence is applicable to the
Chinese population, including clinical characteristics related to
race, local epidemiology, and diagnostic and treatment practices,
among other requirements (NMPA, 2019). This might include
sampling pharmacokinetic data from Chinese patients in China
or conducting a separate clinical study in China. A specific
characteristic of the Chinese regulatory requirements is that
analysis of the wet samples and clinical trials in general needs
to be performed by a third-party central laboratory located in
China (NMPA, 2019).
FUTURE PERSPECTIVES

Despite the popularity of AI/ML/DL technologies (Fleming,
2018) and the positive press of many applications to healthcare
and the pharmaceutical and medical devices industry, a large
proportion of researchers have yet to uncover the full capabilities
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of such advanced technologies to drug research and
development. The future moving forward, would require AI to
be embedded to a part of the educational system, especially at the
graduate level. The recent (Madabushi et al. , 2019)
demonstrations, adoption, and acceptance of the use of model-
informed drug development/pharmacometrics (PMX) to
support drug discovery and development can be seen from
both pharmaceutical industries and regulatory authorities.

There are many opportunities to combine the strengths of
PMX and ML (Chaturvedula et al., 2019). PMX models are
constructed with differential equations and can incorporate
(semi-) mechanistic knowledge that are based on biological
and pharmacological principles. PMX models may become
quite complex (e.g., physiologically based pharmacokinetic
model and quantitative system pharmacology models (Danhof,
2016)]) and covariate selection can be time-consuming. On the
other hand, ML is a data-driven analysis approach without
mechanistic components. As such, ML-based approaches are
capable of analyzing large datasets almost in real time.

Data-driven ML scientists efficiently “train models” utilizing
large datasets, whereas pharmacometricians “develop (semi-)
mechanistic models” leveraging scientific knowledge. These
different strengths give us the opportunity to combine PMX
and ML methods. ML-based approaches can facilitate
development of PMX computer models by streamlining
screening and selection of covariates, while mechanistic PMX
components can be incorporated in ML-based algorithms to
enhance real-time clinical decision support (Hutchinson et al.,
2018). Another application of AI in PMX is in the area of
oncology (Houy and Le Grand, 2018). A Monte-Carlo tree
search algorithm (from a class of AI) was embedded as part
the protocol design to optimize the temozolmide dose using
emerging exposure, toxicity, and efficacy data. This approach is
superior to the traditional maximum tolerated dose, as outlined
in the temozolmide example, and able to handle population
complexity and variability from oncology patient's data. Another
example seen in oncology is from FDA's publication on
application of ML for time-to-event analysis in oncology
(Gong et al., 2018).
CONCLUSIONS

ML can deliver effective algorithms supporting practitioners in their
daily work, with functions spanning from clinical monitoring
through model-based precision dosing. While most of them will
only provide recommendations to be reviewed and considered by
physicians, others are designed to work autonomously and achieve
higher accuracy than the physicians themselves.

Despite an increasing number of promising AI/ML-based
technologies, few have been implemented widely at the point of
care. The need for external validation, data exchange and
privacy, and implementation logistics remain the main
obstacles. Regulatory requirements depend on the level of risk
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associated with the use of the device in medical practice, and the
regulatory practice of ML-based medical devices is currently
being developed. We expect a rise in the use of ML-based
solutions on the healthcare market, including in the precision
dosing segment, where ML will become a part of the model-
informed precision dosing.
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