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In vitro studies had shown that C-Phycocyanin (C-PC) inhibited cervical cancer HeLa cells
growth. We constructed C-PC/CMC-CD55sp nanospheres using C-PC, Carboxymethyl
Chitosan (CMC), and CD55 ligand peptide (CD55sp) to allow for targeted antitumor effects
against HeLa cells in vitro and in vivo. The characteristics of the nanospheres were
determined using FTIR, electron microscopy, and laser particle size analysis. Flow
cytometry, laser confocal microscopy and small animal imaging system showed the
targeting of C-PC/CMC-CD55sp nanospheres on HeLa cells. Subsequently, the
proliferation and apoptosis were analyzed by Cell Counting Kit-8 (CCK-8), flow
cytometry, TUNEL assay and electron microscopy. The expression of the apoptosis-
related protein was determined using western blot. The stainings of Hematoxylin and
Eosin (HE) were employed to evaluate the cell condition of tumor tissue sections. The
cytokines in the blood in tumor-bearing nude mice was determined using ELISA. These
results showed that C-PC/CMC-CD55sp nanospheres were successfully constructed
and targeted HeLa cells. The constructed nanospheres were more effective than C-PC
alone in inhibiting the proliferation and inducing apoptosis in HeLa cells. We also found
that C-PC/CMC-CD55sp nanospheres had a significant inhibitory effect on the expression
of antiapoptotic protein Bcl-2 and a promotion on the transformation of caspase 3 to
cleaved caspase 3. C-PC/CMC-CD55sp nanospheres played an important role in tumor
suppression, reduced the expression TGF-b, and increased IL-6 and TNF-a. This study
demonstrates that the constructed new C-PC/CMC-CD55sp nanospheres exerted
targeted antitumor effects in vivo and in vitro which provided a novel idea for application
of C-PC, and provided experimental basis for comprehensive targeted treatment
of tumors.
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INTRODUCTION

Early screening and vaccination are the most common methods
to prevent cervical cancer (Torre et al., 2015), and chemotherapy
is a first-line treatment option for patients with cervical cancer.
Cetuximab combined with carboplatin and paclitaxel can
effectively treat advanced/recurrent cervical cancer (Pignata
et al., 2019). Pembrolizumab monotherapy has also been
shown to exhibit lasting antitumor activity with adequate
safety in patients with advanced cervical cancer (Chung et al.,
2019). However, due to lack of targeting, chemotherapy drugs
also affect normal cells (Cao et al., 2018). Tumor-targeted drug
delivery systems represent an important advancement in cancer
therapy. These formulations can deliver effective antitumor
drugs specifically or selectively to tumor tissues, which allows
for control of drug dosing at specific physiological sites. Specific
targeting results in reduced side effects and toxicity at
nontargeted sites (Schellmann et al., 2010; Chow et al., 2011;
Liu F. et al., 2014; Costa Lima et al., 2017). Nanospheres have
been conjugated to a monoclonal antibody against Trophoblast
cell surface antigen 2 (TROP2), which is a protein abundant on
the surface of HeLa cells. This formulation selectively killed
cervical cancer cells through induction of apoptosis and DNA
damage (Liu T. et al., 2014). Magnetically responsive bacterial
polyester-based nanospheres that encapsulating etoposide and
modified with concanavalin-A have been used to target cervical
cancer (HeLa) cells (Erdal et al., 2012). Folic acid–conjugated
albumin nanospheres have been developed to target drugs to
cervical cancer cells, and to reduce side effects (Shen et al., 2011).

Rapid development of nanotechnology has allowed for
construction of drug-chitosan nanospheres (Azab et al., 2007;
Zhang et al., 2008). C-PC (Zheng et al., 2013), a natural
photosynthetic pigment, has antiaging and antioxidative effects,
and is nontoxic, safe, and water-soluble. C-PC fluoresces red, and
can be used as a fluorescent marker. Li et al. (Li et al., 2010; Li
et al., 2016) find that C-PC inhibits tumor growth. However, C-
PC is rapidly degraded by proteases in vivo, which has limited its
use in the pharmaceutical industry. Chitosan (Xu and Du, 2003;
Narayanan et al., 2014; Snima et al., 2014; Ravindranathan et al.,
2016; Qi et al., 2018) is a natural polymer material that is
nontoxic, biocompatible, and biodegradable, and exerts
antibacterial, antiinflammatory, wound healing, and antitumor
effects. Use of chitosan has been limited by poor water solubility.
CMC (Snima et al., 2012; Farag and Mohamed, 2012; Kumar
Singh Yadav and Shivakumar, 2012; Maya et al., 2013; Sharif
et al., 2017), formed by carboxylation of chitosan, exhibits good
water solubility and biocompatibility, is nontoxic, and promotes
bacteriostasis (Jiang et al., 2004). CMC has been used as a drug
carrier to improve drug efficacy, reduce side effects, and
significantly inhibits tumor growth (Snima et al., 2012; Anitha
et al., 2014). Complement regulatory protein CD55 (Mamidi
et al., 2013) is a decay accelerating factor, presents an anchored
Glycosylphosphatidylinositol (GPI) moiety on cell membranes,
and it is often highly expressed on the surfaces of tumor cells.
This protein may be a target which can make tumor cells escape
from autoimmune monitoring and immunotherapy. We
Frontiers in Pharmacology | www.frontiersin.org 2
synthesized CD55sp (Li et al. , 2018) to target drug
formulations to CD55 molecules highly expressed on the
surfaces of cervical cancer HeLa cells.

In this study, C-PC/CMC-CD55sp nanospheres were
constructed based on the antitumor activity of C-PC, the
biocompatibility of CMC, and the targeting properties of
CD55sp. These nanospheres were evaluated for antitumor
efficacy, and the mechanisms of action were characterized in
vivo and in vitro.
MATERIALS AND METHODS

Materials
HeLa cells were purchased from Zhongqiao Xinzhou
Biotechnology (Shanghai, China). NU/NU nude mice
were purchased from Weitong Lihua Laboratory Animal
Technology (Beijing, China). C-PC was purchased from
Binmei Biotechnology (Taizhou, China). CMC was purchased
from Honghai Biotechnology (Qingdao, China). CD55sp
(QVNGLGERSQQM) was purchased from Gill Biochem
(Shanghai, China). Cell Counting Kit-8 (CCK-8) was
purchased from Biosharp (Hefei, China). Annexin V-FITC/PI
apoptosis detection kit and TUNEL kit were purchased from
Yeasen Biotechnology (Shanghai, China). Enzyme-linked
immunosorbent assay kits were purchased from Gene Mei
(Wuhan, China). Rabbit anti-human Bcl-2, caspase 3, and goat
anti-rabbit IgG antibody were purchased from Abcam (UK). A
laser particle size analyzer (Nano ZS90) was purchased from
Malvern Instruments (UK). A full-function micropore detector
was purchased from BIO-TEK (USA). A flow cytometer (Accuri
C6) was purchased from Bidi Medical Devices (Shanghai,
China). A fluorescence microscope (DP80) was purchased
from Olympus (Japan). Powerpac Basic was purchased from
BIO-RAD (USA). Vilber Fusion Solo Chemiluminescence
Imaging System (4S) was purchased from Vilber (France).

Synthesis of C-PC/CMC-CD55sp
Nanospheres
Using CaCl2 (1.5 mg/ml) as a cross-linking agent, C-PC/CMC
nanospheres were spontaneously constructed by encapsulating
C-PC (1 mg/ml) with CMC (2 mg/ml) at 4°C for 30 min in the
dark. EDC (2 mg/ml) was added to the C-PC/CMC nanospheres
solution. The solution was adjusted to pH 5.6 and stirred at 4°C
in the dark for 1 h. C-PC/CMC-CD55sp nanospheres were
prepared by combining CD55sp (0.1 mg/ml) overnight at 4°C
in the dark (Wang et al., 2017). Encapsulation Efficiency (EE)
and Loading Efficiency (LE) of C-PC in nanospheres were
calculated as follows (Yang et al., 2017):

EE  =
weight of C − PC in the nanospheres

 initial weight of  C − PC
 �  100%

LE  =  
weight of C − PC in the nanospheres

weight of the nanospheres 
 �  100%
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Nanospheres were evaluated using FTIR spectra across the
range of 500–4,000 cm-1 (Abbas et al., 2018; Dong et al., 2018).
Nanospheres morphology was observed using a transmission
electron microscope (Shi et al., 2016; Nantachit et al., 2017; Tao
et al., 2018). Zeta potential (surface charge) and particle size
(nanospheres size) were measured using a laser particle size
analyzer at 25°C (Zhang et al., 2015; Ahmad et al., 2018; Panchu
et al., 2018; von Halling Laier et al., 2018).

Cell Culture and Experimental Grouping
Cell lines were cultured in MEM supplemented with 10%
newborn calf serum and incubated in a humid incubator at 37°
C and 5% CO2. Cells were divided into the following four groups:
Control (no drug treatment); C-PC (treated with C-PC); C-PC/
CMC (treated with C-PC/CMC nanospheres); and C-PC/CMC-
CD55sp (treated with C-PC/CMC-CD55sp nanospheres). The
IC50 values in the C-PC/CMC-CD55sp were calculated after
incubation for 24 h, and these values were used as the drug
concentration for all subsequent cell experiments.

Cell Counting Kit-8
Cells were treated with different concentrations of C-PC, C-PC/
CMC, and C-PC/CMC-CD55sp in a 96-well plate, and incubated
for 24 h in CO2 incubator. After the medium was aspirated, and
the cells were incubated with CCK-8 mixture for 2 h.
Measurement of absorbance was carried out at wavelength of
450 nm using a full-function micropore detector (Liu
et al., 2013).

Flow Cytometry
In 6-well plates, cells were treated with C-PC, C-PC/CMC, or C-
PC/CMC-CD55sp. The cells were digested with pancreatin
without EDTA, collected, centrifuged, and washed with PBS.
After resuspended in 1× binding buffer, the cells were incubated
with annexin V-FITC and PI staining solution at room
temperature for 15 min in the dark. Then the solutions were
mixed with an appropriate amount of 1× binding buffer, and
placed on ice. The samples were evaluated using flow cytometry
within 1 h (Liang et al., 2017; Murata et al., 2018; Sui et al., 2018b;
Zhao et al., 2018).

Laser Confocal Microscopy
Cells were pretreated with C-PC, C-PC/CMC, or C-PC/CMC-
CD55sp in 24-well plates, then incubated at 37°C in a 5% CO2

incubator for 24 h. Four percent paraformaldehyde were added
to fix the cells. The cells were stained with DAPI solution for 10
min. After washing with PBS, cell slides were treated with
antifade mounting medium and visualized using laser confocal
microscopy (Costa Lima and Reis, 2015; Srivastav et al., 2019).

TUNEL Analysis
Cells were pretreated with C-PC, C-PC/CMC and C-PC/CMC-
CD55sp in 24-well plates. The cells were then fixed using 4%
paraformaldehyde. After processed successively by Proteinase K
solution and 1× equilibration buffer, the cells were incubated
with excess TDT incubation buffer at 37°C for 1 h in the dark.
Then cell nuclei were stained using DAPI. After washing with
Frontiers in Pharmacology | www.frontiersin.org 3
deionized water, the samples soaked in the PBS were
immediately analyzed using a fluorescence microscope (Sui
et al., 2018b).

Electron Microscopy
In six-well plates, cells were treated with Control solution and C-
PC/CMC-CD55sp, then scraped off the wells. After
centrifugation, the precipitates were fixed using glutaraldehyde,
and the cells were visualized using transmission electron
microscopy (Guardiola et al., 2017).

Western Blot Analysis
In 6-well plates, cells were divided into C-PC, C-PC/CMC, and
C-PC/CMC-CD55sp. After cells were lysed, the supernatants
were collected. Then total protein concentrations were measured
using the BCA assay. Proteins were separated using SDS-PAGE
and transferred to PVDF membranes, and blocked with 5% skim
milk for 1 h. The membranes were immunoblotted with the
target primary antibodies at 4°C overnight. After washing with
PBST, the membranes were treated with HRP-conjugated
secondary antibody at room temperature for 1 h. Bands were
visualized using chemiluminescence, and gray value analysis of
the bands was performed using ImageJ software (Saleh et al.,
2014; Lin et al., 2016).

Nude Mouse Tumor Model
Mice were inoculated with a 0.2-ml subcutaneous injection of
HeLa cell suspension (1 × 107 cells/ml) under the armpit of the
right forelimb. After tumor formation, the mice were also
separated into control, C-PC, C-PC/CMC and C-PC/CMC-
CD55sp. We injected C-PC/CMC-CD55sp into the tail veins of
the mice, and the fluorescence intensity of the tumors was
observed using small animal imaging system at 6 and 24 h.
After 24 h, the mice were sacrificed and the fluorescence
intensities of the heart, liver, spleen, kidney, and tumors were
observed using small animal imaging system (Yeh et al., 2016; Li
C. et al., 2017; Li W. et al., 2017; Wan et al., 2017; Song et al.,
2018). An additional five mice per group were injected with doses
based on body weight, and the IC50 values determined in the C-
PC/CMC-CD55sp were used as the drug concentrations for each
group. Mice were injected once every 2 days, and sacrificed after
20 days. Tumors and serum were collected for subsequent
experiments (Li et al., 2013; Gao et al., 2016; Yeh et al., 2016;
Wang et al., 2017; Sui et al., 2018a).

Hematoxylin and Eosin Staining
For histological studies, tumor tissue samples (1 cm by 1 cm)
were fixed in 10% formalin for a week to prepare paraffinized
blocks by routine histological techniques. The 6-μm paraffinized
sections were dewaxed and hydrated, then rinsed three times
with PBS (3 min each). The samples were stained with
hematoxylin for 5 min, faded with 1% HCl, and rinsed six
times with ddH2O (5 min each). The samples were stained
blue using a lithium carbonate saturated solution for 1 to 2
min, then rinsed three times with double-distilled water (5 min
each). Stain separation was performed using 80% alcohol
followed by rinsing three times with double-distilled water (5
June 2020 | Volume 11 | Article 906
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min each). The sample were then stained with eosin for 5 min,
and rinsed three times with double-distilled water (5 min each).
The sections were then dehydrated, hyalinized, and mounting
using resin. Field by field assessments of tissue morphology were
performed using a light microscope (Abedpour et al., 2018; Baig
et al., 2018; Liu et al., 2018; Wang et al., 2018; Gao et al., 2018).

Enzyme-Linked Immunosorbent Assay
We used enzyme-linked immunosorbent assay (ELISA) kits to
determine levels of interleukin-6 (IL-6), tumor necrosis factor-a
(TNF-a), and transforming growth factor b (TGF-b) (Chen
et al., 2004; Yang et al., 2010; Shi et al, 2018). Serum was
collected and tested according to the ELISA kit manufacturer's
instructions. Analysis was performed within 15 min after adding
the stop solution.

Statistical Analysis
Statistical analyses were performed using Prism 5.0 (GraphPad
Software, Inc., La Jolla, CA, USA). Results are expressed as the
mean ± SEM of three or more observations (as indicated in each
experiment). The mean values for biochemical data from two
groups were compared using two-tailed Student's t-tests. P-
values less than 0.05 were considered statistically significant.
RESULTS

Encapsulation Efficiency and Loading
Efficiency
The standard curve equation for C-PC concentration and
fluorescence intensity was Y = 4.6481X-2.5841 (r2 = 0.9993),
and was linear across the range of 5–100 mg/ml (Figures 1A, B).
The prepared C-PC/CMC nanospheres solution was centrifuged,
and the fluorescence intensity of the supernatant was measured
to determine the concentration. The EE was 65%. The samples
were then precipitated by centrifugation, and the precipitates
were freeze-dried. The net weights of the precipitates were
determined using an electronic balance to determine the
weights of the nanospheres. The LE was 20% (Figure 1C).

Characteristics of Nanospheres
In Figure 2A, based on FTIR spectra, we find that the peak
situated at 1259 cm−1 in C-PC/CMC nanospheres related to C-O
stretching turned to wave number 1237 cm−1 and 1018 cm−1 in
C-PC/CMC-CD55sp nanospheres, and which may attribute to
C-PC/CMC nanospheres modified with CD55sp resulted in the
shifting and increase of peaks. In Figure 2B, the nanospheres
were spherical and uniformly dispersed, as determined using
electron microscopy. The nanospheres were dehydrated as a
result of drying, which resulted in a bias in determination of
particle size using electron microscopy. The relative sizes of
nanospheres were compared using electron microscopy to
confirm that the nanospheres contained drug. Compared with
CMC nanospheres, the relative diameter of C-PC/CMC
nanospheres was larger. This larger diameter may have been
due to encapsulation of C-PC within the CMC nanospheres. The
Frontiers in Pharmacology | www.frontiersin.org 4
larger relative diameter of C-PC/CMC-CD55sp nanospheres
may have been due to conjugation of CD55sp to the surface of
C-PC/CMC nanospheres. As shown in Table 1, the particle sizes
of CMC nanospheres, C-PC/CMC nanospheres, and C-PC/
CMC-CD55sp nanospheres were 160.5 ± 48.06 nm, 146.6 ±
53.3 nm, and 258.9 ± 40.505 nm, respectively. The particle size of
C-PC/CMC nanospheres was lower than that of CMC
nanospheres, which may have been due to tighter internal
bonds. Conjugation of CD55sp to the surface of C-PC/CMC
nanospheres may have resulted in increased particle size. The
zeta potentials of CMC nanospheres, C-PC/CMC nanospheres,
and C-PC/CMC-CD55sp nanospheres were -7.66 ± 3.83 mV,
-19.7 ± 2.53 mV, and -13.1 ± 3.28 mV, respectively. These values
indicated that CMC and C-PC were negatively charged, and
CD55sp was positively charged.

Targeting Ability of Nanospheres
To investigate cellular uptake of nanospheres into HeLa cells, C-
PC was used as a fluorescent marker. The fluorescence intensity
was higher in the C-PC/CMC-CD55sp group than that in the
other groups, as determined using flow cytometry and laser
confocal microscopy, which indicated that this formulation
was targeted to HeLa cells (Figures 3A, B). The results showed
that the nanospheres formulation enhanced the internalization
of drugs into HeLa cells. To evaluate the tissue distribution of
nanospheres in vivo, the fluorescent marker C-PC was detected
in a nude mouse model. The mice were injected with C-PC/
CMC-CD55sp nanospheres via the tail vein, and fluorescence
was observed 6 h after injection, and the fluorescence intensity
was increased 24 h after injection. The nanospheres accumulated
in the liver, the spleen, and the tumor, with most accumulation
observed in the tumor. Accumulation of the nanospheres in the
liver and the spleen may have been related to drug metabolism
and the reticuloendothelial phagocytosis (Figure 3C). These
results indicated that C-PC/CMC-CD55sp nanospheres were
targeted to tumors, and that CD55sp may be an effective
tumor targeting factor.

Inhibition of Proliferation
In Figure 4A, HeLa cells proliferation decreased in a dose-
dependent manner in response to treatment with C-PC, C-PC/
CMC, and C-PC/CMC-CD55sp. Furthermore, treatment with
C-PC/CMC-CD55sp inhibited proliferation of HeLa cells to a
greater extent than the other formulations. The IC50 value for C-
PC/CMC-CD55sp in HeLa cells was about 40 mg/ml. We also
evaluated the antitumor effects of the nanospheres in tumor-
bearing nude mice. After 20 days of observation and
measurement, no nude mice in the C-PC, C-PC/CMC, or C-
PC/CMC-CD55sp exhibited weight loss or showed signs of
significant toxicity, and all animals survived to the end of the
experiment. As shown in Figure 4B, tumor growth rate was
inhibited by each of the drugs, and C-PC/CMC-CD55sp
inhibited tumor growth to the greatest extent. The size and
weight of the tumors were measured following sacrifice, and the
results were consistent with those for tumor growth (Figures
4C, D). These results showed that C-PC, C-PC/CMC, and C-PC/
June 2020 | Volume 11 | Article 906
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CMC-CD55sp inhibited tumor growth, and C-PC/CMC-
CD55sp induced the strongest inhibitory effect.

Apoptosis
Apoptosis is a key indicator of the antitumor ability of drugs. We
found that C-PC, C-PC/CMC, and C-PC/CMC-CD55sp
increased apoptosis in HeLa cells, and C-PC/CMC-CD55sp
induced apoptosis to the greatest extent by TUNEL assay
(Figures 5A, B) and flow cytometry analysis (Figures 5C, D).
Frontiers in Pharmacology | www.frontiersin.org 5
In Figure 5E a, ultrastructural analysis of untreated HeLa cells
was used to characterize the normal morphology of the control
group. In Figure 5E b, cells treated with C-PC/CMC-CD55sp
showed apoptotic morphology, which included cytoplasm
concentration, decreased cell volume, nuclear shrinkage and
deepened staining, and disappearance of microvilli. As shown
in Figure 5F, tumor tissue sections were prepared from tumor-
bearing nude mice to further evaluate apoptosis. In the Control
group, the tumor cells indicated by arrow 1 were closely aligned,
A

CB

FIGURE 1 | Encapsulation Efficiency (EE) and Loading Efficiency (LE) of C-Phycocyanin (C-PC)/Carboxymethyl Chitosan (CMC) nanospheres. (A) Fluorescence
spectrophotometry assay. The horizontal axis represents the wavelength (nm) and the vertical axis represents the fluorescence intensity (a.u.). The fluorescence
intensity in response to 5, 10, 20, 50, and 100 mg/ml C-PC at 644 nm was 18.64443, 42.21353, 89.49482, 238.0835, and 458.5364, respectively. The
fluorescence intensity of the supernatant of the C-PC/CMC solution was 575.97. (B) Standard curve. The horizontal axis represents the concentration [r/(mg/ml)] and
the vertical axis represents the fluorescence intensity (a.u.). The concentration was linearly related to the fluorescence intensity, and the standard curve was used to
determine the concentration of the supernatant of the C-PC/CMC solution. (C) Supernatant analysis. The initial concentration of C-PC was used as the input, and
the concentration of the supernatant of the C-PC/CMC solution was the output. Results are expressed as the mean ± SEM (n = 3). ***P < 0.001.
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with clear margins and normal karyotypes. In the three
treatment groups, the tumor cells indicated by arrow 2 were
dispersed, and showed characteristic apoptotic changes, such as
nuclear shrinkage, nuclear rupture, and nuclear dissolution.
Apoptosis is tightly regulated by apoptosis-related proteins
such as Bcl-2 and caspase 3. Figures 5G, H showed that the
levels of Bcl-2 protein and cleaved caspase 3 were lower in
response to treatment with nanospheres, and C-PC/CMC-
CD55sp induced the most pronounced changes. These results
showed that C-PC/CMC-CD55sp induced apoptosis by altering
the levels of apoptosis-related proteins.

Immunoregulation
To evaluate the role of immune response in tumor killing, the
levels of IL-6, TNF-a, and TGF-b were measured in mouse
serum using ELISA. The levels of IL-6 and TNF-a in the C-PC,
Frontiers in Pharmacology | www.frontiersin.org 6
C-PC/CMC, and C-PC/CMC-CD55sp groups were higher than
those in the Control group. In contrast, the levels of TGF-b were
lower in the treated groups than those in the Control group, and
C-PC/CMC-CD55sp induced the strongest effect (Figure 6).
These results indicated that C-PC/CMC-CD55sp stimulated
secretion of IL-6 and TNF-a, and reduced the expression of
TGF-b, which might indicate that tumor cells death occurred
through modulation of the immune response.
DISCUSSION

Cervical cancer is among the most common types of
gynecological malignant tumors (Torre et al., 2015). Base on
the epidemiological studies, there are about 500,000 new cases of
cervical cancer globally each year (Torre et al., 2015). Li B. et al.
(2006) showed that release of cytochrome C from mitochondria
to the cytoplasm following C-PC treatment of HeLa cells was
associated with apoptosis. Another study showed that CMC-co-
poly (AA) had potential for targeted delivery of various
antitumor drugs (Sharif et al., 2017). Li et al. (2018) also
showed that CD55sp could bind to CD55 molecules on the
surface of HeLa cells as a ligand peptide. Therefore, we
A

B

FIGURE 2 | Characterization of nanospheres. (A) FTIR spectra for Carboxymethyl Chitosan (CMC), C-Phycocyanin (C-PC)/CMC, and C-PC/CMC-CD55sp. (B)
Morphology was determined using transmission electron microscopy. CMC, scale bars, 50 nm; C-PC/CMC, scale bars, 250 nm; C-PC/CMC-CD55sp, scale bars,
500 nm.
TABLE 1 | The sizes and zeta potentials of the developed nanospheres.

Nanospheres Size (d.nm) Zeta potential (mV)

CMC 160.5 ± 48.06 -7.66 ± 3.83
C-PC/CMC 146.6 ± 53.3 -19.7 ± 2.53
C-PC/CMC-CD55sp 258.9 ± 40.505 -13.1 ± 3.28
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constructed novel C-PC/CMC-CD55sp nanospheres with C-PC
included as an anticancer drug, CMC as a carrier, and CD55sp as
a targeting peptide. Targeted inhibition of proliferation and
apoptosis were evaluated in HeLa cells (Figure 7).

The EE and LE of the nanospheres were determined (Yang
et al., 2017). The nanospheres were characterized using FTIR
(Abbas et al., 2018; Dong et al., 2018), electron microscopy (Shi
et al., 2016; Nantachit et al., 2017; Tao et al., 2018), and laser
particle size analysis (Couvreur et al., 2002; Zhang et al., 2015;
Shi et al., 2016; Ahmad et al., 2018; Panchu et al., 2018; von
Halling Laier et al., 2018). The results showed that C-PC/CMC-
CD55sp nanospheres were successfully constructed.
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Flow cytometry (Ying et al., 2018), laser confocal microscopy
(Costa Lima and Reis, 2015; Srivastav et al., 2019), and small
animal imaging system (Yeh et al., 2016; Li C. et al., 2017; Li W.
et al., 2017; Wan et al., 2017; Song et al., 2018) showed that C-
PC/CMC-CD55sp nanospheres were targeted to tumor cells.
These results showed that the developed nanospheres targeted
HeLa cells in vitro and in vivo in a tumor-bearing mouse model.

Cell viability was analyzed as the proportion of healthy cells in
a sample, and proliferation has been shown to be an important
parameter for understanding the pathways involved in cell
survival or death after treatment (Adan et al., 2016). Generally,
methods used to determine cell viability have also been used to
A

C

B

FIGURE 3 | Determination of targeting effects using flow cytometry, laser confocal microscopy, and imaging. (A) Flow cytometry analysis. The fluorescence intensity
of HeLa cells was determined using flow cytometry. The horizontal axis represents fluorescence intensity. Fluorescence intensity represented the targeting ability of
drugs. (B) Laser confocal microscopy. Fluorescence intensity of HeLa cells was determined using laser confocal. Blue fluorescence represents nuclei, and red
fluorescence represents targeting ability. (C) Imaging. Fluorescence intensity in tumor tissues and organs (heart, liver, spleen, and kidney) was detected using small
animal imaging system. The color scale represents fluorescence intensity. Fluorescence intensity represents the targeting ability of drugs.
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determine cell proliferation (Adan et al., 2016). Furthermore, cell
proliferation assays have been generally used for drug screening
to determine whether the test molecules had induced the desired
effects (Adan et al., 2016). In our study, CCK-8 was used to
evaluated the effects of C-PC, C-PC/CMC, and C-PC/CMC-
CD55sp on HeLa cell proliferation. The results showed that C-
PC/CMC-CD55sp induced the strongest antitumor effect.

Tumorigenesis results from disruption of the balance between
proliferation and apoptosis, and apoptotic signal transduction is
a key factor in apoptosis. To detect nuclear DNA cleaved by
Frontiers in Pharmacology | www.frontiersin.org 8
activated DNases during late stages of apoptosis, TUNEL
staining is typically used (Fayzullina and Martin, 2014). Flow
cytometry can be used to identify apoptotic cells through binding
of dye to phosphatidylserine on the cell surface of early
apoptosis, and through binding of dyes to DNA of late
apoptotic or necrotic cells (Wlodkowic et al., 2011; Jiang et al.,
2017). Dynamic changes in compaction of nuclear chromatin are
characteristic of apoptosis (Wyllie et al., 1984). During apoptosis,
chromatin undergoes a phase change from a heterogeneous,
genetically active network to an inert highly condensed
fragmented form (Maruyama et al., 2001; Tone et al., 2007).
Cell morphology, size, and changes in organelles can also be used
to identify apoptotic cells (Taatjes et al., 2008). Apoptosis-related
proteins such as the caspase 3 protease family (Hsu et al., 2018;
Safavi et al., 2018) and the antiapoptotic protein Bcl-2 (Pihan
et al., 2017; Beberok et al., 2018) play key roles in apoptosis.
Using western blot, we determined the expression of cleaved
caspase 3 and Bcl-2 to evaluate apoptosis in tumor cells. The
results showed that C-PC/CMC-CD55sp induced apoptosis of
HeLa cells to the greatest extent, which resulted in strong
antitumor effects.

We detected cytokines such IL-6, TNF-a, and TGF-b in
mouse serum, and showed that the developed nanospheres
induced an immune response, which may have regulated
tumor killing. IL-6 signaling been shown to inhibit tumor
growth by mobilizing antitumor T cell immune responses
(Fisher et al., 2014). IL-6, which is produced by dendritic cells
in lymph nodes, has been shown to impact activation, expansion,
survival, and polarization of T cells during immune responses
(Hope et al., 1995). IL-6 may participate in modulation of the T
cell immune response, resulting in a shift from a suppressive to a
responsive state that could promote antitumor activity.
Furthermore, IL-6 has been shown to play an important role
in promoting T cell trafficking to lymph nodes and to tumor
sites, where they become activated and exert cytotoxic effector
activity (Chen et al., 2004; Appenheimer et al., 2007; Fisher et al.,
2011; Fisher et al., 2014).

TNF-a is produced by monocytes and macrophages, and
plays a role in cell survival, apoptosis-related inflammation, and
immune activity (Shi et al., 2018). In addition, TNF-a has been
shown to be an effective antitumor agent in vitro and in vivo
through induction of tumor apoptosis and necrosis (Li M.O.
et al., 2006). High loco-regional doses of TNF-a have been
shown to induce hemorrhagic necrosis via selective destruction
of tumor blood vessels and generation of specific T cell antitumor
immunity (Lejeune, 2002; Balkwill, 2006).

TGF-b signaling plays an important role in promoting tumor
initiation and progression, and its mechanisms include
dysregulation of cyclin-dependent kinase inhibitors, alteration
of cytoskeletal architecture, increased protease expression and
extracellular matrix formation, decreased immune surveillance,
and increased angiogenesis (Massague, 2008; Yang et al., 2010).
Studies have shown that TGF-b had an adverse effect on
antitumor immunity and inhibited host tumor immune
surveillance (Li M.O. et al., 2006; Yang et al., 2010).
Furthermore, TGF-b markedly suppressed the ‘cytotoxic
A

C

B

D

FIGURE 4 | Inhibitory effects of drugs on cell proliferation in vitro and in vivo.
(A) Cell Counting Kit-8 (CCK-8) assay. The x-axis represents drug
concentration (0, 10, 30, and 60 mg/ml), and the y-axis represents cell
activity, as determined using the CCK-8 assay. Results are expressed as the
mean ± SEM (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001. (B) Tumor volume.
The horizontal axis represents days and the vertical axis represents tumor
volume (mm3). (C) Tumor size. (D) Tumor weights. The vertical axis
represents tumor weights (g). Results are expressed as the mean ± SEM (n =
5). *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 5 | Drug-induced apoptosis. (A, B) TUNEL assay. Blue fluorescence indicates nuclei, and green fluorescence indicates apoptotic cells. The percentage of
apoptotic cells (%) was equal to the ratio of the number of stained cells to the total number of cells. Results are expressed as the mean ± SEM (n = 3). *P < 0.05,
**P < 0.01. Scale bars, 20 mm. (C, D) Flow cytometry analysis. Apoptosis was evaluated using an annexin V-FITC and PI apoptosis detection kit. The apoptosis
rates of cells were determined, and C-Phycocyanin (C-PC)/CMC-CD55sp nanospheres induced apoptosis to the greatest extent. Results are expressed as the mean
± SEM (n = 3). *P < 0.05, **P < 0.01. (E) Electron microscopy. a. Normal HeLa cells. Scale bars, 2 mm; b. Apoptotic HeLa cells. Scale bars, 500 nm. Arrows indicate
nuclei. (F) Hematoxylin and eosin staining. (1) Normal HeLa cells; (2) apoptotic HeLa cells. (G, H) Western blot. Protein levels were normalized to b-actin. Results are
expressed as the mean ± SEM (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 6 | Levels of interleukin-6 (IL-6), tumor necrosis factor-a (TNF-a), and transforming growth factor b (TGF-b) in nude mice. Enzyme-linked immunosorbent
assay. The vertical axis represents concentration (pg/ml). Results are expressed as the mean ± SEM (n = 3). *P<0.05, **P<0.01.
FIGURE 7 | A model for C-PC/CMC-CD55sp nanospheres in targeting tumor cells in vivo and in intro.
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program' of cytotoxic T lymphocytes, which have been shown
that favor tumor progression (Thomas and Massague, 2005;
Yang et al., 2010). Detection of IL-6, TNF-a, and TGF-b in
blood of tumor-bearing nude mice showed that C-PC/CMC-
CD55sp nanospheres induced an immune response that was
associated with tumor growth inhibition.
CONCLUSION

We successfully constructed C-PC/CMC-CD55sp nanospheres
and confirmed their targeting properties. These nanospheres
inhibited HeLa cell proliferation and promoted HeLa cell
apoptosis in vivo and in vitro. Furthermore, these nanospheres
inhibited tumor tissue growth through regulation of the immune
response in vivo in nude mice.
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