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Retinal hypoxia is one of the causative factors of diabetic retinopathy and is also one of the
triggers of VEGF release. We hypothesized that specific dysregulated miRNAs in diabetic
retinopathy could be linked to hypoxia-induced damage in human retinal endothelial cells
(HRECs). We investigated in HRECs the effects of chemical (CoCl2) hypoxia on the
expression of HIF-1a, VEGF, PlGF, and of a focused set of miRNAs. We found that miR-
20a-5p, miR-20b-5p, miR-27a-3p, miR-27b-3p, miR-206-3p, miR-381-3p correlated
also with expression of TGFb signaling pathway genes in HRECs, challenged with
chemical hypoxic stimuli. In conclusion, our data suggest that retinal angiogenesis
would be promoted, at least under HIF-1a activation, by upregulation of PlGF and
other factors such as miRNAs, VEGFA, and TGFb1.

Keywords: hypoxia-inducible-factor-1a, vascular endothelial growth factor, transforming growth factor beta,
retina, diabetic retinopathy, inflammation
INTRODUCTION

Diabetic retinopathy (DR), a complication of diabetes, is a microvascular disease with a strong
inflammatory imprinting. Vascular endothelial growth factor (VEGF) is a key player in retinal
neovascularization, and intraocular injections of anti-VEGF agents are currently the established
therapies for diabetic macular edema, along with steroids (Bandello et al., 2012). Although not fully
elucidated, alterations in retinal hemodynamics and reduced blood flow may be detrimental for DR,
along with uncontrolled hyperglycemia (Schmetterer and Wolzt, 1999; Schmidl et al., 2015).
Furthermore, during DR progression, local or global changes in retinal oxygenation may cause the
development of hypoxic areas (Arden and Sivaprasad, 2012) and oxidative stress (Bucolo et al.,
2006). Similar to the etiopathogenesis of retinopathy of prematurity (ROP), induction of hypoxia-
inducible factor-1 a (HIF-1a) may be responsible for the production of vascular endothelial growth
factor (VEGFA), which is the main cause of retinal neovascularization (Aiello et al., 1994; Arjamaa
and Nikinmaa, 2006; Abu El-Asrar et al., 2012). Furthermore, HIF-1a and VEGFA crosstalk in
ocular neovascularization has been widely investigated (Ozaki et al., 1999; Rodrigues et al., 2016). In
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particular, the HIF-1a inhibition strategy has also been explored
for treatment of retinal neovascularization (Iwase et al., 2013;
D’Amico et al., 2015; D’Amico et al., 2017; Zeng et al., 2017).

Besides VEGFA, HIF-1a can also induce the placental growth
factor (PlGF) (Zimna and Kurpisz, 2015; Charnock-Jones, 2016;
Mitsui et al., 2018), an emerging target in retinal neovascular
diseases (Kwon and Jee, 2018; Lee et al., 2018; Saddala et al.,
2018; Lazzara et al., 2019; Van Bergen et al., 2019). Furthermore,
HIF-1a is involved in expression of several microRNAs
(miRNAs), that are named HypoxamiRs if they bear in their
promoter region the hypoxia responsive elements (HREs)
(Nallamshetty et al., 2013; Bertero et al., 2017). Indeed,
HypoxamiRs, regulated by HIF-1a dependent or independent
mechanisms, are tightly involved in molecular and cellular
changes triggered by hypoxia (Cottrill et al., 2014; Gee et al.,
2014; Greco et al., 2014; Bertero et al., 2017). Moreover, several
genes, that are target of HypoxamiRs, belong to the VEGFR2
signaling pathway (Gupta et al., 2018). This pathway regulates
angiogenic response of endothelial cells (Abhinand et al., 2016),
and represents the target of current approved treatments for
neovascular retinal degenerations (Bandello et al., 2012). We
recently evidenced the dysregulation of expression pattern of 8
miRNAs (miR-20a-5p, miR-20a3p, miR-20b-5p, miR-106a-5p,
miR-27a-5p, miR-27b-3p, miR-206-3p, and miR-381-3p) in
retina and serum of diabetic mice, representing intriguing and
potent mediators in the DR pathological mechanisms (Platania
et al., 2019). HREs were found in promoter region of miR-20a,
miR-20b, miR-106, miR-27a, that indeed, have been enlisted as
Hypoxamirs (Nallamshetty et al., 2013). Although HREs are not
present in miR-206-3p, miR-381 and miR-27b promoter regions,
these miRNAs were found to be modulated in several hypoxic
experimental setting (Yue et al., 2013; Choudhry and Mole, 2016;
Gupta et al., 2018; Lu et al., 2018).

Therefore, we hereby hypothesized that these eight miRNAs
could also be involved in activation of HIF-1/angiogenic axis in
retinal endothelial cells. With this aim, we stabilized, by cobalt
chloride treatment, HIF-1a protein in human retinal endothelial
cells (HRECs), in order to analyze the activation of HIF-1/
VEGFA-PlGF axis, along with expression of a focused set of
miRNAs, previously found to be dysregulated in an in vivomodel
of DR (Platania et al., 2019). A bioinformatic approach guided
the identification and in vitro validation of alternative target
genes of miRNAs, dysregulated after inhibition of HIF-1a
degradation. We analyzed the expression of genes of the TGFb
(Transforming growth factor beta) signaling pathway, which is
an emerging target in DR (Li et al., 2018; Stafiej et al., 2018) and
was found to be one of top pathways modulated by HypoxamiRs
target genes (Gupta et al., 2018).
MATERIAL AND METHODS

Reagents
Mouse monoclonal anti-HIF-1a (catalog n. sc-13515), mouse
anti-GAPDH (catalog n. 2118) antibodies were purchased from
Santa Cruz Biotechnology, Inc. (CA, USA), and Cell-Signaling
Frontiers in Pharmacology | www.frontiersin.org 2
Technology (Leiden, Netherlands), respectively. Secondary goat
anti-mouse IRDye 680LT, (catalog n. 926-68020) were
purchased from LI-COR (Lincoln, NE, USA). Cobalt chloride
(0.1 M solution, catalog n. 15862) from Sigma-Aldrich (Saint
Louis, MO, USA).

Cell Culture
Human retinal endothelial cells were purchased from Innoprot®

(Derio – Bizkaia, Spain). Cells were cultured at 37°C, in
humidified atmosphere (5% CO2), in Endothelial cell medium
(ECM) supplemented with 5% fetal bovine serum (FBS), 1%
ECGS (Endothelial Cell Growth Supplement) and 100 U/ml
penicillin 100 mg/ml streptomycin. HRECs (cell passage
number 4) for each experiment were seeded setting 4×105 as
final cell density.

Induction of Chemical Hypoxia In Vitro
Cobalt chloride (CoCl2) is commonly used to stabilize HIF-1a,
because it inhibits the HIF-1a degradation, as shown in several
in vitro settings, including primary human retinal endothelial
cells cultures as previously described (Gao et al., 2008; Hu et al.,
2012; Li et al., 2017; He et al., 2019). Preliminary studies were
carried out and HRECs cultures were treated with various
concentrations of CoCl2 (100–200 mM), in order to assess cell
tolerability for 24 h with MTT test (Supplementary Data). The
concentration used for all experiments was 200 mM, accordingly
to previous CoCl2 concentrations tested on retinal ganglion cells
(Balaiya et al., 2012; Li et al., 2017). Cells were seeded in Petri
dishes (passage number 4, cell density 4×105); after reaching
confluence (approximately 80%), cells were treated with CoCl2
for 30 min, 2 and 8 h to induce HIF-1a accumulation/
nuclear translocation.

Western Blot
HRECs were cultured in 60 mm Petri dishes (cell density 4×105).
Proteins from cell lysates were extracted with RIPA Buffer,
including protease and phosphatase inhibitors cocktail (Sigma-
Aldrich, St. Louis, MO, USA). Total protein content, in each cell
lysate sample, was determined by the BCA Assay Kit (Pierce™

BCA Protein Assay Kit, Invitrogen, Life Technologies, Carlsbad,
CA, USA). Extracted proteins (40 µg) were loaded on 4%–12%
tris-glycine gel. After electrophoresis proteins were transferred
into a nitrocellulose membrane (Invitrogen, Life Technologies,
Carlsbad, CA, USA). Immunoblot was preceded by addition of
Odyssey Blocking Buffer (LI-COR Lincoln, NE, USA) to
membranes. Therefore, membranes were incubated overnight
(4°C) with appropriate primary HIF-1a (1:200 dilution) and
anti-GAPDH (1:500 dilution) antibodies. GAPDH was selected
as control for protein expression, accordingly to previous reports
(Botlagunta et al., 2011; Ao et al., 2015; Evrard et al., 2016; Gao
et al., 2019). After overnight incubation, the membranes were
then incubated with secondary fluorescent antibodies (1: 10,000
dilution) for 1 h at room temperature. Immunoblot was detected
through Odyssey imaging system (LI-COR, Lincoln, NE, USA).
Densitometry analyses of blots were performed at nonsaturating
exposures and analyzed using the ImageJ software (NIH,
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Bethesda, MD, USA; available at http://rsb.info.nih.gov/ij/index.
html). Values were normalized to GAPDH, which was also used
as loading control (see supplemental information for whole gel
membranes immunoblots).

Extraction of Total RNA and
cDNA Synthesis
Extraction of the total RNA was performed with TRIzol Reagent
(Invitrogen, Life Technologies, Carlsbad, CA, USA). The A260/
A280 ratio of the optical density of RNA samples (measured with
Multimode Reader Flash di Varioskan™) was 1.95–2.01. This
RNA purity was confirmed with the electrophoresis in
nondenaturing 1% agarose gel (in TAE), that showed an
adequate RNA purity, concentration, and integrity. cDNA was
synthesized from 2 µg RNA with a reverse transcription kit
(SuperScript™ II Reverse Transcriptase, Invitrogen,
ThermoFisher Scientific, Carlsbad, CA, USA).

Real-Time Reverse Transcriptase-
Polymerase Chain Reaction (qRT-PCR) for
PlGF and VEGFA
Real-time RT-PCR was carried out with LightCycler ® 2.0 (Real-
Time PCR System Roche Life Science). The amplification
reaction mix included iTaq™ Universal SYBR® Green
Supermix (Bio-Rad, Hercules, CA, USA) and 1 µl (100 ng) of
cDNA. Forty-five amplification cycles were carried out for each
sample. Results were analyzed with the 2-DDCt method. VEGF
and PlGF mRNAs expression were normalized to human 18S
mRNA levels. Primers used in qPCR for 18S, VEGF-A, PlGF
expression are: 18S (human) Forward (5 ’-AGTCCC
TGCCCTTTGTACACA-3 ’), Reverse (5 ’-GATCCGAG
GGCCTCACTAAAC-3 ’); PlGF (human) Forward (5′-
ATGTTCAGCCCATCCTGTGT-3′) Reverse (5′-CTTCATC
TTCTCCCGCAGAG-3′); VEGF-A (human) Forward (5’-
GAGGTTTGATCCGCATAATCTG-3 ’ ) Reverse (5 ’ -
ATCTTCAAGCCATCCTGTGTGC- 3’).

Analysis of miRNAs
HRECs total RNA, including small RNAs, was obtained
following the miRNeasy Mini Kit (21700400, Qiagen),
according to the manufacturer’s protocol “Purification of Total
RNA, Including Small RNAs, from Animal Cells”. Particularly,
for miRNAs isolation, Syn-cel-miR-39-3p miScript miRNA
Mimic 5 nM (MSY0000010, Qiagen) was added to each sample
before RNA purification in order to monitor miRNAs isolation
efficacy. RNA quality and concentration were determined by
using NanoDrop 2000c spectrophotometer (Thermo Fisher
Scientific, Carlsbad, CA, USA). Gene Amp PCR System 9700
(Applied Biosystems Thermo Fisher Scientific, Carlsbad, CA,
USA) was used for reverse-transcription phase. Mature miRNAs
were converted in cDNA according the MiScript II Reverse
Transcription Kit (218161, Qiagen, Germantown, MD, USA),
starting from 615 ng of total RNA.CFX96 Real-Time System
C1000 Touch Thermal Cycler (Bio-Rad, Hercules, CA, USA) was
used to evaluate the expression levels of hsa-miR-20a-5p
(Accession number MIMAT0000075), hsa-miR-20b-5p
Frontiers in Pharmacology | www.frontiersin.org 3
(Accession number MIMAT0001413); hsa-miR-27a-3p
(Accession number MIMAT0000084), hsa-miR-27b-3p
(Accession number MIMAT0000419), hsa-miR-206-3p
(Accession number MIMAT0000462) and hsa-miR-381-3p
(Accession number MIMAT0000736). Real time PCR was
carried out with miScript SYBR Green PCR kit (218073,
Qiagen, Germantown, MD, USA) and specific miScript primer
Assays (MS00003199, MS00003206, MS00003241, MS00031668,
MS00003787 and MS00004116, Qiagen, Germantown, MD,
USA). The expression of the 6 miRNAs analyzed was
normalized by using Ce_miR-39-3p (MIMAT0000010) as
control (MS00019789, Qiagen, Germantown, MD, USA).

TGFb Pathway qRT-PCR
Total RNA (615 ng) was subjected to reverse-transcription
reaction with the Gene Amp PCR System 9700 (Applied
Biosystems Life Technologies, Carlsbad, CA, USA) and
Quantitect Reverse Transcription kit (205311, Qiagen,
Germantown, MD, USA), following the manufacturer’s
protocol “Reverse Transcription with Elimination of Genomic
DNA for Quantitative, Real-Time PCR”. The expression levels of
human TGFB1 (Transforming Growth Factor Beta 1-Gene ID
7040), TGFBR1 (Transforming growth factor beta receptor 1-
Gene ID 7046), TGFBR2 (Transforming growth factor beta
receptor 2-Gene ID 7048) and SMAD2 (Small mother against
decapentaplegic 2-Gene ID 4087) genes were evaluated by real
time PCR measurement, by using a CFX96 Real-Time System
C1000 Touch Thermal Cycler (BioRad Laboratories, Inc),
Quantitect SYBR Green PCR Kit (204143, Qiagen,
Germantown, MD, USA) and specific Quantitect Primer
Assays (QT00000728, QT00083412, QT00014350 and
QT00004207, Qiagen, Germantown, MD, USA) following the
manufacturer’s protocol “Two-Step RT-PCR (Standard
Protocol)”. Human GAPDH (Gene ID 2597) (QT00079247,
Qiagen, Germantown, MD, USA) was used as control to
normalize the expression of the 4 genes analyzed; accordingly
to previous reports (Botlagunta et al., 2011; Ao et al., 2015; Lin
et al., 2015; Rosen et al., 2015; Evrard et al., 2016; Shao and Yao,
2016; Gao et al., 2019; Jiang and Xu, 2019).

MicroRNA or TGFb Signaling Pathway
Genes Expression Determination Analysis
CFX Manager™ Software (Bio-Rad, Hercules, CA, USA) was
used to calculate Cycle threshold (Ct) values. Data analysis was
carried out with the 2-DDCt method. Particularly, DCt value for
each miRNA or gene profiled was calculated as DCt = Ct miRNA –
Ct Ce_miR-39-5p or as DCt = Ct gene – Ct GAPDH. Then, DDCt was
calculated as DCttime x – DCttime 0, where time x is the analyzed
time point and time 0 is the expression of the target miRNA
normalized to Ce-miR-39-5p or of the target gene normalized to
GAPDH (Livak and Schmittgen, 2001). Where data are
reported as fold-regulation, this was the inverse negative of
fold change (2^-DDCt) for fold change values lower than one
(downregulation). In case of upregulation, the fold-regulation
was equal to fold change (2^-DDCt) for fold change values greater
than 1.
July 2020 | Volume 11 | Article 1063
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Bioinformatics
In order to explore alternative factors and pathways regulated by
miRNAs, dysregulated with induction of chemical hypoxia in
human retinal endothelial cells, we predicted the combinatorial
effect of hsa-miR-20a-5p, hsa-miR-20b-5p, hsa-miR-27a-3p, has-
miR-27b-3p, has-miR-260b-3p, and has-miR-381-3p on
biological pathways by means of the DIANA miRPath
webserver (Vlachos et al., 2015). The miRNA:target interactions
were analyzed with application of Tarbase algorithm (Riffo-
Campos et al., 2016), which is based on experimental validated
miRNA:target interaction.

Statistical Analysis
All results were reported as mean ± SD from four independent
in-vitro experiments, where each group was triplicated in plates
as technical replicate. The results were analyzed using one-way
ANOVA, followed by Tukey-Kramer post-hoc multiple
comparisons test. Differences between groups were considered
significant for p-value < 0.05. Graphs design and statistical
analysis were carried out with GraphPad Prism 5 software
(GraphPad Inc., San Diego, CA, USA).
RESULTS

Chemical Hypoxia in HRECs and
Angiogenic Factors
CoCl2 treatment, by inhibition of HIF-1a degradation,
significantly increased stabilization of HIF-1a protein in
HRECs (Figure 1A and Supplementary Data). HIF-1a is a
well-known inducer of VEGFA and PlGF (Aiello et al., 1994;
Ozaki et al., 1999; Arjamaa and Nikinmaa, 2006; Abu El-Asrar
et al., 2012; Zimna and Kurpisz, 2015; Charnock-Jones, 2016;
Rodrigues et al., 2016; Mitsui et al., 2018), but the HIF-1a
protein levels did not correlate with expression pattern of
VEGFA, within the analyzed time-points (Figure 1B). Two
hours after CoCl2 treatment, VEGFA expression increased,
compared to control HRECs. While, after 8 h, VEGFA levels
significantly (p<0.05) decreased, compared to levels detected 2 h
after, CoCl2 treatment. On the other hand, the expression pattern
of PlGF correlated with HIF-1a protein levels, within the
analyzed time-points (Figure 1C).

Expression Analysis of miRNAs Induced by
CoCl2 Treatmet of HRECs
Six miRNAs (miR-20a-5p, miR-20b-5p, miR-27a-3p, miR-27b-
3p, miR-260b-3p, miR-381-3p), out of eight analyzed, were
found to be significantly (p<0.05) dysregulated in HRECs,
treated with 200 µM CoCl2, compared to control cells (Figure
2). All dysregulated miRNAs were found to be significantly
(p<0.05) upregulated, 2 h after CoCl2 treatment, compared to
control cells (Figure 3A). On the contrary, four miRNAs were
significantly (p<0.05) dysregulated (upregulated) 8 h after CoCl2
treatment, compared to control cells (Figure 3B). Furthermore,
after 8 h of exposure to CoCl2, five miRNAs (miR-20a, miR-20b,
Frontiers in Pharmacology | www.frontiersin.org 4
miR-27a, miR-27b, miR-206-3p) were significant ly
downregulated (p<0.05), compared to levels detected in cells
treated for 2 h with 200 µM CoCl2, with exception of miR-381-3p
(Figure 3C).

TGFb Signaling Pathway in HRECs
Challenged With CoCl2
A bioinformatic approach was used to predict the combinatorial
effect of miR-20a-5p, miR-20b-5p, miR-27a-3p, miR-27b-3p,
miR-206-3p, and miR-381-3p on biological pathways. The
pathways dysregulated by these miRNAs were predicted by
means of DIANA miRPath, applying the Tarbase algorithm,
which generates, as output, pathways related to experimental
validated miRNA:mRNA interactions (Vlachos et al., 2015).
Based on this bioinformatic approach, we found that the TGFb
signaling pathway was the top-scored among the pathways
significantly (p<0.05) dysregulated by hypoxia-induced miRNA
in HRECs (Figure 4). The HIF-1a pathway was predicted to be
regulated by miR-20a-5p, miR-20b-5p, miR-27a-3p, miR-27b-
3p, miR-260-3p, miR-381-3p, according to the in vitro model of
retinal chemical hypoxia. Moreover, PI3K-AKT, MAP kinases
and Jak-STAT signaling pathways were predicted to be
modulated by the six miRNAs, that were dysregulated in
HRECs treated with CoCl2.

Therefore, we focused our study on analysis of transcription
of TGFb signaling pathway genes (TGFB1 encoding for TGFb1,
TGFBR1 encoding for the TGFbR1 receptor, TGFBR2 encoding
for the TGFbR2 receptor and SMAD2 encoding for SMAD2), in
HRECs treated with 200µM CoCl2 (Table 1). These genes were
significantly (p<0.05) dysregulated in HRECs, 2 and 8 h after
CoCl2 treatment (Figure 5). Furthermore, we correlated gene
expression with dysregulated miRNAs in the analyzed time-
points (Figure 6, Table 1). After 2 h of CoCl2 treatment,
TGFBR2 and TGFB1 gene expression increased significantly,
TGFBR1 decreased (p<0.05) (Figure 6A), and all analyzed
miRNA were significantly upregulated, particularly miR-27a.
The mRNA of TGFBR1 is an experimental validated target of
miR-20a, miR-20b, miR-27a, miR-27b, and miR-381, therefore
the upregulation of this miRNAs significantly decreased the
TGFBR1 mRNA levels (Table 1). Moreover TGFB1, and
TGFBR2 are experimental validated targets of miR-27a and
miR-20a, respectively, which even if overexpressed did not
reduce the expression of these two genes, 2 h after CoCl2
treatment (Figure 6A). Eight hours after CoCl2 treatment,
miR-20a, miR-27a, miR-27b, and miR-381-3p were
significantly (p<0.05) upregulated in HRECs, compared to
control cells (Figure 6B). This pattern of miRNA expression
positively correlated with TGFB1, TGFBR2, and SMAD2
expression (Figure 6B). Although not significantly, 8h after
CoCl2 treatment, mRNA levels of TGFb1, TGFbR2 and
SMAD2 were higher, compared to HRECs treated for 2 h with
CoCl2 (Table 1). On the other hand, TGFbR1 mRNA expression
levels were significantly upregulated 8 h after CoCl2 treatment,
compared to cells treated for 2 h with CoCl2 (Figure 6C). This
expression pattern negatively correlated with downregulation of
July 2020 | Volume 11 | Article 1063
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FIGURE 1 | CoCl2 treatment induces HIF-1a stabilization, vascular endothelial growth factor (VEGFA), and placental growth factor (PlGF) expression in human retinal
endothelial cells. (A) Densitometric analysis of western blot of HIF-1a and GAPDH in human retinal endothelial cells (HRECs) exposed to CoCl2 for 30 min, 2 h and
8 h; each bar represents the mean value ± SD (n=4). *p< 0.05 vs. control; †p < 0.05 vs. 30 min CoCl2 treatments. (B) CoCl2 treatment increased VEGF-A mRNA
expression. Each bar represents the mean value ± SD. *p < 0.05 CoCl2 vs. control;

†p < 0.05 8 h vs. 2 h CoCl2 treatment; (n=4). (C) CoCl2 treatment increased
PlGF mRNA expression. Each bar represents the mean value ± SD. *p < 0.05 CoCl2 vs. control; †p < 0.05 8 h vs. 2 h CoCl2 treatment; (n=4). The mRNA levels were
evaluated by qRT-PCR.
Frontiers in Pharmacology | www.frontiersin.org July 2020 | Volume 11 | Article 10635
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miR-20a, miR-20b, miR-27a, miR-27b, and miR-206, according
to the opposite trend observed 2 h after chemical hypoxia.
DISCUSSION

Previous data report that eight miRNAs (miR-20a-5p, miR-20a3p,
miR-20b-5p, miR-106a-5p, miR-27a-5p, miR-27b-3p, miR-206-3p,
and miR-381-3p) were significantly dysregulated both in serum and
retina of 5–10 months diabetic mice (Platania et al., 2019). Because
retinal hypoxia is detrimental in DR, exacerbating retinal damage
and angiogenesis (Aiello et al., 1994; Arjamaa and Nikinmaa, 2006;
Abu El-Asrar et al., 2012), we aimed at testing the hypothesis that
these miRNAs would be modulated in human retinal endothelial
cells, treated with CoCl2 in order to stabilize HIF-1a.

In DR, the role of angiogenesis linked to hypoxic events (i.e.
increased VEGFA production stimulated by HIF-1a) has been
largely proven (Arjamaa and Nikinmaa, 2006; B. Arden and
Sivaprasad, 2012; Kurihara et al., 2014; Li et al., 2017).
Furthermore, HIF-1a can induce expression of another
proangiogenic factor, the PlGF (Tudisco et al., 2014; Lazzara
et al., 2019). In this study we found a correlation, in terms of
time-dependent expression, between HIF-1a and PlGF, after CoCl2
treatment (Figure 1). Instead, VEGF mRNA levels did not correlate
with HIF-1a protein (Figure 1). For this reason, we hypothesized
that other factors could regulate VEGFA expression in an in vitro
model of chemical hypoxia, such as miRNAs. Involvement of
Frontiers in Pharmacology | www.frontiersin.org 6
miRNAs in retinal neovascular diseases has been widely studied
(Romano et al., 2017; Natoli and Fernando, 2018; Martinez and
Peplow, 2019; Platania et al., 2019). We found that six miRNAs
(miR-20a-5p, miR-20b-5p, miR-27a-3p, miR-27b-3p, miR-206-3p,
miR-381-3p), out of eight tested, were dysregulated in human
retinal endothelial cells after CoCl2 treatment (Figure 2). These
miRNAs have been previously found to be either HypoxamiRs
(bearing HREs in their promoting region) or linked to hypoxic
microenvironment (Nallamshetty et al., 2013; Yue et al., 2013;
Choudhry and Mole, 2016; Gupta et al., 2018; Lu et al., 2018).

After 8 h, similarly to VEGFA expression, we found a shift in
expression pattern of miRNAs, compared levels detected 2 h
after CoCl2 treatment (Figure 3). Experimental validated
miRNA : VEGFA mRNA interactions were found for miR-
20a-5p and miR-20b-5p (Platania et al., 2019), and in
hepatocellular carcinoma for miR-381-3p (Tsai et al., 2017;
Wang et al., 2018). Therefore, VEGFA expression levels could
be related to the expression pattern of miRNAs, 2 to 8 h after
stabilization of HIF-1a, because VEGFA is a target of miR-20a,
miR-20b, miR-381, and indirectly of miR-27b (Veliceasa et al.,
2015). On the contrary, PlGF is not a validated or predicted
target of any miRNAs dysregulated in HRECs treated with
CoCl2. Particularly, the role of PlGF in regulation retinal
angiogenesis, under hypoxic stimuli, is still unknown. On the
other hand, several reports support the detrimental role of PlGF
in the pathogenesis and progression of DR (Carmeliet et al.,
2001; Huang et al., 2015), likely through HIF-1a, or indirectly by
FIGURE 2 | Pattern expression of microRNAs (miRNAs) in human retinal endothelial cells (HRECs) treated with CoCl2, for 2 and 8 h treatment. Expression of
miRNAs was analyzed with qRT-PCR. Each bar represents the mean value ± SD. *p < 0.05 200 µM CoCl2 vs. control (ctrl);

†p<0.05 8h vs. 2h CoCl2 treatment;
(n=4).
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miRNAs and the PI3K/AKT signaling pathways (Figure 4)
(Zhou et al., 2016; Jin et al., 2018).

Therefore, our hypothesis is based on retinal angiogenesis
regulated by miRNAs under hypoxic stimuli, and miRNAs can be
considered alternative and/or ancillary components to VEGFA and
PlGF pathways. Indeed, we analyzed other putative miRNAs targets
(gene and pathways) and identified, through a bioinformatic
approach, the TGFb signaling pathway as the top-scored pathway
dysregulated by identified miRNAs (Figure 4). Then, we found that
miRNAs, dysregulated after CoCl2 treatment, (miR-20a-5p, miR-
Frontiers in Pharmacology | www.frontiersin.org 7
20b-5p, miR-27a-3p, miR-27b-3p, miR-206-3p, miR-381-3p)
influenced mRNA levels of TGFb1, TGFbR1, TGFbR2 and
SMAD2, according to experimental validated miRNA:mRNA
interactions (Figures 5 and 6, Table 1). TGFb1, TGFbR2 and
SMAD2, were upregulated 2 and 8 h after HIF-1a stabilization.
Interestingly, the expression of TGFbR1 receptor, which is target of
most of analyzed miRNAs (Table 1), correlated with expression
pattern shift of miRNAs at 2 h and 8 h after CoCl2 treatment.
Several reports support a detrimental role of TGFbR1 in DR,
particularly, TGFbR1 immunoreactivity was found to be increased
A

B

C

FIGURE 3 | HIF-1a stabilization induced microRNAs (miRNAs) and correlation with vascular endothelial growth factor (VEGFA) expression. Correlation of microRNAs
and VEGFA expression (Fold regulation). (A) *p < 0.05 2 h CoCl2 treatment vs. control; (B) *p < 0.05 8 h CoCl2 vs. control (ctrl); (C) *p < 0.05 8h vs. 2h CoCl2
treatment; (n=4).
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FIGURE 4 | 3D scatter plot of pathways regulated by HypoxamiRs in human retinal endothelial cells (HRECs), challenged with CoCl2. Blue dots represent #gene
projection of #miRNAs dimension. Green dots represent p-value projection of #genes dimension. Red dots represent #miRNA projection of p-value dimension.
FIGURE 5 | Expression of genes of TGFb signaling pathway in human retinal endothelial cells (HRECs) treated with CoCl2, for 2 and 8 h. The mRNA levels were
evaluated by qRT-PCR. Each bar represents the mean value ± SD. *p < 0.05 CoCl2 vs. control (ctrl);

†p < 0.05 8h vs. 2h CoCl2 treatment. (n=4).
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in retinal capillaries of diabetic rats (Gerhardinger et al., 2009; van
Geest et al., 2010).

The HIF-1/TGF-b1 axis, and related stimulation of angiogenesis,
has been investigated in different experimental settings (Han et al.,
2013; Mingyuan et al., 2018), including endothelial cells (Iruela-
Arispe and Sage, 1993; Peshavariya et al., 2014). On the contrary,
few reports demonstrated a putative link betweenHIF-1a/miRNAs/
Frontiers in Pharmacology | www.frontiersin.org 9
TGFb signaling pathway and angiogenesis (Xing et al., 2014).
Furthermore, only one study analyzed the role miRNAs in
regulation of hypoxia-TGFb-angiogenesis pathway in a model of
corneal neovascularization (Zhang Y. et al., 2019). According to our
findings, miR-27 was reported to be involved in regulation of
HIF-1/TGFb axis, at least in an in vitro model of cardiac ischemia
(Zhang X. L. et al., 2019). However, there are still no evidences about
A

B

C

FIGURE 6 | Correlation of microRNAs (miRNAs) and TGFb signaling pathway genes expression in human retinal endothelial cells (HRECs), under chemical hypoxic
stimuli. Fold regulation of miRNAs and TGFb signaling genes: (A) *p < 0.05 2 h CoCl2 treatment vs. control (ctr); (B) *p < 0.05 8 h CoCl2 treatment vs. control (ctr);
(C) *p < 0.05 8 h vs. 2 h CoCl2 treatment; (n=4).
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a putative link in retinal disease between hypoxia, miRNAs,
VEGFA, and TGFb pathway.

High throughput miRNA expression analysis on retinal
endothelial cells, challenged with chemical hypoxic stimuli,
could reveal the involvement of other miRNAs, along with the
focused set analyzed in this study. However, those high
throughput analyses are expensive and need quantitative qPCR
validation (de Ronde et al., 2018). Despite the small set of
analyzed miRNAs, our study suggested that ocular
neovascularization, during hypoxia, would be promoted by the
upregulation of PlGF and other factors induced by HIF-1a/
miRNAs, i.e. VEGFA, and genes of the TGFb1 signaling pathway
(Figure 7). Therefore, these data warranting further in vivo
studies to explore the use of pharmacological/molecular
approach such as antagomiRs and agomir.

Indeed, the present findings highlighted that proangiogenic
factors are worthy to be further explored as potential targets
for pharmacological modulation of local retinal hypoxic
events, which are generally transient but detrimental in
retinal degenerations.
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TABLE 1 | Differential expression of genes of the TGFb signaling pathway.

Gene Fold regulationCoCl2 2h vs
CTR(p value)

Fold regulationCoCl2 8h vs
CTR(p value)

Fold regulationCoCl28h vs 2h
(p value)

Regulating miRNAs (tarbase)

TGFB1 1.9466 (p<0.01) 2.7128 (p<0.05) 1.3936 miR-27a
TGFBR1 −1.419 (p<0.05) 1.3352 1.7166 (p<0.05) miR-20a, miR-27a, miR-27b, miR-20b, (microT-CDS),

miR-381 (microT-CDS)
TGFBR2 2.327 (p<0.05) 2.7213 (p<0.05) 1.1694 miR-20a, miR-20b
SMAD2 1.5014 1.8547 (p<0.05) 1.2354 miR-20b, miR-206 (microT-CDS), miR-381 (microT-

CDS)
The microRNAs (miRNAs), targeting each gene, were predicted with application of Tarbase, or whenever written with microT-CDS algorithm.
FIGURE 7 | Proposed model of angiogenic shift in retinal endothelial cells exposed to chemical hypoxia. CoCl2-induced hypoxia leads to the stabilization of HIF-1a,
with the subsequent translocation into the nucleus and transcription of hypoxia-related genes.
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