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Donatella Pastore’, Andrea Coppola’, Roberto Arriga’, Aikaterini Andreadi’,
Giulia Donadel®, Nicola Di Daniele®, Alfonso Bellia’*® and Davide Lauro™°

7 Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy, 2 Department of Human Sciences and
Quality of Life Promotion, San Raffaele Roma Open University, Rome, Italy, 3 Department of Neurology, Miller School of
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Patients with diabetes mellitus (DM) are more prone to develop cognitive decline and
neurodegenerative diseases. A pathological association between an autosomal dominant
neurological disorder caused by brain accumulation in mutated huntingtin (mHTT), known
as Huntington disease (HD), and DM, has been reported. By using a diabetic mouse
model, we previously suggested a central role of the metabolic pathways of HTT, further
suggesting the relevance of this protein in the pathology of DM. Furthermore, it has also
been reported that intranasal insulin (Ins) administration improved cognitive function in
patients with neurodegenerative disorders such as Alzheimer disease, and that exendin-4
(Ex-4) enhanced lifespan and ameliorated glucose homeostasis in a mouse model of HD.
Although antioxidant properties have been proposed, the underlying molecular
mechanisms are still missing. Therefore, the aim of the present study was to investigate
the intracellular pathways leading to neuroprotective effect of Ins and Ex-4 hypoglycemic
drugs by using an in vitro model of HD, developed by differentiated dopaminergic neurons
treated with the pro-oxidant neurotoxic compound 6-hydroxydopamine (6-ohda). Our
results showed that 6-ohda increased mHTT expression and reduced HTT
phosphorylation at Ser421, a post-translational modification, which protects against
mHTT accumulation. Pre-treatment with Ins or Ex-4 reverted the harmful effect induced
by 6-ohda by activating AKT1 and SGK1 kinases, and by reducing the phosphatase
PP2B. AKT1 and SGK1 are crucial nodes on the Ins activation pathway and powerful
antioxidants, while PP2B dephosphorylates HTT contributing to mHTT neurotoxic effect.
In conclusion, present results highlight that Ins and Ex-4 may counteract the neurotoxic
effect induced by mHTT, opening novel pharmacological therapeutic strategies against
neurodegenerative disorders, with the main focus on HD, still considered an
orphan illness.
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INTRODUCTION

A significant pathological association between type 2 diabetes
mellitus (T2DM) and progression on the decline in cognitive
function and neurodegenerative diseases has been reported
(Bangen et al., 2015). Longitudinal prospective studies
conducted in patients with Alzheimer disease (AD) (Arnold
et al, 2018), Parkinson disease (Pagano et al., 2018), and
Huntington disease (HD) support this evidence (Montojo
et al., 2017), suggesting that common molecular pathways may
be involved in the mutual development of T2DM and the
aforementioned illnesses.

By using a proteomic approach in a diabetic mouse model, we
demonstrated a novel central role of huntingtin protein (HTT) in
metabolism and in glucose homeostasis (Capuani et al., 2015).
An expansion of the CAG (polyQ) repeats in the gene encoded
for HTT caused HD, which is an orphan autosomal dominant
disease leading to neuronal death (apoptosis), dementia, and
movement disorders (Jimenez-Sanchez et al., 2017). However, so
far, molecular mechanisms linking T2DM and HD need to be
fully elucidated (Montojo et al., 2017). The increase in cellular
oxidative stress, characteristic of both diseases, has been
indicated among the main processes (Montojo et al., 2017).
Moreover, a positive associations between HTT and kinases
activated by insulin (Ins), such as AKT1 and serum- and
glucocorticoid-induced kinase-1 (SGK1), and their downstream
pathways, have also been suggested (Rangone et al., 2004). AKT1
and SGKI1 are powerful antioxidants (Ferrelli et al., 2015) and
were already implicated in HD pathogenesis (Bowles and Jones,
2014). By further investigating involvement of these kinases on
HD, this will allow us to open novel therapeutic strategies against
this orphan disease. Drugs that counteract T2DM may be able to
cure and delay the progression of HD. Insulin and exendin-4
(Ex-4) have already been proven to exert neuroprotection in
experimental models of AD and HD (Rangone et al., 2004)
(Martin et al., 2009; Zhang et al., 2015). Therefore, in the present
study, we sought to investigate the mechanisms underlying the
protective role of both Ins and Ex-4 against mutated HTT-
inducing toxicity by an in vitro model of HD.

MATERIALS AND METHODS

Cell Culture and Differentiation

Human neuroblastoma cell line SH-SY5Y were purchased from
ATCC (American Type Culture Collection Manassas, VA, USA).
Cells were cultured in Dulbecco's Modified Eagle Medium/
Nutrient Mixture F-12 medium (DMEM F-12), supplemented
with 10% heat-inactivated fetal bovine serum (FBS, Corning), 2
mM of glutamine, and 100 U/ml of penicillin/streptomycin

Abbreviations: T2DM, Type 2 diabetes mellitus; AD, Alzheimer disease; HD,
Huntington disease; HTT, huntingtin; mHTT, mutated huntingtin; pHTT,
phosphorylated huntingtin; SGK1, Serum- and glucocorticoid-induced kinase-1;
PP2B, Serine/threonine-protein phosphatase 2B; 6-ohda, 6-hydroxydopamine;
Ex-4, Exendin-4; Ins, Insulin; RA, Retinoic acid; VMAT1/SLC18A1, Vesicular
monoamine transporter 1; TH, Tyrosine hydroxylase.

(Thermo Fisher Scientific®, Waltham, MA, USA). Cells were
maintained at 37°C in humidified air containing 5% CO,.

Cell differentiation was performed according to Lopes et al.,
(Lopes et al., 2017). Briefly, 4x10° cells/well were seeded in a six
well plate, using 10% FBS medium. After 24 h (designed as day
1), medium was removed and replaced with 1% FBS medium
supplemented with 10 uM of all-trans-retinoic acid (RA, Sigma
Aldrich). Medium was replaced every 2 d for 6 d when the
presence of neuronal differentiation markers were verified and
cells were used for experiments. Morphological changes, due to
differentiation, were monitored by using an inverted microscope
at 100X and 40X of magnification.

Treatments

Cell neurotoxicity was induced by using 6-hydroxydopamine (6-
ohda, Sigma Aldrich), as previously reported (Lopes et al., 2017).
Briefly, cells were seeded in a 96 multi-well plate (2x10* cells/
well) and, following the differentiation process as previously
reported, were treated with increasing concentration of 6-ohda
(10-30-50-75-100 uM), for 24 h. In order to avoid 6-ohda
oxidation, as reported by manufacturer's protocol, we dissolved
the powder by adding the antioxidant sodium metabisulfite at
0.1%. Once we assessed the neurotoxic effects, by using 6-ohda
(30 uM) for 24 h, SH-SY5Y cells were seeded in 6 multiwell plate
(4x10° cells/well, for western blot and FACS analysis) or in a 96
multi-well plate (2x10* cells/well, for cell toxicity assay), and
differentiated. Subsequently, cells were pre-treated with Ex-4
(Sigma Aldrich) (300 nM) (Eakin et al., 2013) for 2 h, or with
Ins (Sigma Aldrich) (100 nM) (Ramalingam and Kim, 2017) for
1 h, and then 6-ohda was administered.

Cell Viability Assay MTT

Cell viability was evaluated through MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
colorimetric assay (Sigma Aldrich), following manufacturer's
protocol. Briefly, SH-SY5Y were seeded and treated as
described in the previous section. Then cells were incubated at
37°C, with medium containing MTT 5 mg/ml; after 3 h, DMSO
(dimethyl sulfoxide) (Sigma Aldrich) was added in the medium
and MTT-formazan conversion was evaluated by measuring
sample absorbance at 570 nm.

Gene Expression

Total RNA was isolated from SH-SY5Y by using Trizol reagent
(Thermo Scientific) as previously reported by Pacifici et al
(Pacifici et al., 2014). Briefly, two and one-half micrograms of
total RNA was reverse transcribed into cDNA using a High
Capacity cDNA Archive Kit (Applied Biosystems). Qualitative
qRT-PCR was performed using an ABI PRISM 7500 System and
TagMan reagents (Applied Biosystems). Each reaction was
performed in duplicate using standard conditions, and results
were normalized with glyceraldehyde 3-phosphate
dehydrogenase (GAPDH). The relative expression of VMATI
(vesicular monoamine transporter 1) was calculated using the
comparative AACT method, and the values were expressed as
2784CT (Livak and Schmittgen, 2001). VMAT1 and GAPDH
sequence primers are inventoried and under patent protection.
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Apoptosis Cell Death Analysis

SH-SY5Y were seeded and treated as previously described.
Subsequently, cells were collected, centrifuged at 1,600 rpm for
5 min and fixed in a 70% ethanol solution for 45 min at +4°C.
Then, were centrifuged at 1,600 rpm for 5 min and resuspended
in a 25 pg/ml propidium solution, containing 0.05% sodium
citrate and 0.1% of TRITON X-100. Apoptotic cells in sub G1
phase of the cell cycle (hypodiploid nuclei) were identified and
quantified by flow cytometry as reported by Riccardi et al,
(Riccardi and Nicoletti, 2006).

Western Blot Analysis

Differentiated SH-SY5Y were lysed in cold lysis buffer containing
20 mM Tris (pH 7,6), 137 mM NaCl, 1,5% Nonidet P40, 1 mM
MgCl,, 1 mM CaCl,, 10% glycerol, 2 mM PMSF
(phenylmethanesulfonyl fluoride), phosphatases, and proteases
inhibitors cocktail 1X (Sigma Aldrich). Samples were maintained
on ice for 30 min and then centrifuged at 14,000 rpm for 30 min.
Supernatants, containing proteins extracts were collected and
protein concentration were determined by colorimetric Bradford
assay (Bio-Rad Laboratories), using BioPhotometer " Plus
instrument (Eppendorf). Protein samples were used for
Western blot analysis or stored at —80° C. Then, 50 pg of
protein lysates were loaded on pre-cast 4-12% or 3-8% gels
(Thermo Scientific) separated by SDS-PAGE and transferred to
nitrocellulose membranes using Trans Blot TurboTM Transfer
System (Bio-Rad Laboratories). Subsequently, membranes were
probed with the following primary antibodies: mouse anti
vinculin, mouse anti PP2B (1:200, Santa Cruz Biotechnology),
mouse anti actin, rabbit anti PARP1, rabbit anti TH, rabbit anti
HTT D7F7, rabbit anti AKT1 phospho-Tyr 473, rabbit anti
AKTI1 (1:1,000, Cell Signaling), mouse anti HTT mab2166,
rabbit anti SGK1 (1:500 and 1:1,000 respectively, Millipore),
and rabbit anti HTT phospho-Ser 421 (1:500, Abcam). The
secondary antibodies were purchased from Jackson
Immunoresearch and used at a dilution of 1:10000. The
antigen-antibody complexes were next detected with enhanced
chemiluminescence (ECL) reagent (GE Healthcare) followed by
exposure of the ChemiDoc Touch (Bio-Rad Laboratories). A
densitometric analysis was performed by using Image LabTM
Software (Bio-Rad Laboratories).

Statistical Analysis

Data were analyzed by using GraphPad Prism 5 (La Jolla, CA,
USA). All data were expressed as mean + SEM, as indicated.
Statistical analysis was performed by unpaired one-
tailed Student's t-test. Values of p<0.05 were considered
statistically significant.

RESULTS

Generation of an In Vitro Model of HD
To generate an in vitro model of HD, human neuroblastoma SH-
SYS5Y cells were used. SH-SY5Y cells were already employed to

mimic a cellular model of HD based on the in vitro accumulation
of HTT (Min et al., 2013).

Since this cell line displays an immature fibroblast-like
phenotype not suitable for a translational study (Santillo et al.,
2014), we induced differentiation into neuronal-like phenotype.
Based on Lopes and colleagues (Lopes et al., 2017), retinoic acid
(RA), was used to differentiate SH-SY5Y (Lopes et al., 2017).
Cells were treated with RA 10 uM for 6 d, as previously described
in Material and Methods. Then, while non-treated cells
maintained unpolarized cell bodies and few short neurites
(Figures 1A, C), RA treated cells showed more pyramidal cell
bodies and extensive and developed neurites, typical of neuronal
cells (Figures 1B, D).

In order to validate the differentiation process, vesicular
monoamine transporter 1 (VMAT1/SLC18A1), a marker for
synaptic function (Wimalasena, 2011; Korecka et al, 2013),
and tyrosine hydroxylase (TH), a specific dopaminergic
neuronal marker (Daubner et al.,, 2011), were both evaluated.
As presented in Figure 1E, VMATI1/SLC18A1 gene expression
significantly increased in cells following RA administration,
compared to control cells (p<0.05). VMAT1/SLC18A1 is also a
monoamine transporter, which includes dopamine. Since
dopaminergic neurons are those most affected by
neurodegeneration in HD (Walker, 2007), we believe that the
present cellular model including these neurons may increase the
impact of present results. Accordingly, TH expression levels
significantly enhanced in RA treated cells as compared to
control cells (p<0.05) (Figure 1F). These results suggest that
RA, by conferring a specific dopaminergic neuronal phenotype
to SH-SY5Y cells may be used to generate a cell line to study HD.

6-Hydroxydopamine is a specific neurotoxic molecule able to
induce death in dopaminergic neurons (Breese et al., 2005). In
postmortem studies, brains from HD patients have shown to
loose predominantly dopaminergic neurons as compared to
control subjects (Rangel-Barajas and Rebec, 2016). Then, we
hypothesized a role of 6-ohda in mimicking this neuronal
damage observed in these patients. The toxicity of 6-ohda in
neurons and the related accumulation of mutated huntingtin
(mHTT) depend on the cellular increase in oxidative stress levels
(Sulzer and Zecca, 2000). Therefore, differentiated cells were
treatedwith increasing concentrations (from 10 to 100 uM) of 6-
ohda for 24 h. Thereafter, cell viability was assessed using MTT
colorimetric assay. Results reported in Figure 2A presented as 30
UM of 6-ohda, which was the lowest concentration to induce a
significant reduction in cell viability after 24 h of treatment
(p<0.001). This concentration was selected for the subsequent
experimental procedures.

The measurement in cell viability does not explain the whole
mechanism underlying the cellular death that instead may be
multiple and variable (Pattison et al., 2006). We then tested
apoptotic cell death in the same experimental conditions. As
shown in Figure 2B, 6-ohda administration induced apoptosis in
differentiated SH-SY5Y compared to non-treated differentiated
control cells (p<0.005). Moreover, to further validate pro-
apoptotic effect of 6-ohda, we measured PARP1 cleavage, a key
step in apoptotic process (Chaitanya et al., 2010). Differentiated
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cells treated with 6-ohda showed a significant increase in PARP1
cleavage and activation (Figure 2C), confirmed induction of
apoptotic the process.

To evaluate whether 6-ohda administration mimicked HD
pathogenesis, we measured mHTT protein accumulation.
Following 6-ohda stimulation, mHTT expression was evaluated
by western blot analysis. As reported in Figure 3A, 6-ohda
significantly enhances mHTT levels (p<0.001), which is the
most relevant pathogenic mechanism leading to HD (Jimenez-
Sanchez et al., 2017). Phosphorylation of HTT in Serine421
(S421-pHTT) conversely plays a pivotal role in neuroprotective
mechanisms against HD by blunting mHTT accumulation/
neurotoxicity (Warby et al., 2009; Kratter et al., 2016).
Accordingly, in our experimental model S421-pHTT levels
were significantly reduced following 6-ohda treatment as
compared to control cells (p<0.05) (Figure 3B). These data
suggest that 6-ohda, by inducing either mHTT increase than
S421-pHTT decrease, may be considered a useful neurotoxic
stimulus to study in vitro molecular mechanisms responsible
for HD.

Neuroprotective Effect of Ex-4 and Ins
Against 6-ohda-Induced Apoptosis

Ex-4 is an agonist of glucagon-like peptide-1 (GLP-1) receptor
which acts by promoting Ins secretion (Furman, 2012). In order
to test whether Ex-4 and Ins exert a protective effect against
neurotoxicity induced by 6-ohda, differentiated cells were pre-
treated with Ex-4 (300 nM, for 2 h) (Eakin et al., 2013), or Ins

RA10 pM
(1% FBS)

E
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FIGURE 1 | RA (retinoic acid) induced SH-SY5Y differentiation. Non differentiated SH-SY5Y, were cultured in 10% FBS enriched medium analyzed after 6 d at 40X
(A) and 100X of magnification (C). SH-SY5Y were differentiated by using RA 10 uM, for 6 d in 1% FBS enriched medium, and analyzed 40X (B) and 100X of
magnification (D). Differentiated cells showed extended neurites, forming a neuronal interconnection network (indicated by arrows). (E) Expression analysis of
vesicular monoamine transporter 1 (VMAT1), a neuronal differentiation marker, was carried out by using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as
internal control. VMAT1 was significantly increased in RA treated cells. (F). Protein expression levels of tyrosine hydroxylase (TH) were evaluated. Actin was used as
loading control. TH protein expression was significantly enhanced in RA treated cells. Graphs illustrate three separate studies, all yielding similar results (n=3). Data

(100 nM, for 1 h) (Ramalingam and Kim, 2017) before 6-ohda
(30 uM) administration for 24 h. Afterward, cell viability was
evaluated by MTT colorimetric assay. Figure 4A presented with
both Ex-4 and Ins significantly improved cell viability, which was
impaired by 6-ohda, as compared to control cells (p<0.001). As
expected, both Ex-4 and Ins decreased apoptotic cell death
induced by 6-ohda (p<0.05 and p<0.001, respectively) (Figure
4B). This neuroprotective effect was confirmed by the reduction
on PARPI cleavage (p<0.005) (Figure 4C) induced by both Ex-4
and Ins, supporting the pro-survival effect of these compounds.

Ex-4 and Ins Prevented Increase of
Mutated HTT by Promoting HTT
Phosphorylation Via AKT1, SGK1, and
PP2B Modulation
We also tested whether Ex-4 and Ins exerted positive effect on
mHTT accumulation levels. Thus, differentiated SH-SY5Y were
pre-treated with Ex-4 or Ins, as previously described, and then
treated with 6-ohda for 24 h. As shown in Figure 5A, pre-
treatment with Ex-4 or Ins significantly blunted the increase in
mHTT levels induced by 6-ohda (p<0.05 and p<0.005,
respectively) in dopaminergic neurons. As previously
demonstrated, 6-ohda reduced S421-pHTT levels that in
neurons protects against accumulation of poly(Q)-mHTT
(Metzler et al., 2010).

As expected, both Ex-4 and Ins significantly restored S421-
pHTT levels as compared to those observed after 6-ohda
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FIGURE 2 | 6-Hydroxydopamine (6-ohda) administration reduced cell viability and induced apoptotic death. (A) Cell viability was measured by MTT colorimetric
assay after 24 h of treatment with 6-ohda, at indicated concentrations. 6-ohda significantly reduced cell viability in SH-SY5Y in a dose dependent manner. (B)
Apoptosis was evaluated 24 h after 30 uM of 6-ohda administration. Cells were stained with propidium iodide (Pl) and analyzed: 6-ohda administration induced a
significant increase in cell apoptosis. (C) Poly [ADP-ribose] polymerase 1 (PARP1) cleavage, was increased in SH-SY5Y treated with 30 pM of 6-ohda for 24 h. Total
PARP1 was used as loading control. Graphs illustrate three separate studies, all yielding similar results (n=3). Data are reported as mean+SEM. **p < 0.005,

***p < 0.001. MTT: (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium.
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FIGURE 3 | 6-Hydroxydopamine (6-ohda) administration increased mutated huntingtin (mHTT) by reducing HTT phosphorylation at Ser421. (A) Protein expression
levels of MHTT was significantly increased following 6-ohda administration. (B) phosphorylated huntingtin (pHTT) [at Ser421 (S421)] levels were reduced by the
treatment with 6-ohda. HTT WT (huntingtin wild type) and total HTT were respectively used as loading controls. Graphs illustrate three separate studies, all yielding
similar results (n=3). Data are reported as mean+SEM. *p < 0.05, **p < 0.001.
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FIGURE 4 | Exendin-4 (Ex-4) or insulin (Ins) pre-treatment restore cell viability and blunted apoptosis. (A) Cell were treated with 300 nM of Ex-4 for 2 h, or with 100
nM of Ins for 1 h before neurotoxic insult with 6-hydroxydopamine (6-ohda) (30 uM, 24 h). Cell viability, analyzed by MTT assay, revealed a significant increase of
viability in both Ex-4 and Ins pre-treated cells relative to cells treated with 6-ohda alone. (B) In the same experimental conditions of Panel A, apoptosis was evaluated
by staining cells with propidium iodide (Pl). Both in Ex-4 and Ins pre-treated cells a reduction in apoptosis was observed, compared to cells treated with 6-ohda
alone. (C) Poly [ADP-ribose] polymerase 1 (PARP1) cleavage, was reduced following Ex-4 or Ins administration. Total PARP1 was used as loading control. Graphs
illustrate three separate studies, all yielding similar results (n=3). Data are reported as mean+SEM. *p < 0.05, *p < 0.005, **p < 0.001.

administration (p<0.005 and p<0.05, respectively) (Figure 5B),
suggesting that both drugs induced neuroprotection through
HTT phosphorylation in S421.

The role of AKTI and SGKI in promoting HTT
phosphorylation in S421 is known (Humbert et al., 2002;
Rangone et al., 2004). As reported in Figure 6A, AKT1
phosphorylation at S473, and subsequent AKT1 activation,
decreased after 6-ohda administration, as compared to control
non-treated cells (p<0.05). Pre-treatment with Ins enhanced
AKT1 levels both in basal condition (p<0.005), and after
noxious stimulus (p<0.005), further remarking Ins specificity for
this kinase. No significant results were present for Ex-4. These data
suggest that Ins, in an AKT1-dependent manner, may exert a
neuroprotective effect by promoting HT'T phosphorylation.

Similarly to AKT1 also SGK1 protein expression was reduced
compared to control cells following 6-ohda administration
(p<0.005) (Figure 6B). Instead, conversely to AKT1, either Ex-
4 than Ins significantly increased expression of SGK1, either in
basal conditions (p<0.05) than after stimulation with 6-ohda
(p<0.005) (Figure 6B). Our data suggest a significant

involvement of AKT1 and SGKI kinases in the Ex-4 and Ins
induced neuroprotection mediated by S421-pHTT.

However, HTT phosphorylation in S421 is not only regulated
by AKT1 and SGKI1 kinases, but also by PP2B phosphatase
(Saudou and Humbert, 2016). As shown in Figure 6C a
substantial modulation of phosphatase levels was evident. In
particular, PP2B expression significantly increased in cells
treated with 6-ohda, suggesting that reduced levels of S421-
pHTT induced by 6-ohda could be also associated to an increase
in its dephosphorylation by PP2B. It is also worth noting as pre-
treatment with Ex-4 or Ins prevented the increase in phosphatase
induced by 6-ohda (Figure 6C), demonstrating as the
neuroprotective effect associated to these hypoglycemic agents
can be also mediated by their ability in reduce PP2B expression.

DISCUSSION

In the present study, by the development of an experimental in
vitro model commonly used to investigate Parkinson's disease
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(Chen et al., 2020), we generated a novel in vitro model consisting
of differentiated dopaminergic neurons in order to explore
possible molecular mechanisms underlying physiopathology of
HD. Through this model, we found as differentiated human
neuroblastoma cell line treated with a neurotoxic stimulus, 6-
ohda, increased levels of cellular apoptosis, and mHTT protein
accumulation that are associated, in turn, to low expression

of HTT phosphorylation. Pre-treatment with two known
hypoglycemic drugs, Ex-4 and Ins, resulted in neuronal
protection by reducing mHTT levels and by restoring HTT
phosphorylation, mainly through modulation of specific kinases,
like AKT1, SGK1, and PP2B (Figure 7).

A pathological link between DM and HD has been already
reported in literature (Montojo et al., 2017). Although HD is a

Frontiers in Pharmacology | www.frontiersin.org

May 2020 | Volume 11 | Article 779


https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

Rea et al.

Insulin, Exendin-4, and Huntington Disease

Apoptosi and Neurodegeneration

Pre-treatment

=
Ex4 O Ins

\

Neuronal Survival

PP2B toxicity and by promoting pHTT levels. BioRender software has been used.

FIGURE 7 | Schematic representation of exendin-4 (Ex-4) and insulin (Ins) neuroprotective effect against the neurotoxicity induced by 6-hydroxydopamine (6-ohda).
(A) 6-ohda neurotoxic effect, characterized by enhanced mutated huntingtin (mHTT) levels in spite of pHTT, was mediated by the reduced activation of both AKT1
and SGK1 kinases, and by the increase in PP2B levels. Conversely, the pre-treatment with Ex-4 or Ins (B) restore neuronal survival by counteracting mHTT and

“typical” neurodegenerative disorder characterized by a
trinucleotide expansion (CAG: encoding glutamine >36
repeats) located in exon 1 of the HTT gene, which causes brain
and peripheral defects, its impact in the endocrine system and in
glucose metabolism is evident (Montojo et al., 2017). However,
whether the dysfunction in the pathways regulating glycemic
homeostasis triggers brain proteinaceous accumulation or vice
versa is still not clear. What is known so far is that HTT is
involved in both HD and T2DM (Capuani et al., 2015) and that
this implication is further validated by present results.

As also suggested by the present results, the mechanism
linked to mHTT neurodegeneration might be modulated by
specific kinases, which when activated regulate metabolism and
oxidative stress. In dopaminergic neurons, AKT1 levels were
significantly blunted by toxic stimulus and restored after
treatment with Ins. A study conducted on lymphoblasts and
lymphocytes from HD patients, detected modifications of AKT1
expression and activity, confirming a dysregulation of this kinase
in HD (Colin et al., 2005). Interestingly, AKT1 was cleaved into
an inactive form by caspase-3, suggesting a pro-apoptotic
mechanism underlying HD development, in agreement with
our findings (Colin et al., 2005). An in vitro study conducted
in nigrostriatal neurons showed that Ins like growth factor 1
(IGF-1) inhibited mHTT-induced cell death through AKT1
activation induced by S421-phosphorylation (Humbert et al.,
2002), further supporting our evidences. Moreover, this
mechanism abrogated polyQ-HTT pro-apoptotic activity
(Humbert et al., 2002).

SGK1 is highly homologous with AKT1 and may be activated as
alternative savage pathway by Ins when AKT1 is impaired (Lauro
et al, 2015). Here, we demonstrated that this kinase is triggered

either by Ex-4 or Ins and, when activated, reduces levels of mHTT.
In previous in vitro studies, by inducing cellular transgenic
activation of SGK1, we demonstrated as this kinase protected
kidney cells from apoptosis (Pastore et al., 2015), and endothelial
cells from oxidative stress and hyperglycemia (Ferrelli et al., 2015).
Interestingly, in striatal neurons, according to present findings,
SGK1 phosphorylates HTT at S421 leading to a reduction in
mHTT accumulation and toxicity (Rangone et al., 2004).

Increase in AKT1 and SGKI levels following Ex-4 and Ins
treatment are also associated to a corresponding reduction in
PP2B levels. The suggested common pathway among these three
kinases (Wen et al., 2003; Schweitzer et al., 2012), along with the
effect of AKT1, SGK1, and PP2B on HTT (Bowles and Jones,
2014; Saudou and Humbert, 2016), suggest that the one
investigated in the present study may be a candidate pathway
on the pathogenetic crosslink between DM and HD. However,
further studies to validate our hypothesis are imperative,
especially by using experimental models which include
GABAergic neurons that, when destroyed, lead to over-activity
of nigrostriatal dopaminergic neurons causing a down-
regulation of dopamine receptors in striatum, a clinical
hallmark of HD (Rosas-Arellano et al., 2018).

HD mice treated with Ex-4 ameliorated abnormalities in
peripheral glucose regulation by suppressing cellular pathology
in both brain and pancreas (Martin et al., 2009). Moreover, Ex-4
also improved pancreatic morphology, motor coordination, and
increased lifespan in mice (Martin et al,, 2012). Similarly,
treatment with Ins in HD mice improved mitochondrial
function and reduced mitochondrial oxidative stress induced by
mHTT accumulation (Ribeiro et al., 2014). Furthermore, a Clinical
Trial known as SNIFF (ID: NCT01767909) suggest that Ins
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administered intranasal improved cerebral Ins sensitivity allowing
a decrease in proteinaceous brain formation. Together, the
evidence strongly support that specific hypoglycemic drugs may
be useful for prevention and cure of HD.

However, we need to acknowledge limitations of the present
study. We did not assess any link between glucose homeostasis
and HD, but we focused more on the cellular and molecular
mechanisms. Since this is an in vitro study, unfortunately, it was
not possible to assess physiological variables that may interact
with the effects of Ins and Ex-4. The major strengths of the
present study are the novelty of the model including
differentiated dopaminergic neurons, to study in vitro HD, and
the analysis of the kinases involved in the possible link between
glucose homeostasis and HD.

In conclusion, present results suggest a novel potential role of
cellular kinases that when activated by Ex-4 and Ins may induce
neuroprotection, therefore opening a unique therapeutic strategy
against HD, still considered an orphan illness.
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