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The novel and highly pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), which causes coronavirus disease 2019 (COVID-19), has become a continued
focus of global attention due to the serious threat it poses to public health. There are no
specific drugs available to combat SARS-CoV-2 infection. Natural products (carolacton,
homoharringtonine, emetine, and cepharanthine) and natural product-inspired small
molecules (ivermectin, GS-5734, EIDD-2801, and ebselen) are potential anti-SARS-
CoV-2 agents that have attracted significant attention due to their broad-spectrum
antiviral activities. Here, we review the research on potential landmark anti-SARS-CoV-
2 agents, systematically discussing the importance of natural products and natural-
product-inspired small molecules in the research and development of safe and effective
antiviral agents.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), continues to be the subject of global attention due to the serious threat it poses to
public health (Wang et al., 2020; Zhu et al., 2020). Currently, there are no specific drugs available to
combat SARS-CoV-2 (Kupferschmidt and Cohen, 2020). The epidemic is ongoing and, as of 12
June, 2020, the World Health Organization (WHO) reported that there had been 7,410,510
confirmed cases worldwide, including 418,294 deaths (Coronavirus disease (COVID-2019)).

This means that more aggressive trials of drugs to prevent and treat SARS-CoV-2 infection
should be intensely pursued across the globe (Kalil, 2020). Therefore, there is an urgent need to
identify agents for treating SARS-CoV-2 infection (Li and De Clercq, 2020). As a major source for
drugs and drug leads, natural products and natural-product-inspired agents have attracted
significant attention, and they have played an integral role in the treatment of many different
conditions (Newman and Cragg, 2020). Since the start of the multinational COVID-19 outbreak,
significant progress has been made in identifying natural products and natural-product-inspired
small molecules that may serve as anti-SARS-CoV-2 drugs. This review systematically discusses the
current progress regarding potential anti-SARS-CoV-2 natural products and natural-product-
inspired small molecules.
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PROMISING NATURAL PRODUCTS FOR
TREATING SARS-COV-2 INFECTION

Natural products possess tremendous structural diversity and
unique chemical diversity, and they continue to serve as excellent
starting points for inspiring new drug discovery (Shen, 2015).
The history of the modern pharmaceutical industry includes
many stories about how natural products profoundly inspired
drug discovery (Li and Weng, 2017). With the current
technological advances, natural products remain potentially
transformative drugs for many health conditions. The growing
understanding of efficient antiviral drug development has led to
the exploration of natural products as an important tactic for
identifying effective COVID-19 treatments.

Carolacton, produced by the myxobacterium Sorangium
cellulosum, is an antibacterial macrolide keto-carboxylic acid
(Figure 1A) (Jansen et al., 2010). In vitro, it demonstrates
significant bioactivity against the human pathogen Streptococcus
mutans by reducing the number of viable cells in biofilms (Fu et al.,
2020), and it has been found to be a methylenetetrahydrofolate
dehydrogenase 1 (MTHFD1) inhibitor (Anderson et al., 2020).
SARS-CoV-2 may have originated in bats (Shi et al., 2020) (as a
study has shown that its genome is similar to that of the bat
coronavirus RaTG13, with 96.2% identity (Zhou et al., 2020))
and, very recently, Tan’s group demonstrated that MTHFD1 is a
critical host factor for the viral RNA replicationof a broad spectrum
ofviruses inbothbats andhumans (Andersonet al., 2020).Basedon
in-depth research, Tan’s group demonstrated that MTHFD1 is a
potential target for developing anti-SARS-CoV-2 agents and that
theMTHFD1 inhibitor carolacton strongly inhibited SARS-CoV-2
Frontiers in Pharmacology | www.frontiersin.org 2
replication in Vero cells at a half maximal inhibitory concentration
(IC50) of as low as 0.14 mM and a moderate cytotoxicity (50%
cytotoxic concentration [CC50] >0.80 mM) (Anderson et al., 2020).
Thus, there is hope that this antimicrobial natural product may be
useful in the COVID-19 epidemic.

Regarding the total synthesis of carolacton, three examples of
milligram-scale processes have been reported. In 2012, Kirschning’s
group (Schmidt and Kirschning, 2012) reported on the first total
synthesis of carolacton (with an overall yield of 4.3%) on an 8.5-mg
scale in 22 linear steps.Thekey transformations involved asymmetric
Nozaki-Hiyama-Kishi cross-coupling and Negishi-Fu coupling as
well as themetal-mediated Ley aldol reaction, Duthaler-Hafner aldol
reaction, Marshall reaction, and Breit’s substitution. Two years later,
Phillips’s group and Wuest’s group (Hallside et al., 2014)
collaboratively developed an efficient synthesis of carolacton (with
an overall yield of 7.9%) on a 4.0-mg scale in just 14 linear steps. This
synthesis process involved ring-closing metathesis (RCM), selective
reduction, Leighton crotylation, and Steglich esterification. In 2017,
Goswami’s group (Kuilya andGoswami, 2017) reported a third total
synthesis (with an impressiveoverall yieldof 18.8%)ona7.1-mgscale
in just 13 linear steps. The key strategies included Urpi acetal aldol
reaction, b-hydroxy elimination, intermolecular esterification, and
RCM. The three elegant synthesis strategies for producing
carolacton are shown in Figure 2A. However, in the current
research and clinical contexts, the development of a ton-scale
process to synthesize carolacton is urgently needed.

Homoharringtonine (omacetaxine) is a natural product that
was isolated from the plant Cephalotaxus harringtonii in 1970
(Powell et al., 1970). It was approved by the US Food and Drug
Administration (FDA) in 2012 as an effective anti-cancer agent
A B C

FIGURE 1 | Promising natural products for treating COVID-19. (A) Carolacton was isolated from the myxobacterium Sorangium cellulosum. (B) Homoharringtonine
was isolated from the plant Cephalotaxus harringtonii. (C) Emetine was isolated from the plant Psychotria ipecacuanha.
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to treat chronic myeloid leukemia (Figure 1B) (Mullard, 2013).
Additionally, it exhibits broad-spectrum activities against viruses,
such as mouse hepatitis virus (MHV) at an IC50 of 0.012 mM (Cao
et al., 2015), herpes simplex virus type 1 (HSV-1) at an IC50 of
0.14 mM(Dong et al., 2018), foot andmouth disease virus (FMDV)
at an IC50 of 3.05mM(Gong et al., 2019), and echovirus 1 (EV1) at a
half maximal effective concentration (EC50) of 0.12 mM (Andersen
et al., 2019). Two elegant milligram-scale total syntheses of
homoharringtonine have been reported by Gin’s group
(Eckelbarger et al., 2008) and Beaudry’s group (Ju and Beaudry,
2019), respectively (Figure 2B). In 2008, Gin’s group reported a
novel total synthesis of homoharringtonine on an 8.5-mg scale,
using aziridine rearrangement and 1,3-dipolar cycloaddition as key
strategies. In 2019, Beaudry’s group developed an excellent total
synthesis of homoharringtonine involving 12 linear steps on a 2.4-
mg scale. The key strategies were oxidative furan ring opening with
spontaneous transannular Mannich reaction as well as the Noyori
hydrogenation reaction.

The tetrahydroisoquinoline alkaloid emetine is an older natural
product that has potential cardiotoxicity and was isolated from the
plant Psychotria ipecacuanha (Figure 1C) (Wiegrebe et al., 1984). As
a protein synthesis inhibitor, emetine has been widely used in
pharmacology (Akinboye et al., 2012). Furthermore, emetine has
recently been recognized as a promising broad-spectrum antiviral
drug with in vitro activity against multiple viruses, including MHV-
A59 at anEC50 of 0.12mM(Shen et al., 2019), severe acute respiratory
syndrome coronavirus (SARS-CoV) at an EC50 of 0.051 mM (Dyall
et al., 2014), Middle East respiratory syndrome coronavirus (MERS-
CoV) at an EC50 of 0.014 mM (Dyall et al., 2014), and Ebola virus
(EBOV) at an IC50 of 0.017 mM (Yang et al., 2018). Very recently,
Peterson’s group showed that emetine concentrations could be
300 times higher in the lungs compared to in the blood, and
Frontiers in Pharmacology | www.frontiersin.org 3
emetine may achieve therapeutic concentrations at viral infection
sites, especially in the lungs (Bleasel and Peterson, 2020).

Yen’s group recently revealed that both homoharringtonine and
emetine could effectively inhibit the replication of SARS-CoV-2 in
VeroE6cells at anEC50of 2.55 and0.46mM, respectively (Choy et al.,
2020). Additionally, the combination of emetine and the C-
nucleoside analog GS-5734 exhibited a synergistic inhibitory effect
against SARS-CoV-2 replication (Choy et al., 2020).Multiple lines of
evidence have shown the potential usefulness of homoharringtonine
and emetine as treatments for viral infections, but further research is
needed to explore whether they exhibit anti-SARS-CoV-2 activity
in vivo.

The bisbenzylisoquinoline alkaloid cepharanthine is a natural
product isolated from the plant Stephania cephalantha, which is used
as a traditional herbalmedicine (Figure 3) (Bailly, 2019). Specifically,
this approved drug has significant bioactivity against several diseases,
with anti-viral, anti-malarial, and anti-cancer effects (Fang et al.,
2013). It has IC50 values of 0.026 mM and 9.5 mg/mL against HIV-1
(Okamoto et al., 1998) and SARS-CoV (Zhang et al., 2005),
respectively. Furthermore, it dramatically blocked the viral
replication in human coronavirus OC43 (HCoV-OC43)-infected
MRC-5 human lung cells (with an IC50 of 0.83 mM) and inhibited
viral S and N protein expression (Kim et al., 2019). Watashi’s group
recently revealed that cepharanthine could effectively inhibit SARS-
CoV-2 replication in vitro with an EC50 at 0.35 mM with minimal
toxicity (selectivity index >70) (Ohashi et al., 2020). It is worth noting
that cepharanthine is an approved drug with a good safety profile,
highlighting a new potential role for cepharanthine regarding
inhibiting SARS-CoV-2 replication.

There are currently no data on drug–drug interactions
involving the abovementioned natural products (The liverpool
drug interaction group), and close attention should be paid to
A

B

FIGURE 2 | Key strategies in the synthesis of carolacton and homoharringtonine. (A) Synthetic strategies of carolacton by Kirschning’s group, Phillips’s group and
Goswami’s group, respectively. (B) Synthetic strategies of homoharringtonine by Gin’s group and Beaudry’s group, respectively.
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these interactions during therapeutic use because drug–drug
interactions will play significant roles in the safety and
effectiveness of anti-COVID-19 agents.
PROMISING NATURAL PRODUCT-
INSPIRED AGENTS FOR TREATING
SARS-COV-2 INFECTION

Ivermectin (brand name: Stromectol) is a landmark broad-
spectrum anti-parasitic drug that was developed by Ōmura’s
group along with Merck Sharp and Dohme Research Laboratories
in 1978 (Burg et al., 1979). It has been demonstrated to be highly
effective (94.9%efficacy at 24hours and73.8%efficacy at 2weeks) as
an oral drug for the treatment of head lice (Pariser et al., 2012).
Ivermectin is the semisynthetic 22,23-dihydro derivative of the
natural product avermectin B1 (B1a and B1b), which is produced by
Streptomyces avermitilis (Figure 4) (Campbell et al., 1983).
Ivermectin is one of the most widely used antibiotics for both
animals and humans, and the researchers who discovered it
received the Nobel Prize in Physiology or Medicine in 2015
(Campbell, 2016).
Frontiers in Pharmacology | www.frontiersin.org 4
The use of ivermectin is currently being expanded. For
example, Wagstaff’s group highlighted that ivermectin is highly
effective at controlling SARS-CoV-2 RNA replication in vitro,
with a 5000-fold reduction in the virus within 48 hours (Caly
et al., 2020). Recently, Lohmer’s group found that a single oral
dose of ivermectin is unlikely to reach the IC50 (2.5 mM) in the
lungs (predicted lung concentration: 0.0857 mM), and they
suggested that combination therapy or inhaled treatment (to
increase the concentration in the lungs) could be considered as
potential solutions (Schmith et al., 2020). Nevertheless, its safety
in humans has been continuously documented (Buonfrate et al.,
2019), and it is hoped that it will become a key component of
COVID-19 treatment regimens.

The C-nucleoside analog GS-5734 (remdesivir), a broad-
spectrum antiviral agent developed by Gilead Sciences (Warren
et al., 2016), exhibited promising clinical efficacy in the treatment of
the first US case of SARS-CoV-2 infection (Holshue et al., 2020).
Initial researchon synthesizingGS-5734 (which is a prodrug) began
with structural modification of tubercidin (an antibiotic and
adenosine analog that is isolated from Streptomyces tubercidicus)
by replacing the C-N linkage with a C-C bond to create 4-aza-7,9-
dideazaadenosine (Figure 5) (Patil et al., 1994). 4-aza-7,9-
dideazaadenosine has equal cytotoxicity against HL-60 cells to
FIGURE 3 | Promising natural product cepharanthine for treating COVID-19 (image reproduced from ref. 38, bioRxiv, doi: 10.1101/2020.04.14.039925).
FIGURE 4 | Promising natural-product-inspired ivermectin for treating COVID-19.
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tubercidin (50% infectious does [ID50] = 0.82 nM) and increased
hydrolytic stability (Patil et al., 1994).

However, an important contribution to antiviral drug design is
1’-CN substituted Nuc, which can be viewed as a new structure that
was inspired by the natural cyanide toyocamycin (isolated from
Streptomyces toyocmnsis) (Nishimura et al., 1956). Nuc strongly
inhibits hepatitis C virus in vitro (EC50 = 4.1 mM) (Cho et al., 2012).
The active formofNuc in virus-infected cells has been reported to be
GS-441524, but the monophosphate conversion of Nuc to GS-
441524 is a rate-limiting step (Warren et al., 2016). To overcome this
issue, the monophosphorylated prodrug GS-5734 was developed to
achieve better cellular uptake in vivo (Warren et al., 2016).

GS-5734 has been recognized as a promising broad-spectrum
antiviral drug against multiple viruses including SARS-CoV
(EC50 = 69 nM) (Sheahan et al., 2017) and MERS-CoV (EC50 =
20 nM) (Sheahan et al., 2017). Furthermore, Xiao’s group (Wang
et al., 2020) and Yen’s group (Choy et al., 2020) recently revealed
thatGS-5734 ishighly effective againstSARS-CoV-2 infection invitro
(EC50 = 0.77mM, viral load fitted in linear scale; or EC50 = 23.15mM,
viral load fitted in logarithmic scale) and has low toxicity (selectivity
index >130). Regarding the mechanism of action, Li’s group
highlighted that GS-5734 can bind to the RNA-binding channel of
the SARS-CoV-2 RNA-dependent RNA polymerase (Wu et al.,
2020) (Figure 5). The 1’-ribose CN substitution observed in GS-
5734playsan important role in inhibiting theviralRNAreplicationof
SARS-CoV-2 (Zhang et al., 2020).

Notably, since 2016, GS-5734 has been reported to be safe and
exhibit clinical efficacy against EBOV infection (Jacobs et al.,
2016; Dörnemann et al., 2017) and SARS-CoV-2 infection
(Beigel et al., 2020; Holshue et al., 2020). On April 10, 2020,
Frontiers in Pharmacology | www.frontiersin.org 5
Gilead Sciences reported that 68% of patients with severe COVID-
19 who were treated with GS-5734 (via the compassionate use
program) exhibited clinical improvement, and no new safety issues
were detected (Grein et al., 2020). In addition, inMay, 2020, the US
FDA issued an emergency use authorization (EUA) forGS-5734 for
treating SARS-CoV-2 infection (Mullard, 2020). To increase the
efficiency of pharmaceutical research on GS-5734, researchers at
Gilead Sciences developed a scalable process for synthesizing GS-
5734 (Warren et al., 2016) (Figure 6). Currently, there are no drug–
drug interaction data onGS-5734 (Summary on compassionate use
remdesivir Gilead), but the potential for clinically significant
interactions is low (The liverpool drug interaction group). It is
hoped thatGS-5734will be confirmed to be a safe and effective drug
against SARS-CoV-2.

The N-nucleoside analog EIDD-2801, a promising orally
bioavailable antiviral agent, was discovered by Plemper’s group at
EmoryUniversity (Toots et al., 2019). Initial researchon the synthesis
ofEIDD-2801beganwith structurallymodifying thebroad-spectrum
antiviral agent N4-hydroxycytidine (NHC, EIDD-1931) (Agostini
et al., 2019), which was in turn derived from the essential natural
product uridine found in human plasma (Figure 7) (Yamamoto
et al., 2011).

More recently, researchers at Emory University reported a
scalable process for synthesizing EIDD-2801 (Painter et al., 2019)
(Figure 8). There is currentlywidespread interest in the use of EIDD-
2801 as a promising anti-COVID-19 agent (Rothan and Byrareddy,
2020). Baric’s group (Cho et al., 2012) highlighted that EIDD-1931 is
very effective at controlling SARS-CoV-2 replication. EIDD-1931
exhibited potent anti-SARS-CoV-2 activity in Calu-3 cells (IC50 = 0.08
mM)andVerocells (IC50=0.30mM),withnoobservable cytotoxicity at
FIGURE 5 | Promising natural-product-inspired GS-5734 for treating COVID-19 (image reproduced with permission from ref. 54, Acta Pharm. Sin. B, 2020, 10,
766-788).
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doses of up to 5 mM (Rothan and Byrareddy, 2020). Furthermore,
EIDD-2801 is an orally bioavailable prodrug that is efficiently
hydrolyzed in vivo and it exhibits remarkable selectivity (therapeutic
window >1713) (Sheahan et al., 2020).

In addition, Baric’s group showed that EIDD-2801
significantly improved the pulmonary function of mice
Frontiers in Pharmacology | www.frontiersin.org 6
infected with MERS-CoV or SARS-CoV (Sheahan et al., 2020).
Thus, EIDD-2801 has demonstrated potential effectiveness, even
though there is a lack of good evidence in humans. It is hoped
that researchers will work to overcome the obstacles (such as
produced on a manufacturing scale, efficacy and safety in vivo) to
allow it to be assessed in clinical research.
FIGURE 7 | Promising natural-product-inspired EIDD-2801 for treating COVID-19.
FIGURE 6 | Gram-scale synthesis of GS-5734.
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OTHER SMALLMOLECULESWITH IN VITRO
ACTIVITY AGAINST SARS-COV-2

Growing understanding of efficient antiviral drug development
has led to the use of small molecules being recognized as an
important potential tactic for treating COVID-19. Rao’s group
(Jin et al., 2020) showed that the organoselenium compound
ebselen (Table 1) and other inhibitors of the SARS-CoV-2 main
protease (Mpro) exhibited potent activities, with IC50 values at
micromolar or sub-micromolar levels (0.67–21.4 mM). Ebselen is
highly effective at inhibiting SARS-CoV-2 infection (EC50 = 4.67
mM) and has low toxicity (median lethal dose [LD50] in rats
Frontiers in Pharmacology | www.frontiersin.org 7
>4,600 mg/kg). Most importantly, its safety in humans has been
continuously evaluated in multiple clinical trials (Kil et al., 2020).
Besides the abovementioned small molecules, several other
natural products and natural product-inspired potential small
molecules have also exhibited notable anti-SARS-CoV-2
activities (Table 1).

Drug development carries high risks. For example, although the
approved protease inhibitors lopinavir and ritonavir (Figure 9A)
were thought to be potentially effective against SARS-Cov-2 (as
they have been reported to be active against SARS6), Wang’s group
showed that lopinavir combined with ritonavir does not seem to be
highly effective in patients with COVID-19 (Cao et al., 2020).
FIGURE 8 | Gram-scale synthesis of EIDD-2801.
TABLE 1 | Other small molecules with in vitro activity against SARS-Cov-2.

No. Name Structure EC50 or IC50 (mM) SI Ref.

1 Abiraterone acetate 1.94 47.6 (Yuan et al., 2020)

2 ALLM 2.07 48.3 (Ma et al., 2020)

3 Amodiaquine 4.20 >7.1 (Ianevski et al., 2020)

4 Auranofin 1.40 4.1 (Rothan et al., 2020)

(Continued)
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TABLE 1 | Continued

No. Name Structure EC50 or IC50 (mM) SI Ref.

5 Azithromycin 2.12 19.0 (Touret et al., 2020)

6 Baicalein 12.5-25.0 2.0 (Liu et al., 2020)

7 Baicalin 10.27 19.0 (Su et al., 2020)

8 Boceprevir 1.90 52.6 (Ma et al., 2020)

9 Carmofur 24.30 5.4 (Jin et al., 2020)

10 Cinanserin 20.61 9.7 (Jin et al., 2020)

11 CVL218 5.12 17.8 (Ge et al., 2020)

12 Digitoxin 0.23 214.1 (Jeon et al., 2020)

13 Digoxin 0.19 256.6 (Jeon et al., 2020)

14 Diiodohydroxyquinoline 1.38 >72.5 (Ianevski et al., 2020)

15 Ebselen 4.67 – (Jin et al., 2020)

16 Fluspirilene 3.16 9.6 (Weston et al., 2020)

17 GC-376 3.37 29.7 (Ma et al., 2020)

18 Hexachlorophene 0.90 21.6 (Jeon et al., 2020)

19 MDL28170 0.49 204.0 (Ma et al., 2020)

20 Nafamostat 0.0022 11363 (Ko et al., 2020)

21 Nelfinavir 0.77 83.1 (Ohashi et al., 2020)

(Continued)
Frontiers in Phar
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Chloroquine and hydroxychloroquine (Figure 9B) have
garnered considerable attention due to their ability to
effectively inhibit SARS-CoV-2 (Yamamoto et al., 2011; Liu
et al., 2020; Yao et al., 2020). For example, Xiao’s group (Wu
et al., 2020) showed that chloroquine potently blocked SARS-
CoV-2 infection at a low concentration in vitro (EC50 = 1.1 mM).
Although the US FDA has authorized the use of chloroquine and
hydroxychloroquine, the WHO has stated that the clinical data
do not support their clinical use in COVID-19 patients (Jaffe,
2020; Taccone et al., 2020). In addition, chloroquine can be lethal
Frontiers in Pharmacology | www.frontiersin.org 9
(narrow therapeutic window) in children, and caution is
warranted when it is used for critical illness (Smit et al., 2020).
CONCLUSION AND OUTLOOK

Currently, global attention continues to be focused on COVID-19
due to its serious threat to public health. Scientists have discovered
that SARS-CoV-2 has developed mutations (in 149 sites from the
103 sequenced SARS-Cov-2 strain) that have substantially
TABLE 1 | Continued

No. Name Structure EC50 or IC50 (mM) SI Ref.

22 Niclosamide 0.28 176.7 (Jeon et al., 2020)

23 Ouabain 0.097 515.5 (Jeon et al., 2020)

24 Salinomycin sodium 0.24 211.0 (Jeon et al., 2020)

25 S312 1.55 >64.6 (Xiong et al., 2020)

26 S416 0.017 >5882 (Xiong et al., 2020)
July 2020 | Volu
A

B

FIGURE 9 | Other small molecules for treating COVID-19. (A) Unsuccessful attempt of lopinavir and ritonavir to treat COVID-19. (B) Regulators split on chloroquine
and hydroxychloroquine to treat COVID-19.
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changed its pathogenicity (Tang et al., 2020; Yao et al., 2020).
Therefore, rapid discovery of safe, effective, and broad-spectrum
anti-COVID-19 drugs is urgent. However, it is well-known that the
development of a new drug usually takes more than 10 years
(Ashburn and Thor, 2004). Very recently, potential anti-SARS-
CoV-2 natural products and natural product-inspired small
molecules have attracted significant attention due to their broad-
spectrum antiviral activities. Here, we reviewed the research on
potential landmark anti-SARS-CoV-2 natural products (carolacton,
homoharringtonine, cepharanthine, and emetine) and natural
product-inspired small molecules (ivermectin, GS-5734, EIDD-
2801, and ebselen). In-depth research on potential anti-COVID-19
natural product-inspired small molecules has led to the development
of multiple lines of evidence demonstrating their effects on SARS-
CoV-2 infection (Ferner and Aronson, 2020; Pruijssers et al., 2020;
Toots et al., 2020; Williamson et al., 2020; Xing et al., 2020).

While the current COVID-19 pandemic has led to more rapid
natural product-based drug discovery and development, it is also
worth noting that ton-scale total synthesis strategies for the
abovementioned potential anti-SARS-CoV-2 natural products
(such as carolacton and homoharringtonine) are urgently needed.
However, significant challenges (for example, attainment of clinical
evidence regarding the anti-SARS-CoV-2 effects of the agents in
patients, and traditional drug development approach in SARS-
CoV-2 is becominguntenable)will need tobeovercome inorder for
Frontiers in Pharmacology | www.frontiersin.org 10
successful clinical research to be completed. We hope that natural
products and natural product-inspired small molecules will be
shown to be safe and effective for treating SARS-CoV-2 infection.
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