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Over recent years, pigs have been promoted as potential animal model due to their
anatomical and physiological similarities with humans. However, information about the
contribution of distinct renal elimination processes [glomerular filtration rate (GFR),
effective renal plasma flow (ERPF), tubular secretion, and reabsorption] in pigs is
currently limited. Therefore, a cocktail of renal markers, consisting of iohexol (GFR),
para-aminohippuric acid (ERPF and net tubular anion secretion), pindolol (net tubular
cation secretion), and fluconazole (net tubular reabsorption) was administered
intravenously to 7-week-old male conventional pigs. Plasma and urinary concentrations
were determined using validated analytical methods. The clearance of iohexol (GFR) was
97.87 ± 16.05 ml/min/m² (mean ± SD). The ERPF, calculated as the renal clearance of
PAH, was 226.77 ± 62.45 ml/min/m², whereas the net tubular secretion of PAH was
130.28 ± 52.62 ml/min/m². The net tubular secretion of R-pindolol and S-pindolol was
13.53 ± 12.97 and 18.01 ± 39.23 ml/min/m², respectively. The net tubular reabsorption of
fluconazole was 78.32 ± 13.52 ml/min/m². Overall, this cocktail of renal markers was
considered to be safe for use in pigs since no adverse effects were observed. Iohexol,
PAH and fluconazole were considered suitable renal marker to assess the porcine renal
function. Pindolol seems less appropriate due to the high degree of nonrenal clearance in
pigs. The values of GFR, ERPF, and anion secretion are within the same range for both
human and pig. Regarding the tubular reabsorption of fluconazole, slightly higher values
were obtained for pigs. Nevertheless, these results indicate the conventional pig could be
an appropriate animal model to study renal drug elimination processes in humans.
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INTRODUCTION

The kidneys are involved in the excretion of various endogenous
and exogenous substances. For drugs, which are frequently
eliminated by the kidney, assessment of the renal function is
important to enable development of robust doses that assure
appropriate drug exposure. Generally, the net renal excretion is
considered to be a combination of three major processes, namely
glomerular fi ltration, tubular secretion, and tubular
reabsorption. Currently, the assessment of the glomerular
filtration rate (GFR) is considered the best overall measure of
renal function. However, changes in each of the three renal
processes can influence renal drug clearance (Verbeeck and
Musuamba, 2009). Therefore, it is mandatory to characterize
each specific renal elimination process separately. These three
renal processes can be determined by use of several renal markers
(Tett et al., 2003).

Since GFR assessment is the most widely used descriptor for
renal function, a broad range of endogenous and exogenous GFR
markers have been recognized (Stevens and Levey, 2009). The
gold standard for GFR estimation is the measurement of inulin
clearance (Stevens and Levey, 2009). However, this technique is
not routinely applicable, since it requires constant infusion and
timed urine collection (Gaspari et al., 1995). Therefore, the GFR
is often estimated in daily practice using formulas derived from
the serum creatinine concentrations. Iohexol, which is a
nonradioactive GFR marker, is increasingly used in both
veterinary and human medicine because its properties
approach those of an ideal GFR marker (Miyamoto, 2001;
Meucci et al., 2015; Zhang et al., 2017; Gaspari et al., 2018).
More specifically, iohexol has only negligible binding to plasma
proteins and is metabolically inert. Moreover, its administration
is safe and urine collection is not mandatory (Delanaye et al.,
2016). Iohexol is preferred above iothalamate as GFR marker
since the latter may be affected by the existence of tubular
secretion (Odlind et al., 1985). Due to its low cost and ease of
handling, iohexol, as a marker of the GFR, has been repeatedly
employed in swine (Frennby et al., 1997; Gasthuys et al., 2017a;
Luis-Lima et al., 2018). Gasthuys et al. used iohexol to evaluate
the maturation of the GFR in the growing conventional piglet at
8 days, 4 weeks, and 7 weeks of age (Gasthuys et al., 2017a). Luis-
Lima et al. developed a simplified protocol to determine GFR
using iohexol plasma clearance in swine (Luis-Lima et al., 2018).
Frennby et al. administered iohexol to Swedish Landrace pigs to
compare the iohexol clearance with 51Cr-EDTA and endogenous
creatinine clearance (Frennby et al., 1997).

Much scarcer than markers for GFR, are validated markers
for tubular secretion and reabsorption. Tubular secretion is a
transporter mediated-process, which implies that its function is
saturable and susceptible to competition. Separate carrier
systems are present for anion and cation secretion
(Vanginneken and Russel, 1989). Both para-aminohippuric
acid (PAH) and probenecid have been utilized to characterize
the anion transport system (Kinowski et al., 1995; Bonate et al.,
1998). Besides being a marker for the anion secretion, PAH has
also been extensively used to assess the renal plasma flow since it
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is freely filtered at the glomerulus, undergoes extensive tubular
secretion and negligible reabsorption. It is almost completely
cleared from the plasma as it passes through the kidney.
However, the plasma concentration of PAH must be at an
appropriately low level, otherwise saturation of the anion
secretion occurs (Kinowski et al., 1995). To investigate the
cationic secretion, both pindolol and famotidine have been
used in humans (Hsyu and Giacomini, 1985; Dowling et al.,
2001). Pindolol has previously been used as model compound for
stereoselective renal clearance of organic cations, since it consists
of an R- and S-isomer (Hsyu and Giacomini, 1985). In humans,
fluconazole undergoes extensive tubular reabsorption, therefore
it has been used as an indicator for the net tubular reabsorption
(Debruyne and Ryckelynck, 1993; Gross et al., 2001; Tett et al.,
2003; Udy et al., 2014).

To date, there remains a growing demand for appropriate
animal models for the precise evaluation of the efficacy and safety
of therapeutic drugs (Dziegiel et al., 2018). Dogs and monkeys
have been used as the nonrodent species of choice in preclinical
pharmaceutical drug research. However, the interest has grown
to use swine as a translational animal model in biomedical
research due to their high degree of anatomical and
physiological similarities with humans (Swindle et al., 2012).
With respect to the kidney, the structure, function, and
physiology of the mature porcine kidney are postulated to be
comparable to that of humans, making pigs a potentially suited
model for studying human renal drug excretion processes
(Dalmose et al., 2000; Gasthuys et al., 2016).

Previously, Gasthuys et al. demonstrated that the maturation
of the GFR, determined as iohexol plasma clearance, was
comparable between children and growing pigs, making the
growing pig a potential good preclinical model for pediatric
drug research and an amenable model to study renal (patho)
physiology (Gasthuys et al., 2017a). To date, GFR estimation in
pigs is frequently described in literature; however, limited
information on the other porcine renal excretion processes is
available. Nevertheless, this information could contribute to the
evaluation of the suitability of the pigs as animal model.

A single cocktail approach, in which a serie of marker
compounds is administered at once followed by repetitive
blood and urine sampling, has been validated in humans
(Gross et al., 2001; Udy et al., 2014). This cocktail consisted of
sinistrin to determine the GFR, PAH to measure the effective
renal plasma flow (ERPF) and net tubular anion secretion,
pindolol to evaluate the net tubular cation secretion, and
fluconazole as an indicator of the passive reabsorption. To the
authors' knowledge, a single cocktail approach to elucidate the
renal function in pigs has never been applied. Therefore, the aim
of this study was to assess the feasibility and validity of
administering a cocktail of renal markers to pigs in order to
characterize the renal excretion processes in 7-week-old pigs.
This cocktail consisted of (1) iohexol to measure the GFR, (2)
PAH to evaluate ERPF and net tubular anion secretion,
(3) pindolol to evaluate net tubular cation secretion, and (4)
fluconazole as an indicator of tubular reabsorption. To
investigate the appropriateness of the swine as a potential
June 2020 | Volume 11 | Article 883
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translational animal model, the results of this study were
compared with human data.
MATERIALS AND METHODS

Animals
Eight healthy, stress resistant, 6-week-old male piglets (Landrace
× Large White × Maximus, Seghers Hybrid®, Wuustwezel,
Belgium) were recruited for this study. Upon arrival piglets
were group-housed in standard pig stables (2.30 × 2.40 m)
with ad libitum access to water and feed (Piggistart Opti®,
Aveve, Leuven, Belgium). During the whole experimental
period, stables were enriched with rubber toys, balls of
different size, and cotton towels. After a 5-day acclimatization
period, a double-lumen jugular catheter was inserted following
the procedure described by Gasthuys et al., permitting accurate
intravenous (IV) administration of the renal markers and blood
collection (Gasthuys et al., 2017b). During anesthesia, a human
stoma ring (Esteem synergy® Uro, 48 mm, ConvaTec, Belgium)
was attached around the prepuce of the piglets to allow urine
collection (Gasthuys et al., 2017b). After surgery, the pigs were
housed individually to avoid displacements of the catheters and
stoma rings. Catheters were flushed at least twice daily with
heparinized 0.9% NaCl (50 IU/ml), and the bandages were
changed daily.

The study was conducted with consent of the Ethical
Committee of the Faculty of Veterinary Medicine and the
Faculty of Bioscience Engineering of Ghent University (EC
2017/24). Care and use of animals were in compliance with the
Belgian and European legislation on animal welfare and ethics
(European Parliament and Council of the European Union,
2010; Flemish Government, 2017).

Experimental Design
After a one day recovery period, urine pouches were attached to
the stoma ring just before administration of the drugs. The pigs
(7 weeks old, weighing 9.75 ± 1.61 kg) received the following
renal markers as separate single IV boluses using the proximal
lumen of the jugular catheter: iohexol (64.7 mg/kg BW,
Omnipaque® 300, GE Healthcare, Belgium), PAH (10 mg/kg
BW), pindolol (0.05 mg/kg BW), and fluconazole (0.5 mg/kg
BW, Diflucan® 200 mg/100 ml). The commercial available
powders of pindolol and PAH sodium salt, both purchased
from Sigma-Aldrich (Bornem, Belgium), were dissolved
separately in sterile, isotonic saline 0.9% solution prior to
administration at a concentration of 0.8 mg/ml and 100 mg/
ml, respectively. Due to the poor solubility of pindolol in water,
the solution was slightly acidified with glacial acetic acid (0.04 v/v
%) followed by sonication to enhance solubility (Fornal et al.,
1999). The administered doses were determined based on
available literature and practical considerations (Friedli et al.,
1986; Gross et al., 2001; Gasthuys et al., 2017a). In the study of
Gross et al., fluconazole and pindolol were both administered
orally to humans (Gross et al., 2001). However, to minimize the
risk of confounding factors, it was decided to administer both
Frontiers in Pharmacology | www.frontiersin.org 3
compounds IV and in lower doses than when given orally to
humans. A dose of 0.5 mg/kg fluconazole (Diflucan® 200 mg/100
ml) ensured a limited volume could be administered (<5 ml) as a
bolus injection. Blood was sampled via the other lumen of the
catheter at 0, 5, 15, 30, 45, and 60 min, and 2, 4, 6, 8, 12, 24, 36,
48, and 72 h post administration and collected into K3EDTA
collection tubes (Vacutest®, Piove die Sacco, Kima, Italy). The
samples were kept on ice and centrifuged (2,095 × g, 10 min, 4°C)
within 2 h. Multiple timed urine collections were performed over
a 48 h time period. The total volume of urine voided in each time
period was registered. Aliquots of plasma were stored at ≤−80°C
until analysis. Urine samples were initially stored at −20°C for 6
weeks, but were subsequently stored at −80°C for further storage.

Quantification of the Renal Markers
Total plasma iohexol and PAH concentrations were quantified
simultaneously using a validated ultrahigh performance liquid
chromatography tandem mass spectrometry (UHPLC-MS/MS)
method as previously described by Dhondt et al. (2019) (Dhondt
et al., 2019). The lower limit of quantification (LLOQ) was
0.25 μg/ml for both compounds. The same UHPLC method
was used for analysis of PAH in urine samples with slight
modifications. The LLOQ was 0.25 μg/ml. A brief description
of this latter method, including validation results, is presented in
the supplement. Concentrations of R-pindolol, S-pindolol, and
fluconazole in plasma and urine were determined using UHPLC-
MS/MS. The acceptance criteria described in the FDA guideline
were used for the validation of the pindolol and fluconazole
methods [34]. The LLOQs were 0.2 ng/ml for R-and S-pindolol
in both urine and plasma. For fluconazole, the LLOQ was 0.1 μg/
ml in plasma and urine. A brief description of these methods and
validation results are given as supplementary material.

To determine the ratio of R- and S-pindolol in the administered
powder, a standard solution of 0.5 ng/ml in methanol:water (50:50,
v/v), using the same powder as administered to the pigs, was made
and analyzed together with the samples.

Plasma Protein Binding
Plasma protein binding of PAH, pindolol, and fluconazole was
determined using an in vitro approach. Fresh blank pig plasma
was spiked with a standard aqueous solution of the compound at
three concentration levels: 0.50, 5.0 and 20 μg/ml for PAH, 0.1,
0.5, and 1 μg/ml for fluconazole and 5, 25 and 50 ng/ml for
pindolol. Three aliquots of each concentration level were
analyzed the same way as the pharmacokinetic (PK) study
samples as described above to determine the total plasma
concentration. Three other aliquots of each concentration were
incubated for 1 h in a hot water bath of 39°C to replicate the pig's
core body temperature and subsequently transferred onto an
ultrafiltration device. An Amicon® Ultra-0.5 ultrafiltration
device (30 kDa; Merck, Overijse, Belgium) was used in the case
of PAH and fluconazole, and centrifugation occurred at 4,000 × g
for 10 min at 39°C. In the case of pindolol, a Microcon® Ultracel
YM-30 (Millipore Corporation, Bedford, USA) was used and
centrifuged (16,000 × g, 15 min, 39°C). The volume of
ultrafiltrate had to be below 25% of the total volume applied
on the ultrafiltration device. Thereafter, the obtained filtrate was
June 2020 | Volume 11 | Article 883

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Dhondt et al. The Porcine Renal Function
analyzed in the same way as the PK study samples to determine
the unbound plasma concentration. The following equation was
used to determine the unbound fraction in plasma:

fu =
Cunbound

Ctotal

Nonspecific binding (NSB) of compounds to the
ultrafiltration devices can influence to a large extent the results
(Lee et al., 2003). NSB binding to the filter was determined by
adding a standard solution in phosphate buffered saline (PBS) of
the respective compound on the filter. The duration of
centrifugation was reduced to 2.5 and 1.0 min for Microcon®

and Amicon® filters, respectively. In that way, the ultrafiltrate
volume remained below 25% of the total volume applied. If
necessary, the concentration obtained after filtration was
corrected for NSB using the following formula:

Cunbound, corrected =
Cunbound,measured

1 �NSB

Where NSB is calculated as

NSB =
CPBS,NF �CPBS, F

CPBS,NF

where CPBS,NF is the drug concentration in nonfiltered PBS and
CPBS,F the drug concentration in the PBS filtrate after
centrifugation. Results are presented as mean ± SD.

Pharmacokinetic and Statistical Analysis
Pharmacokinetic modeling of the plasma concentration–time
data was performed using Phoenix® 8.1 (Certara, Cary, NC,
USA). Values below the LOQ were excluded from the dataset.
The structural model for both iohexol and fluconazole was a two-
compartmental model with first order elimination. A
multiplicative error model was used. For both PAH, R-and S-
pindolol, a one-compartmental model with first order
elimination and multiplicative error model was used. The
estimated primary parameters were volume of distribution
(Vd) and total body clearance (CLTOT). Also the following
secondary parameters were calculated: elimination half-life (T1/

2el), elimination rate constant (Ke), volume of distribution at
steady state (Vss), and the area under the curve from time 0 h to
infinity (AUC0→inf).

The clearances of the renal markers were normalized and
indexed to BW (ml/min/kg) and body surface area (BSA, ml/min/
m²) using the Meeh equation (BSA (dm2) = 9 � BW (kg)2=3)
(Gasthuys, 2017).

The cumulative amount of unchanged compound recovered
in the urine (Ae) was calculated taking the sum of the amount
excreted at every collection point. This amount was calculated by
multiplying the observed concentration by the volume collected
at every collection point. Subsequently, renal clearances (CLR) of
the pindolol isomers and PAH were calculated by

CLR =
Ae

AUC0!inf
Frontiers in Pharmacology | www.frontiersin.org 4
where AUC0→inf is the area under the plasma concentration–time
curve extrapolated to infinity. Since for fluconazole urine
sampling was only performed up to 48 h after administration,
Ae, collected over 48 h, was divided by the AUC0→48h to obtain
the CLR. The AUC0→48h was calculated by noncompartmental
analysis (NCA) using the linear up-log down trapezoidal
method. The nonrenal clearance (CLNR) was obtained by
subtracting the CLR from CLTOT. The CLTOT of iohexol is a
measure for the GFR. The CLR of PAH is used to estimate the
ERPF. The filtration fraction (FF) was calculated by

FF %ð Þ = GFR
ERPF

� 100

The filtration clearance of the unbound marker (CLfil) was
calculated by fu × GFR, where fu is the unbound fraction of the
compound in plasma. Net tubular anion and cation secretions
were calculated as CLR − CLfil. CLfil − CLR of fluconazole was
used to calculate the net tubular reabsorption of fluconazole. To
investigate if it was possible to reduce the time span of urine and
blood collection the PK calculations of fluconazole were repeated
using the collected data up to 24 h. The urinary recovery, which
is the fraction of the administered dose recovered in the urine
was calculated as Ae/D. Results are presented as mean ± standard
deviation (SD).

Differences between the PK parameters for the pindolol
isomers were investigated using a Wilcoxon signed rank test
[SPSS 25.0 (IBM, Chicago, IL, United States)]. The same
approach was used to assess the agreement between the CLR
fluconazole after calculation using the data up to 24 and 48 h.
The significance level was set at p = 0.05.

Comparison With Human Values
To assess the suitability of the pig as animal model, the porcine
clearance values were compared with human adult values in
literature. Pigs within the 4–14 week age category correspond
with a human age of 2–12 years (Gasthuys et al., 2016). It is
postulated that human adult values for GFR, ERPF, and anion
secretion are obtained at an age of 2 years (Rubin et al., 1949). In
pigs, adult values of GFR and ERPF are reached around an age of
8 weeks. Adults values for the extraction of PAH, a measure for
tubular secretion, are obtained at 3 weeks of age (Friis, 1979).
Therefore, it seemed permissible to compare the porcine values
of the distinct renal clearance processes in this study with human
adult values reported by Gross et al. (Rubin et al., 1949; Gross
et al., 2001). The cocktail used in the study of Gross et al. was
similar to that administered in the presented study. It consisted
of sinistrin, PAH, pindolol, and fluconazole. The latter two
compounds were, in contrast to this study, administered orally.
Gross et al. determined PK parameter values in the humans using
noncompartmental analysis. Since Gross et al. only reported PK
values not corrected for BSA and BW, the values presented in
their study were corrected for the mean BW, which was 72 kg
(Gross et al., 2001). The mean BSA was estimated using the
formula of Dubois, where the mean BW was 72 kg and mean
height 178 cm.
June 2020 | Volume 11 | Article 883
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RESULTS

All piglets survived the surgical procedure without any
complication. After administration of the cocktail of renal
markers no adverse effects were observed. The pigs showed a
normal activity and appetite. For two pigs, leakages of the urine
bags were observed during the 48 h urine collection period.
Therefore, these pigs were excluded in the calculation of the renal
clearances (Tables 1 and 2). Those PK parameters, which were
independent of urine collection, all pigs were included (Table 3).
During the 48 h observation period, the urinary flow rate was
2.03 ± 1.00 ml/kg/h.

Mean plasma concentration–time profiles (+SD) for the
different renal markers are presented in Figure 1. Table 1
gives an overview of the values of the PK parameters, which
were used to calculate renal clearances of the administered
renal markers.

The in vitro plasma protein binding experiment showed that
PAH was not bound to plasma proteins (−4.4 ± 2.2%), resulting
in an fu of 1.0 for PAH. Since no protein binding of PAH was
observed, it was not necessary to determine the NSB of this
compound to the filter. Only 30.09 ± 5.06% of the total PAH dose
administered to the pigs was recovered in the urine, indicating
nonrenal clearance contributes to a large extent to the
elimination of PAH. The effective renal plasma flow, calculated
as renal clearance of PAH, was 9.51 ± 2.44 ml/min/kg. The GFR,
measured as the total clearance of iohexol, was 4.12 ± 0.54 ml/
min/kg. The mean FF was 44.15 ± 8.57%.
Frontiers in Pharmacology | www.frontiersin.org 5
After IV administration of pindolol, containing 50.98 ± 0.66%
R-pindolol and 49.02 ± 0.66% S-pindolol, stereoselective PK was
observed. The urinary recovery was significantly higher for R-
pindolol than S-pindolol (p < 0.05). Both the renal (p < 0.05) and
nonrenal (p < 0.05) as well as the total clearance (p < 0.05) were
higher for S- than R-pindolol. This suggests that both
metabolism and renal excretion occur stereoselectively. This
could be partially attributed to the lower plasma protein
binding of S-pindolol (fu = 0.62 ± 0.00) in contrast to R-
pindolol (fu = 0.19 ± 0.03). The difference in plasma protein
binding is also reflected in a significantly higher Vss of S-pindolol
compared to R-pindolol (p < 0.05) (Table 3). No statistically
significant differences were observed in the elimination rate
constant (p = 0.67) and elimination half-life (p = 0.78). The
PK parameters of pindolol, used to calculate the extent of cation
secretion, are presented in Table 1. In Table 3, additional PK
parameters of the pindolol isomers are presented.

In contrast to pindolol, where no significant NSB to the
Microcon filter was observed, a NSB of ±20% for fluconazole
was observed for both tested filters (Amicon and Microcon).
After correction for NSB, a fu of fluconazole of 0.89 ± 0.07 was
obtained. The renal clearance of fluconazole calculated over a
time period of 24 h (0.33 ± 0.06 ml/kg/min) did not differ
statistically (p = 0.25) from the renal clearance estimated over
48 h (0.32 ± 0.05 ml/kg/min), indicating that renal clearance can
be reliably estimated over a time period 24 h after dosing. The
pharmacokinetic parameters of fluconazole are presented in
Tables 1 and 3.
TABLE 1 | Main pharmacokinetic parameters (mean ± SD) of iohexol (64.7 mg/kg BW), PAH (10 mg/kg BW), pindolol (0.05 mg/kg BW), and fluconazole (0.5 mg/kg
BW) after intravenous bolus administration to 7-week-old male pigs.

Iohexol
(n = 8)

PAH
(n = 6)

S-pindolol
(n = 6)

R-pindolol
(n = 6)

Fluconazole
(n = 6)

AUC0→inf (μg * h/ml) 265.19 ± 32.40 5.43 ± 1.04 0.0028 ± 0.0010a 0.0082 ± 0.0028a 18.73 ± 1.95
Ae (μg)

1 / 29,512 ± 5751 5.34 ± 2.87b 6.30 ± 3.05b 2,548 ± 5431

CLTOT (mL/min/kg) 4.12 ± 0.54 31.53 ± 5.38 161.26 ± 62.79c 56.85 ± 17.46c 0.45 ± 0.049
CLR (mL/min/kg) / 9.51 ± 2.44 3.28 ± 1.54d 1.34 ± 0.53d 0.32 ± 0.05
CLNR (mL/min/kg) / 22.02 ± 3.76 157.98 ± 62.42e 55.51 ± 17.34e 0.13 ± 0.039
Urinary recovery (%) / 30.09 ± 5.06 2.18 ± 1.01f 2.49 ± 1.04f /
June 2020 | Volume 11
a−eSignificant differences (p < 0.05) between PK parameters of the pindolol isomers are indicated with the same alphabetical character superscript.
AUC0→inf, Area under the plasma concentration–time profile extrapolated to infinity, Ae, the cumulative amount of unchanged compound recovered in the urine; CLTOT, total body
clearance; CLR, renal clearance; CLNR, non-renal clearance.
1Total amount observed in urine collected over 48 h.
TABLE 2 | Clearance values (mean ± SD) of the individual renal markers (iohexol (IOH), para-aminohippuric acid (PAH), pindolol (PIND), and fluconazole (FLUC)) in
healthy human adults and 7-week-old male pigs.

PIG HUMAN1

ml/min/m² ml/min/kg ml/min/m² ml/min/kg

GFR = CLTOT IOH 97.87 ± 16.05 4.12 ± 0.54 68.78 ± 21.162 1.81 ± 0.562

ERPF = CLR PAH 226.77 ± 62.45 9.51 ± 2.44 247.09 ± 77.25 6.48 ± 2.02
Net secretion PAH = CLSECR PAH 130.28 ± 52.62 5.47 ± 2.13 189.95 ± 70.90 4.99 ± 1.86
Net tubular reabsorption FLUC = CLREA FLUC 78.32 ± 13.52 3.28 ± 0.43 49.21 ± 15.34 1.29 ± 0.40
Net tubular secretion R-PIND = CLSECR R-PIND 13.53 ± 12.97 0.57 ± 0.54 69.84 ± 23.81 1.83 ± 0.63
Net tubular secretion S-PIND: CLSECR S-PIND 18.01 ± 39.23 0.77 ± 1.64 80.42 ± 37.04 2.11 ± 0.97
GFR, glomerular filtration rate; CLTOT, total body clearance; CLR, renal clearance; CLSECR, clearance by secretion; CLREA, reabsorption at the level of the kidney.
1Human, adult values were calculated from the data published by Gross et al. (2001). 2The GFR in humans was calculated as the renal clearance of sinistrin.
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An overview of adult human and 7-week-old porcine values
of GFR, ERPF, anion secretion, cation secretion, and net tubular
reabsorption is presented in Table 2.
DISCUSSION

The present study offers new insights in the different porcine
renal excretion processes by use of a cocktail of renal markers
without the possible confounding effect of anesthesia (Deutsch,
1975). The pigs displayed no adverse effects during the study,
indicating that the concomitant administration of these renal
markers was safe in pigs. Since an optimal noninvasive urine
collection technique for female piglets is currently lacking, only
Frontiers in Pharmacology | www.frontiersin.org 6
male pigs were included in this study (Gasthuys et al., 2017b).
The major concern during the animal trials was the feasibility of
urine collection using urine pouches over 48 h in nonsedated and
nonrestricted pigs. Nevertheless, only two pigs showed an
isolated event of leakage. The use of metabolic cages would
circumvent the use of urine bags for urine collection; however, in
the latter case the pigs are restricted in freedom of movement.

As for human adults and infants, quite some variability was
observed in urinary output of the individual pigs, which is
partially attributed to individual differences in water intake
(Mattsson and Lindström, 1995). Generally, the normal urine
output of a child is considered to be within the range of 1–2 ml/
kg/h, which is in the same range as observed in the studied pigs
(2.03 ± 1.00 ml/kg/h) (Hazinski, 1992).
TABLE 3 | Overview of the pharmacokinetic (PK) parameters of the pindolol isomers (0.05 mg/kg BW) and fluconazole (0.5 mg/kg) after IV administration to 7-week-old
pigs.

S-pindolol
(n = 8)

R-pindolol
(n = 8)

Fluconazole
(n = 8)

Vss (L/kg) 6.60 ± 1.691 2.12 ± 0.561 0.98 ± 0.04
CLTOT (ml/min/kg) 173.08 ± 58.482 54.20 ± 16.002 0.45 ± 0.05
Ke (1/h) 1.58 ± 0.32 1.54 ± 0.26 0.03 ± 0.00
T1/2el(h) 0.46 ± 0.12 0.46 ± 0.07 25.71 ± 2.75
Fu 0.62 ± 0.003 0.19 ± 0.033 0.89 ± 0.07
June 2020 | Volume 11
1−3Significant differences (p < 0.05) between PK parameters of the pindolol isomers are indicated with the same numerical character superscript.
Vss, volume of distribution at steady state; CLTOT, total body clearance; Ke, elimination rate constant; T1/2el, elimination half-life; Fu, free, non-protein bound, fraction.
A B

C D

FIGURE 1 | Plasma concentration–time profiles of (A) iohexol (64.7 mg/kg BW), (B) PAH (10 mg/kg BW), (C) fluconazole (0.5 mg/kg BW), and (D) pindolol (0.05
mg/kg BW) after intravenous bolus administration of these renal markers to 7-week-old male pigs.
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The clearance of iohexol (97.87 ± 16.05 ml/min/m²) of these
7-week-old pigs was similar to the iohexol clearance reported by
Gasthuys et al. in pigs of 7 weeks of age, namely 100.92 ± 20.84
ml/min/m² (Gasthuys et al., 2017a). When comparing the GFR
to human values, taking into consideration the age correlation
between humans and pigs proposed by Gad et al. the values
obtained in humans (range 63–75 ml/min/m²) are approximately
70% to those of pigs (Gad, 2007; Schwartz and Furth, 2007).
Interestingly, in each corresponding age category from neonate,
infant to child, the human value is between 55 and 80% of the
value obtained in pigs. Although the absolute GFR values were
lower in case of humans, a similar trend in maturation between
humans and pigs could be observed (Figure 2).

Since PAH is primarily excreted by the kidney, it has been
widely used for the assessment of the ERPF in humans.
Generally, PAH is administered as an IV constant rate infusion
whereafter the ERPF is estimated as the renal clearance of PAH.
PAH administration as a single bolus injection has also been
performed in humans and dogs (Hirata-Dulas et al., 1994;
Laroute et al., 1999). However, there has been some criticism
about this latter approach, because of the differences in observed
clearances between the bolus and infusion method (Hirata-Dulas
et al., 1994; Tett et al., 2003). Nevertheless, these differences in
clearance did not reach statistical significance in humans. To
minimize the chance of saturating secretion, PAH doses for renal
function assessment by bolus injections should result in plasma
concentrations below those that saturate transporters. In
humans, saturation of the transport system is observed at a
concentration of 300–600 μg/ml (Tett et al., 2003). In this study,
PAH plasma concentrations below 30 μg/ml were reached, as can
be seen in Figure 1, minimizing the risk of saturation of the
tubular secretion of PAH. Furthermore, the maximal PAH
plasma concentrations obtained in this study are within the
concentration ranges obtained after continuous infusion or
Frontiers in Pharmacology | www.frontiersin.org 7
subcutaneous administration of PAH during renal function
studies in pigs (Friis, 1979; Link et al., 1985; Willis et al.,
1997). Remarkable is the high nonrenal plasma PAH clearance
(22.02 ml/min/kg) observed in pigs in contrast to that of adult
humans (2.72 ml/min/kg) (Gross et al., 2001). In pigs, nonrenal
elimination contributes for approximately 70% of the total
clearance of PAH, which highlights probably the high
acetylation capacity of the pig, as reported in literature
(Cunningham et al., 2010). Also in humans, N-acetyl PAH is
the major metabolite. The nonrenal clearance accounts for
approximately 15 to 30% of the total drug elimination of PAH
in this species (Prescott et al., 1993). Interesting to notice is also
the presence of genetic polymorphism in N-acetyltransferase,
resulting in slow and fast acetylators in humans (Walker et al.,
2009). In dogs, no acetylated metabolites were observed (Laroute
et al., 1999). One report suggests that PAH cannot be used to
determine the ERPF of pigs due to the presence of acetylation of
PAH at the level of the kidney (Nielsen et al., 1966). However,
Gyrd-Hansen and Rasmussen (1970) demonstrated in vivo that
the amount of PAH acetylated by the porcine kidney varied
between −21.1 and 10.1%, with a mean of −0.1%, indicating that
besides acetylation also deacetylation can occur in the kidney.
This author suggests that when the number of animals is small,
total PAH (PAH + N-acetyl PAH) determination is preferable,
whereas when a larger number of animals are used the mean
clearance of total PAH (PAH + N-acetyl PAH) and PAH will
give identical values since the average amount of PAH acetylated
by the porcine kidney is −0.1% (Gyrd-Hansen and Rasmussen,
1970). Since this study was conducted with eight animals, it was
assumed that the mean acetylation was on average 0%, making
the mean renal clearance of PAH a good estimator of the mean
ERPF in pigs. The renal clearance of PAH corrected for BSA was
comparable between human and pigs (247.09 vs 226.77 ml/min/
m²). When indexing to BW a higher value was obtained for pigs
(9.51 ml/min/kg) in contrast to humans (6.48 ml/min/kg). For
the net tubular secretion of PAH, human and porcine values
were quite comparable when indexed for BW (4.99 vs 5.47 ml/
min/kg) and BSA (189.95 vs 130.28 ml/min/m²). The filtration
fraction observed in pigs (44.1%) was higher than that observed
in humans (20–30%), but was in accordance with the values
observed in pigs by Friis et al. (Friis, 1979; Wainer et al., 1980;
Gross et al., 2001; Udy et al., 2014). It is important to notice that
the FF calculated by Friis et al. was performed in a different way
than in this study and the referred human studies. To calculate
the FF, Friis took the extraction of PAH (EPAH) by the kidney
into account, as seen in the formula (FF = GFR/(CLR PAH/EPAH)).
When applying this formula, he obtained a mean FF of 33 ± 5%
in piglets aged 1-79 days. Calculation of the FF, following the
same formula as in this study, yielded a FF of 40 ± 6%, which is
very similar as in the presented study (Friis, 1979).

In contrast to the study of Gross et al., in which fluconazole
and pindolol were given orally, the piglets received in this study
an IV bolus of both compounds due to practical considerations
and the absence of oral bioavailability as confounding factor
(Gross et al., 2001). One literature report described a different
effect of pindolol on the renal function when given IV or orally in
FIGURE 2 | Visual representation of the maturation of the glomerular filtration
rate (mean + SD) in male, conventional pigs and humans at different age
categories (neonate, infant, and child). Porcine and human data were adopted
from Gasthuys et al. and Schwartz et al. respectively (Schwartz and Furth,
2007; Gasthuys et al., 2017a).
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hypertensive humans (Wainer et al., 1980). A significant decline
in GFR against baseline was observed after IV pindolol
administration to hypertensive patients, whereas no significant
effect was detected after oral administration. However, the
decrease in GFR in case of IV administration was on average
4.37% (range: 0.96−9.43%), which is rather of less clinical
relevance. In dogs, IV administration of pindolol produced
slight but insignificant decrements in ERPF and GFR (Epstein
et al., 1985). Taking these considerations into account, it seemed
acceptable to use IV administration. Furthermore, the IV dose of
0.05 mg/kg that was used in the present study resulted in much
lower plasma concentrations than an oral dosage of 5 or 15 mg of
pindolol in humans, minimizing the risk of potential adverse
renal effects (Gross et al., 2001; Udy et al., 2014). Furthermore, in
pigs, in whommycocardial infarction was induced, an equivalent
IV dose of 0.05 mg/kg pindolol did not induce any
hemodynamical changes (Friedli et al., 1986). To the authors'
knowledge, information about the PK of pindolol in pigs is not
available. In contrast to humans (fu = 0.45), stereoselective
binding of pindolol to plasma proteins was observed, with fu of
0.19 and 0.62 for R-and S-pindolol, respectively (Hsyu and
Giacomini, 1985). This stereoselective binding is also reflected
in the stereoselective Vss values. The Vss of S-pindolol (6.60 L/kg)
is remarkably higher than that of R-pindolol (2.12 L/kg).
Nevertheless, no significant differences in elimination rate
constant and elimination half-life between both isomers were
observed in pigs as the ClTOT of S-pindolol (161.26 ± 62.79 ml/
min/kg) was significantly higher compared to R-pindolol (56.85
± 17.46 ml/min/kg). The observed renal as well as the nonrenal
clearance is significantly higher for S- than R-pindolol in pigs. In
contrast, the net tubular secretion of R-pindolol and S-pindolol
was not significantly different (p = 0.46). Conversely, in humans
a stereoselective secretion of pindolol was present (Gross et al.,
2001). The nonrenal clearances of both pindolol isomers
observed in this study (157.98 & 55.51 ml/min/kg) were
remarkably higher than the human values reported in
literature (4.5–6.75 ml/min/kg) (Gross et al., 2001; Udy et al.,
2014). Resulting from this high nonrenal clearance, a limited
amount (2–3%) of unchanged pindolol isomers was recovered in
urine. In other animal species pindolol seems also extensively
metabolized resulting in rather small urinary excretion fraction
of unchanged pindolol ranging between 0.6 and 4.3% for mouse,
dog, and Rhesus monkey. With a value of 35%, the urinary
excretion is remarkably higher in humans (Schwarz, 1982). This
observation highlights the possible differences in metabolism
between humans and pigs. Although some research is already
performed concerning these differences, there is still a knowledge
gap which emphasizes the need for studies dealing with pig–
human differences in phase I and II biotransformation processes
(Merrifield et al., 2011; Helke et al., 2016; Schelstraete et al.,
2019). Furthermore, a marker that is only renally excreted for 2–
% of the dose cannot be considered as a suitable marker for
kidney function. Moreover, the limited renal excretion as a
consequence of the high metabolism could be the reason for
the high standard deviation observed for the secretion of the
Frontiers in Pharmacology | www.frontiersin.org 8
pindolol isomers, making evaluation of a stereoselective secretion
difficult. It could be more appropriate to select a compound
undergoing less metabolism to establish the cation secretion. An
alternative marker could be famotidine (Dowling et al., 2001).
However, just like for pindolol no porcine PK data of this
compound is, to the author's knowledge, available in literature.

As for pindolol, no studies are available describing the use of
fluconazole in pigs. Plasma protein binding of fluconazole in
piglets was comparable (11%) compared to other species (~12%)
like humans, dogs, rats, and mice (Humphrey et al., 1985). In
addition, quite similar results in PK parameters were obtained
(Ripa et al., 1993; Brammer and Coates, 1994; Gross et al., 2001).
Nevertheless, the net tubular reabsorption of fluconazole in pigs
was higher than that observed in humans. This difference was
more pronounced when indexed for BW than when indexed for
BSA. In this study, fluconazole has been used as a marker for the
net tubular reabsorption, which takes both the active and passive
reabsorption into account. However, fluconazole has been
previously described by Tett et al. as an indicator for the
passive tubular reabsorption (Tett et al., 2003). An important
physiological variable which may affect this process is urinary
pH. The urinary pH observed in the studied pigs was on average
5.53 ± 0.67, which is close to the average (pH = 6) observed in
children (Liao and Churchill, 2001). As in humans, the renal
clearance of fluconazole can be estimated over a 0–24 h interval,
since no statistically significant difference was observed when
compared to CLR estimated over 48 h (Gross et al., 2001). This
substantially simplifies the procedure and reduces the risk of loss
of data due to leakages of the urine bags. Taking these
considerations into account, fluconazole seems an appropriate
marker to estimate the tubular reabsorption in pigs.
CONCLUSION

In conclusion, iohexol, PAH, and fluconazole are suitable renal
markers to assess the porcine renal function. On the other hand,
pindolol is not a suitable renal marker due to the high nonrenal
clearance in pigs compared to humans. This observation
highlights the potential differences in metabolization capacity
between human and pig. Generally, clearance values of humans
and pigs correspond better when indexed to BSA than BW. The
values of GFR, ERPF, anion secretion are within the same range
for humans and pigs. Regarding the tubular reabsorption of
fluconazole, slightly higher values were obtained for pigs.
Nevertheless, these results indicate the pig could be an
appropriate animal model to study renal drug elimination
processes in humans.
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