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The consumption of seafood and the use of fish oil for the production of nutraceuticals and
fish feed have increased over the past decades due the high content of long-chain
polyunsaturated omega-3 fatty acids. This increase has put pressure on the sustainability
of fisheries. One way to overcome the limited supply of fish oil is to harvest lower in the
marine food web. Calanus finmarchicus, feeding on phytoplankton, is a small copepod
constituting a considerable biomass in the North Atlantic and is a novel source of omega-3
fatty acids. The oil is, however, different from other commercial marine oils in terms of
chemistry and, possibly, bioactivity since it contains wax esters. Wax esters are fatty acids
that are esterified with alcohols. In addition to the long-chain polyunsaturated omega-3
fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the oil is also
rich in stearidonic acid (SDA), long-chain monounsaturated fatty acids, and the long-chain
fatty alcohols eicosenol and docosenol. Recent animal studies have indicated anti-
inflammatory and anti-obesogenic actions of this copepod oil beyond that provided by
EPA and DHA. This review will discuss potential mechanisms behind these beneficial
effects of the oil, focusing on the impact of the various components of the oil. The health
effects of EPA and DHA are well recognized, whereas long-chain monounsaturated fatty
acids and long-chain fatty alcohols have to a large degree been overlooked in relation to
human health. Recently, however the fatty alcohols have received interest as potential
targets for improved health via conversion to their corresponding fatty acids. Together, the
different lipid components of the oil from C. finmarchicus may have potential as
nutraceuticals for reducing obesity and obesity-related metabolic disorders.

Keywords: Calanus finmarchicus, obesity, long-chain omega-3 fatty acids, long-chain monounsaturated fatty
acids, long-chain fatty alcohol, stearidonic acid, cardiovascular diseases, inflammation
Abbreviations: AA, arachidonic acid; ALA, a-linolenic acid; Cf, Calanus finmarchicus; DHA, docosahexaenoic acid; DPA,
docosapentaenoic acid; EPA, Eicosapentaenoic acid; GPR120, G-protein coupled receptor 120; HDL-C, high-density
lipoprotein cholesterol; LC-MUFA, long-chain monounsaturated fatty acids; n-3 LC-PUFA, Omega-3 long-chain
polyunsaturated fatty acids; LDL-C, low-density lipoprotein cholesterol; NF-kB, nuclear factor kappa B; PPAR, peroxisome
proliferator-activated receptor; SDA, stearidonic acid; SFA: saturated fatty acid; TAG, triacylglycerol; TC, total cholesterol;
TLR4, Toll-like receptor 4.
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INTRODUCTION

It is widely accepted that the omega-3 (n-3) long-chain
polyunsaturated fatty acids (LC-PUFA) eicosapentaenoic acid
(EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3),
present in seafood, have health benefits in several human
diseases and conditions, such as cardiovascular and
inflammatory diseases. They also play a critical role in neural
development (Campoy et al., 2012; Delgado-Lista et al., 2012;
Calder, 2015). Responsible organizations, such as the World
Health Organization, European Food Safety Authority and the
American Heart Association, recommend, therefore, at least one
or two servings of (oily) fish per week, equivalent to about 250
mg/day of EPA and DHA (WHO, 2003; EFSA, 2009; Rimm
et al., 2018).

The use of fish oil in aquaculture feed and as a nutraceutical
for direct human consumption has increased over the past
decades (Tocher, 2015). This, in addition to the increased
consumption of seafood, has put pressure on sustainable
fisheries, and it has been estimated that about 33% of the
world’s marine fish stocks are overfished (FAO, 2018). Still
there is a gap between supply and demand for marine oils
(Tocher, 2015; FAO, 2018) and therefore a need for new and
sustainable sources of marine lipids. One possibility is to harvest
lower in the marine food web. Zooplankton and small
crustaceans like krill that feed on phytoplankton, the producers
of the n-3 LC-PUFA, are to some degree now being utilized for
production of marine oil nutraceuticals.

Calanus finmarchicus (Cf), a small marine copepod
(Figure 1), constitutes a considerable proportion of the
biomass in the Norwegian Sea (Planque and Batten, 2000) and
Frontiers in Pharmacology | www.frontiersin.org 2
is currently being harvested and industrially processed to an oil
product, Calanus® Oil (Pedersen et al., 2014b). Calanus
finmarchicus is an important prey item for many ecologically
and economically important fish species such as herring and
mackerel (Prokopchuk and Sentyabov, 2006), and harvesting
lower down the food web can have serious impacts on the
recruitment and survival of these planktivorous fish species if
not done with care. Also, the by-catch of eggs, larvae, and fry
during direct catching of Cf may have potential negative effects
further up in the food chain (Eysteinsson et al., 2018). The
Norwegian Directorate of Fisheries has proposed a total catch
quota for direct catching of Cf of 254 000 tonnes a year
(Norwegian Directorate of Fisheries, 2016a). This quota is
based on an estimated standing stock of 33 million tonnes in
the Norwegian Sea and following similar regulations as for krill
(Euphausia superba) fishing in the Antarctic (Norwegian
Directorate of Fisheries, 2016b). It is argued that the standing
stock of Cf is so high that no effect of the proposed quota will be
seen on the population size. In addition, although the proposed
total quota is 254 000 tonnes a year, the actual harvest in 2016
was 660 tonnes (Thorvik, 2017). But nonetheless, the size of the
total quota will be re-assessed at a later stage, when increased
biological knowledge and more experience from the harvesting
activities and catch processing on board is available (Norwegian
Directorate of Fisheries, 2016a).

C. finmarchicus has a lifespan of only one year (Falk-Petersen
et al., 2009) resulting in very low levels of persistent organic
pollutants in the lipid fraction (AMAP, 2009; Mizukawa et al.,
2009), and refinement of the oil is therefore not necessary. The
lipid class composition of the oil from Cf is, however, different
from other marine oils. In traditional whole-body fish oil and cod
liver oil, EPA and DHA are generally bound to a glycerol
backbone forming triacylglycerol (TAG). Second-generation n-
3 LC-PUFA fish oil supplements have concentrated contents of
EPA and DHA, either in the form of ethyl esters or re-esterified
TAG. Krill oil is also often included in this group, although it has
a high content of phospholipids in addition to TAG (reviewed by
Xie et al., 2019). The oil from Cf has a unique chemistry, where
most of the fatty acids esterify with long-chain fatty alcohols,
forming the lipid class known as wax esters (Lee et al., 2006)
(Figure 1). For this reason, Calanus® Oil may be regarded as a
third generation of n-3 products. This new marine oil is,
however, a niche product compared to bulk oils, like fish oils.
The total fish production globally in 2016 was around 171
million tonnes, of this approximately 20 million tonnes were
used for non-food purposes, mostly for the production of fish
meal and fish oil (FAO, 2018). This results in almost 1 million
tonnes of fish oil (Tocher, 2015). In contrast, the harvest of Cf is
below 1000 tonnes a year, and with a lipid content of
approximately 8% (Falk-Petersen et al., 1987; Scott et al., 2000;
Lee et al., 2006), this results in less than 100 tonnes of oil,

The aim of this review is to discuss the possible role of the
novel marine oil from Cf as a metabolic therapy to prevent
obesity-induced low-grade inflammation and the associated
metabolic disturbances. However, a challenge with writing this
review is the lack of clinical studies with calanus oil, while its
FIGURE 1 | The marine copepod Calanus finmarchicus and a wax ester
composed of the long-chain polyunsaturated omega-3 fatty acid
docosahexaenoic acid (22:6 n-3) bound to the long chain fatty alcohol
docosenol (22:1 n-11) as an example of the lipids found in the oil of Calanus
finmarchicus. Photo Copyright by Calanus AS.
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potential health benefits are based primarily on animal studies.
The unique chemistry of this oil argues, however, for the view
that this oil is not just another EPA- and DHA-containing oil.
Therefore, we have chosen to discuss the impact of the major
components of calanus oil on metabolic health in the light of
available information in the literature.
BIOSYNTHESIS OF LONG-CHAIN OMEGA-
3 FATTY ACIDS

Humans are not able to synthesize n-3 fatty acids de novo and,
therefore, depend on the diet to obtain them directly, or
synthesize them from dietary essential fatty acids such as a-
linolenic acid (ALA). De novo synthesis of omega-6 and n-3 fatty
acids from oleic acid is only possible in plants, including
microalgae, because they possess the D-12 and D-15
desaturases. Delta-12 desaturase produces linoleic acid that can
be converted further into ALA by D-15 desaturase. Humans can
convert linoleic acid into arachidonic acid (AA) and ALA into
SDA and EPA due to the enzymatic activity of D-6 and D-5
desaturases and elongase (Figure 2). The conversion of EPA to
DHA is possible via two different pathways. After conversion of
EPA into docosapentaenoic acid (DPA, 22:5n-3), further
conversion into DHA can be done by the so-called Sprecher
pathway. In this pathway DPA is first elongated (forming
tetracosapentaenoic acid; 24:5n-3) followed by a second D-6
desaturation (forming tetracosahexaenoic acid; 24:6n-3) and
finally chain shortening via peroxisomal b-oxidation to DHA
(Sprecher et al., 1995). Lower eukaryotes and some vertebrates,
even including some mammals, but not humans, can convert
DPA directly into DHA by D-4 desaturase (Figure 2). The D-6
desaturase activity is rate-limiting (Bernert and Sprecher, 1975)
Frontiers in Pharmacology | www.frontiersin.org 3
making the conversion of ALA to SDA inefficient and the
conversion further to DHA very limited. More EPA is
therefore formed from SDA than from ALA, but it is only
slightly further converted to DHA due to the second D-6
desaturase step (Leonard et al., 2004; Lee et al., 2016). The
endogenous conversion of ALA to EPA and DHA has been
reported to be 21% and 9%, respectively, in young women
(Burdge and Wootton, 2002). In men, the conversion from
ALA to EPA is only between 0.3% and 8% while the
conversion from ALA to DHA is below 4% and often
undetectable (Emken et al., 1994; Burdge et al., 2002; Burdge
et al., 2003; Hussein et al., 2005). It is therefore important to
consume EPA and DHA via the diet in order to benefit from the
health effects provided by these fatty acids.
OIL EXTRACTED FROM CALANUS
FINMARCHICUS

The composition of the different lipid classes in the oil in Cf
changes depending on the copepod life-cycle stage at the time of
harvest, season, and location of sampling (Falk-Petersen et al.,
1987; Fraser et al., 1989) (see also Tables 1 and 2). The
industrially produced oil is obtained in the summer when C.
finmarchicus is in surface waters and has the highest lipid
content due to feeding on the blooming phytoplankton
(Pedersen et al., 2014b).Throughout its 1-year life cycle, the
lipid content and fatty acid composition of C. finmarchicus
changes, depending on the life stage/season (Kattner and
Krause, 1987). In this Calanus® Oil, more than 85% of the
lipids consist of wax esters (Pedersen et al., 2014a) (see also Table
2). About 11% of the fatty acids (all lipid classes combined) are
monounsaturated fatty acids (MUFA), of which cetoleic acid
FIGURE 2 | Biosynthesis of omega-6 and omega-3 fatty acids. D-15 desaturase is only found in plants. D-4 desaturase is present in some vertebrates but not in
humans. The D-6 desaturase catalyze is the rate limiting step in the synthesis of EPA and DHA (modified from Calder, 2015).
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(22:1n-11) and gondoic acid (20:1n-9) are the most abundant
with about 4% and 2.5%, respectively, followed by 1.5% oleic acid
(18:1n-9). Approximately 19% of the fatty acids are PUFA of
which 18% are omega-3 fatty acids. This novel marine oil is
relatively low in EPA and DHA compared to other marine oils
(6% and 4% respectively), but is relatively rich in SDA (7%), see
Table 2 (Pedersen et al., 2014a; Cook et al., 2016b). The main
fatty alcohols present are the equivalents of the dominant LC-
MUFA in the oil, namely the monounsaturated long-chain fatty
alcohols eicosenol (20:1n-9) and docosenol (22:1n-11) (Pedersen
et al., 2014a). In Table 2, it can be seen that in oil in C.
finmarchicus the abundance of EPA and DHA is highest in the
phospholipids. The actual amount, however, is low since the
proportion of phospholipids is low compared to the neutral lipid
Frontiers in Pharmacology | www.frontiersin.org 4
classes (Table 1). It has been published that the bioavailability of
EPA and DHA is higher from the phospholipids than from TAG
(Maki et al., 2009; Schuchardt et al., 2011; Ulven and
Christiansen, 2015; Cook et al., 2016a). But this remains,
however, controversial (Salem and Kuratko, 2014).
Phospholipids are, however, not detected in the commercial
Calanus® Oil (Pedersen et al., 2014a) probably due to
endogenous enzymatic hydrolysis (Vang et al., 2013). The oil
has also been reported to contain about 1500 ppm astaxanthin
(Pedersen et al., 2014b). This antioxidant has anti-inflammatory
and anti-atherogenic potential, which has been extensively
studied in both humans and animals (Jacobsson et al., 1999;
Jacobsson et al., 2004; Pashkow et al., 2008; Yang et al., 2011a).
However, any possible health effects of astaxanthin will not be
discussed here.

A complete description of the digestion of wax esters and
absorption of fatty acids and fatty alcohols are beyond the scope
of this paper. But minor amounts of waxes are present in a
variety of food items (Hargrove et al., 2004). The consumption of
large portions of wax ester rich fish has been reported to cause
outbreaks of keriorrhea “oily diarrhea,” and associated stomach
cramps, nausea, and vomiting, in several countries. This has led
to the suggestion that wax esters are indigestible (Ho Ling et al.,
2009). However, other publications have demonstrated that
mammals can digest wax esters, at least when consumed in
moderate amounts (Hansen and Mead, 1965; Yaron et al., 1982;
Gorreta et al., 2002) As reviewed by Hargrove et al. (2004),
humans are able to hydrolyze the waxes found in a variety of food
items and absorb the liberated fatty acids and alcohols. The safety
of the oil from Cf for human consumption has been clinically
evaluated by Tande et al. (2016), and there are no safety concerns
regarding this novel marine oil when consumed in
recommended amounts of 2g of calanus oil. Parallel to this
safety trial ran a study on the bioavailability of EPA and DHA in
oil from Cf for human consumption (Cook et al., 2016b). The
volunteers in the study by Cook et al. (2016b) consumed 4g
calanus oil without any ill effects.

Feeding experiments in mice have shown that the fatty
alcohols present in the oil are detected in the feces of mice,
indicating that the wax esters are indeed hydrolyzed. The same
study also detected increased incorporation of different n-3 LC-
PUFA in liver and white adipose tissue, indicating absorption of
wax ester-derived fatty acids (Pedersen et al., 2014a).

Calanus oil is a novel marine oil, and it has only since recently
been harvested for production of a nutraceutical. It has earlier
been used in feed for farmed Atlantic salmon (Salmo salar)
(Bogevik et al., 2009) and Atlantic halibut (Hippoglossus
hippoglossus) (Colombo-Hixson et al., 2013). However, oils
from zooplankton are considerably more expensive than fish
oils and are, therefore, currently not included in general
aquaculture feed. Clinical studies are currently being
conducted to examine the ability of oil from Cf to combat
obesity and insulin resistance, but no results have been
released to date. Feeding experiments on rodents, however,
have shown that dietary supplementation with only 1% to 2%
calanus oil improved metabolic and inflammatory parameters in
TABLE 1 | Lipid class composition of C. finmarchicus sampled in summer,
autumn, winter, and spring in Balsfjord, Norway.

% Total Lipid

Lipid Class: June October January March

Wax esters 85.4 88.1 90.0 84.9
Phospholipids 4.2 7.3 5.7 10.3
Triacylglycerols 8.9 1.3 0.8 nd
Cholesterol 1.2 2.6 2.4 3.2
Free fatty acids 0.2 nd 1.1 1.7
nd, not detected. Source: Falk-Petersen et al. (1987).
TABLE 2 | Fatty acid and fatty alcohol composition (mass %) of the commercial
Calanus® Oil and in the different lipid classes in Calanus finmarchicus.

Lipid class

Fatty acid Calanus® Oila WEb WEc TAGb PLb

14:0 (Myristic) 6.4 26.3 18.0 12 3.3
16:0 (Palmitic) 4.5 9.8 9.3 30.4 25.8
18:0 (Stearic) 0.2 0.9 nd 6.1 3.6
16:1n-7 (Palmitoleic) 1.7 6.7 6.5 3.6 1.1
18:1n-9 (Oleic) 1.6 5.3 5.3 10.4 2.5
20:1n-9 (Gondoic) 2.4 7.8 9.6 nd 0.2
22:1n-9 (Erucic) 0.3 0.2 nd nd nd
22:1n-11 (Cetoleic) 4.3 7.0 12.0 2.2 0.2
18:2n-6 (LA) 0.7 1.2 nd 2.7 1.5
18:3n-3 (ALA) 1.4 1.5 nd 2.3 0.6
18:4n-3 (SDA) 7.0 13.7 9.3 5.9 2.5
20:5n-3 (EPA) 5.5 11.4 9.8 8.7 19.2
22:5n-3 (DPA) 0.3 nd nd 1.2 0.2
22:6n-3 (DHA) 3.9 2.2 7.7 5.8 37.4

Fatty alcohol

14:0 0.4 3.9 1.1
16:1n-7 0.5 3.4 1.8
18:1n-9 1.0 nd nd
20:1n-9 (Eicosenol) 12.9 39.3 41.0
22:1n-9 1.0 nd nd
22:1n-11 (Docosenol) 18.8 38.8 45.2
Source: aPedersen et al. (2014a), bAlbers et al. (1996) cKattner et al. (1989).
The fatty acid values per lipid class presented here are from C. finmarchicus femalesb and
copepod stage Vc harvested during the summer in the Fram Strait. Modified from
Pedersen et al. (2014b) and Falk-Petersen et al. (2009).
nd, not detected; SFA, saturated fatty acid; MUFA, monounsaturated fatty acids; PUFA,
polyunsaturated fatty acids; WE, wax ester; TAG, triacylglycerol; PL, phospholipid.
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high-fat diet-induced obese mice (Höper et al., 2013; Höper et al.,
2014). The oil has also been reported to attenuate atherosclerotic
lesion formation (Eilertsen et al., 2012), reduce hypertension
(Salma et al., 2016), and protect the heart from ischemic stress
(Jansen et al., 2019). Results from Höper et al. (2014) indicated
that supplementation of the diet with purified wax ester has
stronger anti-inflammatory and anti-obesogenic effects in diet-
induced obese mice, compared to ethyl esters of EPA and DHA.
This suggests that not only EPA and DHA, but also other
components from the hydrolyzed wax esters in the oil, or the
wax ester itself, might have beneficial effects on health. In
particular, the observation that even very low dosages of the oil
can counteract obesity-induced metabolic dysfunction holds
promise that calanus oil could be promising nutraceutical in
the future
OBESITY INDUCED CHRONIC LOW-
GRADE INFLAMMATION

Obesity, in particular abdominal obesity, is associated with a
chronic local low-grade inflammation (Solinas and Karin, 2010;
Gregor and Hotamisligil, 2011; Ouchi et al., 2011) with
progressive immune cell infiltration in adipose tissue
(Figure 3). In this process, the immune cells and (to a lesser
extend) the enlarged/expanded adipocytes start to secrete pro-
inflammatory cytokines (e.g., TNFa, IL-6, and IL-1b) and
chemokines, such as monocyte chemoattractant protein-1
(MCP-1) (Fain, 2006).

Numerous studies have shown that hypoxia and nutrient
excess are the two main triggering factors for inflammation in
adipose tissue (Schenk et al., 2008; Ye, 2009; Gregor and
Hotamisligil, 2011). In response to nutrient excess, adipocytes
expand and become hypertrophic. At the same time, the
distances between the blood vessels increase and oxygen
diffusion becomes insufficient (Torres Filho et al., 1994),
leading to local hypoxia, which in turn triggers the secretion of
cytokines via activation of Hypoxia-Inducible Factor (HIF)-1
Alpha (Sun et al., 2013).

Infiltration of pro-inflammatory cells in inflamed adipose
tissue is characterized by infiltration of M1 macrophages in
replacement of M2 macrophages. M2 macrophages produce
anti-inflammatory cytokines such as IL-10 and IL-23 and
recruit regulatory T cells. M1 macrophages, however produce
pro-inflammatory cytokines such as TNFa and IL-6, and attract
Th1 cells (Fujisaka et al., 2009; as reviewed in Mills, 2012).
Adipose tissue is the key site of interaction between adipocytes
and immune cells due to the architectural organization and
proximity of these cell types. Access to blood vessels allows for
soluble mediators to communicate with other organs. In this
way, the inflammatory status of adipose tissue becomes a risk
factor for disease development, including metabolic syndrome,
insulin resistance, diabetes mellitus, and cardiovascular disease
(Mokdad et al., 2003; Reaven, 2005; Hotamisligil, 2006; Mathew
et al., 2008; Van de Voorde et al., 2013) (Figure 3).
Frontiers in Pharmacology | www.frontiersin.org 5
THE MAIN COMPONENTS OF THE OIL
FROM CF AND THEIR EFFECT ON
INFLAMMATION CONTROL

EPA and DHA
Fish oils have long been considered to promote positive health
effects through the n-3 LC-PUFA EPA and DHA (Simopoulos,
1991). Treatment of severely obese non-diabetic patients with
EPA and DHA has shown to reduce adipose tissue mass and
systemic inflammation (Itariu et al., 2012). An updated meta-
analysis of 13 randomized controlled trials, which included over
120 000 participants confirmed that marine n-3 LC-PUFA
supplementation reduces the risk for coronary heart disease
(CHD) and cardiovascular disease (CVD), myocardial
infarction, and death due to CHD and CVD (Rimm et al.,
2018; Hu et al., 2019). The American Heart Association
concluded, based on new scientific data, that the prescription
of n-3 LC-PUFA at a dose of 4 g/day can be used as monotherapy
or in combination with other lipid-lowering agents to reduce
hypertriglyceridemia (Skulas-Ray et al., 2019). Clinical studies
and a recent meta-analysis, including 20 clinical trials, have
c onfi rmed th e r ap eu t i c e ff e c t s o f n - 3 LC -PUFA
supplementation in rheumatoid arthritis patients (Gioxari
et al., 2018; Woodman et al., 2019). Moreover, a systematic
review and meta-analysis by Natto et al. (2019) concluded that
these omega-3 fatty acids may be associated with lower plasma
levels of inflammatory biomarkers in diabetic patients. However,
results regarding their effect on glucose metabolism, insulin
resistance, and type 2 diabetes are less clear (Stella et al., 2018).
Also regarding other chronic diseases, such as non-alcoholic
fatty liver disease and chronic kidney disease, the effects of n-3
LC-PUFA are inconclusive (Jump et al., 2018; Saglimbene et al.,
2019). Factors that may account for the inconsistent findings
regarding the use of n-3 LC-PUFA supplements are the doses
used, the choice of placebo, and the duration and type of
intervention (El-Bayoumy and Manni, 2020).

Although the benefits of consuming n-3 LC-PUFA may
remain controversial for some diseases and conditions, it is
well accepted that n-3 LC-PUFA have anti-inflammatory
effects. These anti-inflammatory effects and their possible
mechanisms have been extensively reviewed by Calder (2015)
and Rogero and Calder (2018). The two main mechanisms are
changes in the phospholipid composition of the cell membrane
and changes in the activation of pro- and anti-inflammatory
transcription factors (Figure 4) and their target genes.

Alterations of the Membrane Phospholipid
Composition of Immune Cells
Intake of n-3 LC-PUFA alters the fatty acid composition of the
membrane phospholipids of immune cells, affecting the
production of AA- and EPA-derived eicosanoids from the
phospholipids. AA is a major substrate for the enzymes
cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome
P450. Enzymes that catalyze the metabolisms of AA to 2-series
prostaglandins and thromboxanes and 4-series leukotrienes and
June 2020 | Volume 11 | Article 961
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lipoxins that mainly serve as pro-inflammatory lipid mediators
(reviewed in Calder, 2009). EPA is a substrate for the same
enzymes, and competes with AA as a substrate for COX and
LOX. EPA-derived eicosanoids form 3-series prostaglandins and
thromboxanes and 5-series leukotrienes. These EPA-derived
eicosanoids have been regarded less potent than those
produced from AA, and thereby stimulate inflammation to a
lesser extent (Goldman et al., 1983; Lee et al., 1984; Bagga et al.,
2003; Wada et al., 2007; Tull et al., 2009). Calder (2009), pointed
Frontiers in Pharmacology | www.frontiersin.org 6
out, however, that not all AA-derived eicosanoids (e.g.
prostaglandin E2) are pro-inflammatory.

Production of Lipid Mediators That Resolve
Inflammation
The incorporation of n-3 LC-PUFA in the cell membrane
increases the production of lipid mediators that resolve
inflammation, namely, the EPA-derived E-series resolvins and
the DHA-derived D-series resolvins, protectins, and maresins
FIGURE 3 | Expansion of adipocytes due to nutrient access leads to dyslipidemia and inflammation and subsequent cardiovascular disease, insulin resistance, and
non-alcoholic fatty liver disease.
FIGURE 4 | Anti-inflammatory mechanisms and pathways of EPA and DHA in immune cells. Black arrow lines indicate activation, red blunted lines indicate inhibition. AA,
arachidonic acid; AP1, activation protein 1; COX, cyclooxygenase; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; GPR120, G-protein receptor 120; LOX,
lipoxygenase; NFkB, nuclear factor k B; PAF, platelet-activating factor; PPAR, peroxisome proliferator activated receptor; TLR4, toll-like receptor 4 (modified from Calder, 2015).
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https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Schots et al. Health Effects of Wax Esters
(Figure 4). These lipid mediators were shown to have anti-
inflammatory and protective properties both in cell culture and
animal models of inflammatory diseases, and aid in the
resolution of the inflammation (2008a; Serhan et al., 2008b;
Bannenberg and Serhan, 2010; Serhan and Chiang, 2013; Balas
et al., 2014). In addition to eicosanoids and pro-resolving lipid
mediators, phospholipids containing n-3 (and n-6) LC-PUFA
can also become metabolized to produce endocannabinoids. The
endocannabinoids can bind to cannabinoid receptor types 1 and
2, which have anti-inflammatory properties (Artmann et al.,
2008; Batetta et al., 2009; Wood et al., 2010). Other studies have
shown that through incorporation in the cell membrane, n-3 LC-
PUFA reduce the production of platelet-activating factor in
certain immune cells (Croft et al., 1986; Pickett et al., 1986;
Sperling et al., 1987; Shikano et al., 1993; Martin–Chouly et al.,
2000; Watanabe et al., 2001). Finally, incorporation of EPA and
DHA disrupts the formation of lipid rafts in the membrane,
which can lead to changes in cell signal transduction during
inflammation (Reviewed by Pike, 2003).

Long-Chain Omega-3 Fatty Acid-Induced Activation
of Transcription Factors
Nuclear factor kappa B (NF-kB) is a transcription factor that up-
regulates genes encoding pro-inflammatory cytokines, adhesion
molecules, chemo-attractants, and enzymes needed to produce
eicosanoids. Toll-like receptor 4 (TLR4) is a membrane protein
that, upon activation, initiates a signaling pathway that activates
NF-kB and the transcription factor activator protein 1 (AP1),
leading to increased inflammation (Figure 4). In adipose tissue
of obese people, TLR4 signaling triggers chronic low-intensity
inflammation (reviewed in Rogero and Calder, 2018). Long-
chain omega-3 fatty acids, however, limit the activation of TLR4
by inhibiting the translocation of TLR4 to lipid rafts, due to the
disrupting effect these fatty acids have on raft formation (Rogero
and Calder, 2018). Long-chain omega-3 fatty acids further
reduce the inflammatory effect of NF-kB and AP1 by binding
to G-protein coupled receptor 120 (GPR120) (Oh et al., 2010; Oh
and Olefsky, 2012). GPR120 is highly expressed in adipocytes,
the distal part of the intestine, and in macrophages (Gotoh et al.,
2007; Oh et al., 2010). GPR120 activation in macrophages
inhibits activation of NF-kB and thereby reduces inflammation
(Oh et al., 2010; Li et al., 2013; Yan et al., 2013; Williams-Bey
et al., 2014) (Figure 4). Peroxisome proliferator-activated
receptor (PPAR)-g is a transcription factor expressed in
immune cells and adipocytes. PPARg can be activated by
omega-3 fatty acids and physically interfere with NF-kB and
thereby decreasing inflammation (Figure 4). Furthermore,
PPARg can form a heterodimer with retinoid-X-receptor
(RXR). Both PPAR-g:RXR as well as PPARg and RXR alone
are transcription factors for anti-inflammatory mediators and
can be activated by PUFA and lipid mediators produced from
AA, EPA, and DHA (Forman et al., 1997; Kliewer et al., 1997; de
Urquiza et al., 2000; Desreumaux et al., 2001; Vanden Berghe
et al., 2003; Szanto and Nagy, 2008; Zapata-Gonzalez et al.,
2008). Finally, due to the disruption of membrane rafts and its
associated intracellular signaling by EPA and DHA, n-3 LC-
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PUFA also inhibit T cell responses (Stulnig and Zeyda, 2004;
Yaqoob, 2009; Kim et al., 2010). Thus, EPA and DHA have anti-
inflammatory effects via several mechanisms. The interaction
between these fatty acids and other cellular components in
immune cells is illustrated in Figure 4.

To sum up, it appears that n-3 LC-PUFA can attenuate diet-
induced obesity and inflammation via several mechanisms. In
light of the fact that calanus oil contains relatively small amounts
of these particular fatty acids, it is likely that it is not only EPA
and DHA which are responsible for the anti-obesogenic and
anti-inflammatory effects of the oil, but other components in
addition. Of note, these effects were obtained with a low supply
(1.5%) of calanus oil (Höper et al., 2013; Höper et al., 2014),
whereas Mori et al. (2007) reported reduced adiposity in mice fed
a high-fat diet supplemented with fish oil (containing 44.8%
DHA and 5.9% EPA) only when the content of fish oil
reached 8%.

Stearidonic Acid
SDA is the D-6 desaturation product of ALA (Figure 2). Oil from
Cf contains about 7% SDA (Pedersen et al., 2014a; Cook et al.,
2016b), which is high compared to fish oils (McGill and Moffat,
1992). SDA is naturally present at about 12% in echium oil and at
20% in Buglossoides arvensis oil, also called Corn gromwell
(Bimbo et al., 2013). In addition, it has now been developed
gene-modified soybeans in which SDA is enriched. The SDA
content in such soybean oil is about 20% (Wilkes, 2008). The
main effect of SDA on inflammation control appears to be
dependent on its conversion to EPA, while little is known
about any direct effects. Supplementation with SDA-containing
oil to the diet increases the abundance of EPA in blood lipids,
peripheral blood mononuclear cell, other immune cells, red blood
cells, and in heart tissue in both humans and animals (James et al.,
2003; Miles et al., 2004a; Miles et al., 2004b; Harris et al., 2007).

Although the EPA concentration is often increased upon SDA
consumption, any subsequent health effects are not clear (Banz
et al., 2012; Deckelbaum et al., 2012; Whelan et al., 2012; Walker
et al., 2013). SDA supplementation trials with overweight or
slightly obese human volunteers have shown inconclusive results
regarding the effect on the omega-3 index, which may be an
important measure for the risk of developing CVD and insulin
resistance (Burrows et al., 2011). Pieters and Mensink (2015) did
not find any effect of SDA on the omega-3 index despite an
increase in EPA in the red blood cell membranes, whereas other
studies did confirm an increase in the omega-3 index (Harris
et al., 2008; Lemke et al., 2010). Supplementation of SDA-rich oil
does not appear to have an effect on TAG, total cholesterol (TC),
low-density lipoprotein cholesterol (LDL-C), and high-density
lipoprotein cholesterol (HDL-C) concentrations in plasma of
healthy, overweight or slightly obese humans (Harris et al., 2008;
Whelan, 2009; Lemke et al., 2010; Krul et al., 2012; Pieters and
Mensink, 2015). However, the lipid profile was improved in lean
and obese Zucker rats fed SDA-enriched soybean oil (Casey
et al., 2013).

Also, regarding inflammation, the health benefits of SDA
supplementation remain unclear. There was no effect on the
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production of TNFa and IL-1b in LPS-stimulated whole blood
from healthy volunteers (James et al., 2003). Miles et al. (2004b)
observed that SDA can increase the EPA status in immune cells,
but did not observe an effect on human immune function. While
Hsueh et al. (2011) found a reduced IL-6 secretion in LPS-
stimulated adipose stem cells from ob/ob mice due to a
suppressed TLR2 expression and a decreased activity of NF-
kB. SDA also downregulated the levels of inducible nitric oxide
synthesis (iNOS) protein, the translocation of NF-kB and the
phosphorylation of mitogen-activated protein kinases (MAPK)
in LPS-induced (M1) macrophages (Sung et al., 2017).

SDA does not increase the abundance of DHA in humans,
due to the second D-6 desaturation step (Figure 2). This might be
one of the reasons why SDA does not appear to have a clear effect
on human health. Other reasons can be the low doses used or the
duration of the experiment. Also, as with EPA and DHA, the
chemical structure (TAG, ethyl ester or wax ester) might play
a role.

Although the effect of SDA on immune function and lipid
profile remains inconclusive, SDA is one of the most potent fatty
acids for activating GPR120 (Kotarsky et al., 2003; Christiansen
et al., 2015). GPR120 is highly expressed in macrophages and
adipocytes. The two cell types that play a crucial role in obesity
and the development of the underlying chronic inflammation
and metabolic syndrome. As previously stated, GPR120
activation in macrophages has anti-inflammatory effects.
GPR120 activation in adipocytes stimulates adipocyte
differentiation (Gotoh et al., 2007; Miyauchi et al., 2009) and
improves insulin sensitivity and enhances glucose uptake due to
an increased translocation of glucose transporter 4 (GLUT4)
from the cytosol to the cell membrane (Talukdar et al., 2011). In
murine models, the expression of GPR120 in adipose tissue is
induced by thermogenic activation, promoting browning of
white adipose tissue and brown fat activation. Browning of
white adipose tissue is an important component of energy
expenditure and can lead to weight loss (Quesada-López et al.,
2016; Sharma et al., 2019). GPR120 activation is reported to
improve glucose tolerance, insulin resistance, and chronic
inflammation in obese mice and is, therefore, a target for the
treatment of obesity and type 2 diabetes (Oh et al., 2010;
Ichimura et al., 2012; Oh et al., 2014; Yore et al., 2014).

The diverse tissue distribution of the GPR120 may indicate
several functions related to systemic metabolism and
inflammation. Recently, more attention has been given to the
anti-inflammatory role of this receptor in intestinal cells
(Anbazhagan et al., 2016). It has been shown that the
expression of GPR120 and other free fatty acid receptors
(GPR40 and GPR119) are more abundant in the lower
intestine, especially in the colon (Hirasawa et al., 2005;
Miyauchi et al., 2009; van der Wielen et al., 2014). However,
dietary lipids, such as TAG and phospholipids are quickly
digested and absorbed in the upper parts of the gastrointestinal
system and will normally not reach the lower intestine (Carey
et al., 1983). In contrast, wax esters in calanus oil are more
hydrophobic than dietary TAG and, therefore, more difficult to
emulsify. In addition, other enzymes than those hydrolyzing
Frontiers in Pharmacology | www.frontiersin.org 8
TAG and phospholipids are probably involved. As a result, wax
esters may exhibit a longer retention time to facilitate hydrolysis
and absorption (Cowey and Sargent, 1977; Verschuren and
Nugteren, 1989). The wax esters may therefore act as a natural
delayed release of potent stimulators of GPR120, such as SDA,
EPA, and DHA in this part of the intestinal system. Of interest,
ongoing studies aim at developing systems of nutrient delivery to
pass beyond the proximal small intestine by using a form of
enteric coating to obtain a delayed release of the potent GPR120
agonists (Sørensen, 2018).

The health benefit of SDA is not clear, but the mechanism
may partly depend on its conversion to EPA, so that it acts
indirectly via the mechanisms described in section EPA and
DHA. In addition, the ability of SDA to activate GPR120
receptors on macrophages, adipocytes, and intestinal cells
could be another mechanism by which SDA could alleviate
obesity-induced inflammation. Both mechanisms seem
plausible in light of the high content of SDA in calanus oil and
should be followed up by new mechanistic studies.

Monounsaturated Fatty Acids
About 10% of the fatty acids in calanus oil are monounsaturated
fatty acids, of which cetoleic acid (22:1 n-11) and gondoic acid
(20:1 n-9) are the most abundant, with approximately 4% and
2.5%, respectively (Pedersen et al., 2014a; Cook et al., 2016b).
The interest for monounsaturated fatty acids in a health
perspective is mainly based on the observation that the
incidence of chronic diseases is relatively low among the adult
population in certain regions bordering the Mediterranean Sea.
Olive oil, which is a major component of the Mediterranean diet,
is rich in oleic acid (18:1n-9), and the health-promoting effect of
the diet has to some extent been ascribed to this MUFA
(Delgado-Lista et al., 2016). Dietary MUFA have been
associated with cardio protection (Pérez-Jiménez et al., 2002)
and reduction of risk factors for development of metabolic
syndrome (reviewed in by Gillingham et al., 2011). The
replacement of saturated fatty acid (SFA) with MUFA (18:1n-
9) in the diet may improve the blood lipid profile by lowering
TAG, TC, and (V)LDL-C, while preserving HDL-C. In addition,
replacement of SFA with MUFA improves body composition
and insulin sensitivity while reducing hyperglycemia and
hypertension in individuals predisposed to metabolic
syndrome (reviewed in Gillingham et al., 2011).

More recently, the role of long-chain mono-unsaturated fatty
acids (LC-MUFA), having aliphatic chains of more than 18 C
atoms, has been studied (reviewed by Yang et al., 2016b). These
fatty acids are found in high amounts in many fish oils (McGill
and Moffat, 1992). Oil from Cf is rich in the LC-MUFA, cetoleic
acid (22:1n-11), and a recent report indicated that this particular
fatty acid may improve the efficiency of the conversion of ALA to
EPA and DHA (Østbye et al., 2019).

Dietary intake of different marine oils rich in LC-MUFA (in
addition to n-3 LC-PUFA) reduces the risk factors of metabolic
syndrome in animal models by improving plasma lipid levels and
insulin sensitivity (Østerud et al., 1995; Lindqvist et al., 2009;
Yang et al., 2011b; Yang et al., 2011a; Yang et al., 2015). Saury
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and herring oil have been reported to decrease adipocyte size and
cause an increase in n-3 LC-PUFA levels and a concomitant
decrease in n-6/n-3 PUFA ratio in different tissues (Lindqvist
et al., 2009; Yang et al., 2011b; Yang et al., 2015). Herring oil, and
seal oil combined with olive oil, have been found to reduce
atherosclerotic lesions in the aorta (Eilertsen et al., 2011;
Gabrielsson et al., 2011). Saury oil is also reported to reduce
hepatic TC (Yang et al., 2011c) and TAG content (Yang et al.,
2011c; Yang et al., 2015). Furthermore, saury and pollock oil
increased plasma adiponectin levels, and decreased plasma levels
of resistin, leptin, (Yang et al., 2011c; Yang et al., 2011b) and
TNFa (Yang et al., 2011b) in animal models.

The marine oils used in the studies mentioned above are all
rich in LC-MUFA. However, they also contain n-3 LC-PUFA,
and it is therefore not possible to attribute the observed biological
effects solely to the LC-MUFA component in the various oil
preparations. A few studies have, however, used diets
supplemented with concentrated LC-MUFA to investigate the
effects attributed specifically to this class of fatty acids. This type
of experimental design has investigated the health effects of LC-
MUFA on atherogenesis, obesity-induced inflammation, glucose
and lipid metabolism, and the expression of associated genes in
different animal models (Halvorsen et al., 2001; Yang et al.,
2011d; Yang et al., 2013; Yang et al., 2015; Yang et al., 2016a;
Yang et al., 2017). From these studies, it can be concluded that
LC-MUFA decrease atherosclerotic lesion formation, reduce
cholesterol efflux and alter gene expression related to
inflammation, lipid metabolism and energy expenditure in
different tissues (Figure 5). It appears that the carbon chain
length of the dietary MUFA can be an important factor that
determines its metabolic effects. For instance, LDL receptor
knock out (LDLR-KO) mice fed a Western diet enriched with
2% LC-MUFA concentrate displayed suppressed levels of aorta
atherosclerotic lesions and plasma inflammatory markers such as
C-reactive protein (CRP), macrophage-colony stimulating factor
(MCSF) and complement component 1q, receptor 1(C1qR1).
These effects were not observed when the mice were fed the same
diet enriched with 2% oleic acid-rich olive oil when compared to
control (Yang et al., 2016a).

Although chain length might be an important factor, the exact
mechanisms behind the health promoting and cardioprotective
effects of LC-MUFA are not fully understood. However, LC-
MUFA are considered ligands of PPARs (Grygiel-Górniak,
2014). Thus, LC-MUFA concentrate supplementation has been
shown to increase the expression of pparg and its target genes,
and decreased inflammatory marker expression in white adipose
tissue (Yang et al., 2013). This was associated with reduced
adipocyte size. LC-MUFA have also been reported to decrease
atherosclerosis via PPAR signaling (Yang et al., 2016a; Yang
et al., 2017). Ppara, pparg, and their target genes Cyp7a1
(encoding cholesterol 7a-hydroxylase or bile acid synthase)
and Adipor2 (gene for adiponectin 2 receptor) were reported
to be upregulated in the liver of the LC-MUFA fed mice (Yang
et al., 2016a). Over-expression of the CYP7A1 enzyme protects
against atherosclerosis (Miyake et al., 2002) and adiponectin
Frontiers in Pharmacology | www.frontiersin.org 9
improves metabolic syndrome and atherosclerosis (Hui
et al., 2012).

As mentioned, other studies using concentrated LC-MUFA
(Yang et al., 2011d) or LC-MUFA rich fish oil (Yang et al., 2011b;
Yang et al., 2011c; Yang et al., 2015) have reported that these
fatty acids stimulate expression of other genes involved in
inflammation, lipid metabolism and insulin signaling (see also
Figure 5). However, the direct involvement of the PPAR
signaling pathway in the expression of each of these genes is
not fully described. Further studies are needed to elucidate if LC-
MUFA exert beneficial health effects via mechanisms other than
the proposed PPAR signaling pathways, and if some of these
direct mechanisms distinguish the effects of LC-MUFA from
those of LC n-3 PUFA.

Fatty Alcohols
The most abundant fatty alcohols in calanus oil are the
monounsaturated fatty alcohols docosenol (22:1 n-11) and
eicosenol (20:1 n-9) (Table 2). The health promoting
properties of fatty alcohols became an area of interest when
researchers in Cuba (Mas et al., 1999; Castaño et al., 2001;
Arruzazabala et al., 2002) reported beneficial effects of
policosanol from sugarcane wax on the plasma lipoprotein
profile (increased HDL-C and reduced TC and LDL-C).
Policosanol is a mixture of essential very-long-chain fatty
alcohols with carbon backbones longer than 22 C (Juturu and
Gormley, 2013). The effects reported by the Cuban researchers
were ascribed to the unique composition of the fatty alcohols
from Cuban-derived sugarcane wax. It was suggested that the
cholesterol lowering effect of policosanol was due to inhibition of
HMG-CoA reductase synthesis following hepatic conversion of
fatty alcohols to their corresponding fatty acids (Menéndez
et al., 2001).

Research groups outside Cuba have long failed to reproduce
and validate the efficiency of policosanol in improving the
lipoprotein profile (as reviewed by Marinangeli et al., 2010).
However, a recent meta-analysis including 13 Cuban and 9 non-
Cuban studies confirmed the efficacy and safety of sugarcane
policosanol on dyslipidemia (Gong et al., 2018). In addition,
experimental studies with Cuban policosanol in rats (Cho et al.,
2018b), as well as clinical studies in healthy Korean subjects (Kim
et al., 2017; Cho et al., 2018a; Kim et al., 2018) showed reduced
body fat (Kim et al., 2017; Cho et al., 2018a) and improved blood
lipid profile (Kim et al., 2017; Cho et al., 2018a; Cho et al., 2018b;
Kim et al., 2018). It has been reported that this was due to
inhibition of cholesteryl ester transfer protein (Kim et al., 2017).

Sugarcane wax is not the only source of (very) long-chain
fatty alcohols that have been tested on human health.
Montserrat-de la Paz et al. (2014) and Fernández-Arche et al.
(2009) studied the anti-inflammatory effects of long-chain fatty
alcohols from evening primrose oil and pomace olive oil,
respectively. They showed that long-chain alcohols from both
pomace olive oil and primrose oil inhibited TNFa and nitric
oxide production in LPS-stimulated murine (M1) macrophages
in a dose-dependent manner through inhibition of inducible
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nitric oxide synthase (iNOS). Pomace olive oil also decreased the
production of the pro-inflammatory mediators prostaglandin E2
(PGE2), in murine macrophages, and thromboxane B2 (TXB2) in
rat peritoneal neutrophils. Reduced release of these eicosanoids
was due to inhibition of secretory phospholipase A2 (sPLA2)
(Fernández-Arche et al., 2009). The long-chain fatty alcohols
from evening primrose oil had no effect on PGE2 formation, but
did cause a dose-dependent inhibition of the secretion of sPLA2,

TXB2, and IL-1b in LPS-stimulated (M1) macrophages
(Montserrat-de la Paz et al., 2014). The fatty alcohols from
evening primrose oil also reduced the gene expression of
cyclooxygenase-2, the enzyme needed for the production of
eicosanoids, in a dose dependent manner (Montserrat-de la
Paz et al., 2014).

Tetracosanol from sugarcane wax was shown to improve
glycemic control via activation of insulin receptor kinase and
translocation of GLUT 4 from the cytosol to the plasma
membrane (Hsu et al., 2015). Recently, the health-promoting
effects of policosanol and octacosanol have received new interest.
Guo et al. (2017) showed that octacosanol improves the health
status in a mouse model of colitis by reducing pathological
damage in colonic tissue and inhibiting the gene and protein
expression levels of TNFa, IL-1b, IL-6, and iNOS in the colon.
Frontiers in Pharmacology | www.frontiersin.org 10
Octacosanol also reduced the gene and protein expression of
these pro-inflammatory cytokines in LPS-stimulated (M1)
macrophages. Sharma et al. (2019) reported that policosanol
and octacosanol supplementation reduced body fat gain,
decreased insulin resistance, and reduced hepatic lipid content
in high-fat diet-induced obese mice. This was associated with
increased thermogenesis in brown adipose tissue due to GPR120
activation, as well as decreased expression of genes involved in
lipogenesis and cholesterol uptake in the liver and reduced
inflammation in white adipose tissue. Classical studies in rats
have shown that fatty alcohols may be oxidized to their
corresponding fatty acids (Stetten and Schoenheimer, 1940;
Blomstrand and Rumpf, 1954) in the endoplasmic reticulum
during hepatic metabolism and subsequent chain shortening in
the peroxisomes (Hargrove et al., 2004). The effects of
policosanol and octacosanol supplementation found by Sharma
et al. (2019) were suggested to be due to the conversion of these
fatty alcohols to their corresponding fatty acids.

Policosanols occur in different natural products (Shen et al.,
2019; Weerawatanakorn et al., 2019). The fatty alcohols
eicosenol (20:1n-9) and docosenol (22:1n-11) found in the wax
esters in calanus oil are shorter in chain-length, compared to the
different fatty alcohols in policosanols. It is therefore difficult to
FIGURE 5 | Reported effects of concentrated LC-MUFA on gene expression related to fatty acid oxidation, energy consumption, lipogenesis, and inflammation in
the liver and adipose tissue, as well as plasma levels of various compounds. C1qR1, complement component 1q receptor; CD36, fatty acid translocase; CPT1a,
carnitine palmitoyltransferase 1a; CRP, C-reactive protein; CS, citrate synthase; CyP7a1, cholesterol 7 alpha-hydroxylase (cytochrome P450 7A1); EFGR, epidermal
growth factor receptor; FA, free fatty acids; LDL-C, low-density lipoprotein cholesterol; LPL, lipoprotein lipase; MAC-1, macrophage-1 antigen; M-CSF, macrophage
colony-stimulating factor; MMP-3, matrix metalloproteinase-3; PPAR, peroxisome proliferator-activated receptor; SAA3, serum amyloid A3; SCD-1, stearoyl-CoA
desaturase-1; TC, total cholesterol; UCP, uncoupling protein (summarized from Yang et al., 2011d; Yang et al., 2013; Yang et al., 2015; Yang et al., 2016a; Yang
et al., 2017).
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extrapolate the health effects of the policosanols mentioned
above to those in oil from Cf. However, Hsu et al. (2015) found
that chain length of the policosanols did not affect their impact on
glycemic control. Thus, it might be that the fatty alcohols found in
calanus oil have similar effects as the policosanols.

Previous studies in our lab with calanus oil have demonstrated
incorporation of the mono-unsaturated fatty acids, 20:1n-9 (in
white adipose tissue) and 22:1n-11 (in liver) of mice fed a high-fat
diet supplemented with the oil (Pedersen et al., 2014a). This could
reflect the content of LC-MUFA in the oil, but also the in vivo
oxidation of the corresponding fatty alcohols. This leads to the
suggestion that the calanus oil-induced health effects may not be
entirely due to the fatty acids, but indirectly also to the fatty
alcohols in the oil. Calanus oil differs from other marine oils in
terms of its content of fatty alcohols, and conversion of these
alcohols to their corresponding monounsaturated fatty acids
could boost the uptake of these specific fatty acids. The
quantitative importance of this intriguing mechanism, as well as
its metabolic implications, needs to be determined in new studies.
CONCLUSION

The oil from Calanus finmarchicus is a marine oil with a unique
chemistry. Although relatively low in EPA and DHA, it contains
high amounts of SDA and a number of monounsaturated fatty
acids. The fatty acids are bound to long-chain fatty alcohols
forming wax esters that constitute approximately 85% (w/w) of
the oil. The various classes of fatty acids, as well as the fatty
Frontiers in Pharmacology | www.frontiersin.org 11
alcohols may have potential health benefits, since it is likely that
fatty alcohols are oxidized to the corresponding fatty acids after
absorption. This review has focused on the effect of the various
components of calanus oil in relation to prevention of chronic
low-grade inflammation, but more research is needed to
determine the efficacy of the various components in this
respect, or whether an anti-inflammatory effect of the oil is a
result of the combined action of several components.
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