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Opioids are the most effective analgesics used in the clinical management of cancer pain
or non-cancer pain. However, chronic opioids therapy can cause many side effects
including respiratory depression, nausea, sedation, itch, constipation, analgesic
tolerance, hyperalgesia, high addictive potential, and abuse liability. Opioids exert their
effects through binding to the opioid receptors belonging to the G-protein coupled
receptors (GPCRs) family, including mu opioid receptor (MOR), delta opioid receptor
(DOR), and kappa opioid receptor (KOR). Among them, MOR is essential for opioid-
induced analgesia and also responsible for adverse effects of opioids. Importantly, MOR
can form heterodimers with other opioid receptors and non-opioid receptors in vitro and in
vivo, and has distinct pharmacological properties, different binding affinities for ligands,
downstream signaling, and receptor trafficking. This mini review summarized recent
progress on the function of Mu opioid receptor heterodimers, and we proposed that
targeting mu opioid receptor heterodimers may represent an opportunity to develop new
therapeutics, especially for chronic pain treatment.

Keywords: pain, opioid, opioid receptor, heterodimer, side effect
INTRODUCTION

Chronic pain is a distressing and debilitating disease, which affects one-third of the population
worldwide (Basbaum et al., 2009). Opioids such as morphine, codeine, hydrocodone, oxycodone,
fentanyl, and tramadol, are considered the most effective analgesics used in the clinical management
of chronic pain, which are among the most commonly prescribed and frequently abused drugs in
the US (Ballantyne and Mao, 2003; Dart et al., 2015; Skolnick, 2018). However, opioids also cause
many side effects associated with their acute use (including respiratory depression, nausea, sedation,
itch, and constipation) and prolonged use (analgesic tolerance, hyperalgesia, high addictive
potential and abuse liability) (Ballantyne and Mao, 2003; Schuckit, 2016). Rewarding and
euphoric properties of opioids significantly contribute to their abuse potential (Darcq and
in.org July 2020 | Volume 11 | Article 10781
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Kieffer, 2018). Opioid tolerance is defined as a reduction in effect
following prolonged drug administration that results in a loss of
drug potency, resulting in the need to increase the opioids dosage
to maintain the initial effects (Mao et al., 1995). Opioid-induced
hyperalgesia (OIH) refers to the development of hypersensitivity
to painful stimuli during chronic opioids administration (Mao
et al., 1995; Roeckel et al., 2016). Opioid tolerance and OIH are
considered to significantly contribute to opioid epidemic
worldwide (Skolnick, 2018). These adverse effects of opioid
dramatically reduce the quality of life of those patients with
chronic pain (Ballantyne and Mao, 2003; Volkow and McLellan,
2016). On the other hand, opioid abuse and opioid overdoses in
the US exceed 45,000 deaths per annum, representing the major
cause of accidental deaths (Dart et al., 2015; Blendon and
Benson, 2018). Although opioid receptor antagonists (such as
naltrexone and naloxone) can lessen addictive impulses and
facilitate recovery from opioid overdose, opioid antagonists
also have severe side effects due to the disruption of
endogenous opioid system (Boyer, 2012). Since misuse and/or
abuse prescribed opioid drugs reach epidemic levels, designing
new effective opioid analgesics without side effects may provide
an important strategy against this opioid crisis (Blendon and
Benson, 2018).
Frontiers in Pharmacology | www.frontiersin.org 2
OVERVIEW OF OPIOID
RECEPTORS SIGNALING

Opioids exert their effects through binding to the opioid receptors
belonging to the G-protein coupled receptors (GPCRs) family,
including m-opioid receptor (MOR), d-opioid receptor (DOR),
and k-opioid receptor (KOR) (Stein, 2016). After binding of a
ligand, opioid receptors activate intracellular pertussis toxin-
sensitive heterotrimeric Gi/o protein to dissociate into Gai/o and
Gbg subunits, which initiate downstream signaling. Gai/o inhibits
adenylyl cyclases and cAMP production, and protein kinase A
(PKA), resulting in modulating ion channels in the membrane,
such as inhibition of transient receptor potential cation channel
subfamily V member 1 (TRPV1) and voltage-gated sodium
channels (VGSCs) (Machelska and Celik, 2018). Gbg blocks
calcium channels and opening of potassium channels, including
G protein-coupled inwardly rectifying potassium (GIRK)
channels and adenosine triphosphate-sensitive potassium
channels (KATP) (Figure 1A). Opioids attenuate neuronal
excitability and excitatory neurotransmitters release from
presynaptic terminals, which contribute to opioid-induced
analgesia. Opioid receptors can be phosphorylated by GPCR
kinases (GRKs) to promote the binding of b-arrestins, leading
A

B DC

FIGURE 1 | The impact of opioid receptor heterodimerization on opioid receptor signaling, trafficking, and behavioral outcomes. (A) Classical opioid receptor
signaling pathways. (B–D) Recent identified opioid receptor heterodimers and downstream signaling in the nervous system and their effects on opioid side effects,
including MOR-GPR139 (B), MOR-V1bR (C), and MOR-GalR1 (D).
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to opioid receptors desensitization and receptor internalization
through clathrin-dependent pathways, resulting in reduced cell
surface expression (Darcq and Kieffer, 2018). Dephosphorylated
opioid receptors can then be recycled to the plasma membrane, or
targeted into lysosome for degradation (Figure 1A).

Opioid receptors are expressed by many types of cells,
including neurons in the central and peripheral nervous
system, neuroendocrine cells, immune cells, and ectodermal
cells (Stein, 2016; Machelska and Celik, 2020). Thus, opioid
receptors are required and are driver for the production of many
adverse effects following prolonged opioid therapy (Darcq and
Kieffer, 2018; Machelska and Celik, 2018). For example, MOR is
essential for opioid-induced analgesia and also responsible for
many adverse effects of opioids, including tolerance,
hyperalgesia, respiratory depression, constipation, nausea, and
reward/euphoria that may lead to addiction (Darcq and Kieffer,
2018; Kibaly et al., 2019; Zhang et al., 2020). In addition, chronic
opioid treatment may cause complex maladaptive responses,
including downregulation of the opioid receptors, activation of
anti-opioid systems, altering neuronal circuitry, activation of
glial cells (including microglia and astrocytes), and even gut
microbiota dysbiosis (Hutchinson et al., 2011; Williams et al.,
2013; Guo et al., 2019).
MU OPIOID RECEPTOR HETERODIMERS
IN VITRO AND IN VIVO

Many family-A GPCRs are found to be able to form receptor
heterodimers, including opioid receptors (Ferré et al., 2014;
Ferré, 2015; Gomes et al., 2016). Heterodimers represent
another important layer of functional complexity of opioid
receptors and provide additional opportunity for modulating
the function of opioid receptors (Machelska and Celik, 2018).
Opioid receptor heterodimers can form between opioid receptors
(Li-Wei et al., 2002) or between opioid receptors and non-opioid
receptors (Jordan and Devi, 1999; Costantino et al., 2012). For
example, it has been revealed that opioid receptor heterodimers
exist in vitro and in vivo, including MOR-MOR homodimers (Li-
Wei et al., 2002), MOR-DOR heterodimers (Costantino et al.,
2012), MOR-KOR heterodimers (Chakrabarti et al., 2010), and
DOR-KOR heterodimer (Jordan and Devi, 1999), MOR1D-
Gastrin Releasing Peptide Receptor (GRPR) heterodimer (Liu
X. Y. et al., 2011), MOR-cholecystokinin B receptor (CCKBR)
heterodimer (Tao et al., 2017), MOR-cannabinoid 1(CB1)
heterodimer (Rios et al., 2006), MOR-chemokine receptor 5
(CCR5) heterodimer (Suzuki et al., 2002), MOR-a2A

adrenergic receptor (a2AAR) heterodimer (Vilardaga et al.,
2008), MOR-dopamine D1 heterodimer (Tao et al., 2017), and
MOR-nociceptin receptor heterodimer (Costantino et al., 2012).
The formation of different types of opioid receptor heterodimers
through allosteric mechanisms over the receptor interface may
alter pharmacological properties of opioid ligands and may
produce additional pharmacological subtypes. In addition,
opioid receptor heterodimers may also have dramatic impact
Frontiers in Pharmacology | www.frontiersin.org 3
on opioid receptor trafficking and downstream signaling. Given
opioid receptor heterodimers are often expressed on specific and
limited brain regions and involved in many adverse effects
induced by chronic opioid therapy, targeting opioid receptor
heterodimers and subsequent downstream signaling may
represent a novel therapeutic strategy for the treatment of
chronic pain and adverse effects of opioids.
IDENTIFICATION, DOWNSTREAM
SIGNALING, AND FUNCTION OF MU
OPIOID RECEPTOR HETERODIMERS

Accumulating evidence demonstrated that mu opioid receptor
can form heterodimers with other opioid receptors or non-
opioid receptors in vitro and in vivo, which have distinct
pharmacological properties, different binding affinities for
ligands, distinct downstream signaling, and trafficking (Jordan
and Devi, 1999; Gomes et al., 2011; Ugur et al., 2018). In this
mini review article, we highlighted the recent identified mu
opioid receptor heterodimers, their pharmacological properties,
and downstream signaling, and their involvement in pathological
conditions (Table 1). We finally discussed the potential
therapeutic potentials by targeting these opioid receptor
heterodimers, especial for chronic pain management.
MOR-DOR HETERODIMER

To date, among all MOR heterodimers, MOR-DOR heterodimer
is the most importantly known and proven to exist both in vitro
and in vivo. Several agonists and antagonists selective for MOR-
DOR heterodimer have been identified and synthesized (Olson
et al., 2018). George et al. reported that the MOR and DOR may
form heterodimer when they were co-expressed in vitro, and
selective agonists for each receptor had reduced potency (George
e t a l . , 2000 ; Gomes e t a l . , 2013 ) . By us ing co -
immunoprecipitation (co-IP), bioluminescence resonance
energy transfer (BRET), and fluorescence resonance energy
transfer (FRET), it was demonstrated that physical interactions
between MOR and DOR upon co-expression in vitro (Gomes
et al., 2004; Yekkirala et al., 2012). It was reported that MOR
agonist DAMGO activates Gai/o-mediated signaling in MOR-
expressing cells while activates b-arrestin 2 for changing the
dynamics of ERK-mediated signaling in MOR-DOR
heterodimer-expressing cells (Rozenfeld and Devi, 2007). DOR
selective agonist SNC80 induced intracellular calcium release
only in MOR-DOR heterodimers expressing cells by using a
chimeric G-protein-mediated calcium fluorescence assay
(Metcalf et al., 2012). CYM51010, a MOR-DOR heterodimer
selective agonist, induced recruitment of b-arrestin 2 and GTPgS
binding, which was blocked by a MOR-DOR heterodimer
selective antibody (Gomes et al., 2013). The delta opioid
receptor (DOR) exerts an antagonistic allosteric influence on
MOR function within a MOR-DOR heterodimer. DOR
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TABLE 1 | Identification, downstream signaling, and function of Mu opioid receptor heterodimers in vitro and in vivo.
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antagonist enhances MOR recognition, Gi/o coupling and
inhibition of cAMP levels (Gomes et al., 2004). Thus, these
results suggested that MOR-DOR heterodimer affected the
pharmacological properties of each receptor.

MOR-DOR heterodimer may also have distinct intracellular
trafficking. Previous study showed that MOR and DOR can form
heterodimers only when they are present at plasma membrane
(Milan-Lobo and Whistler, 2011). In contrast, another study
showed that MOR-DOR heterodimers located in the
endoplasmic reticulum, where they recruit Gaz

protein (Hasbi
et al., 2007). Some agonists (e.g. DAMGO, Deltorphin II, SNC80,
and methadone) can induce MOR-DOR heterodimer
endocytosis, but others (e.g. DADPE) cannot do so (Décaillot
et al., 2008). In addition, RTP4, a Golgi chaperone, was identified
as a key regulator of the levels of MOR-DOR heterodimers at the
cell surface (Décaillot et al., 2008). It was also found that
treatment with DOR agonists led to endocytosis of both DORs
and MORs, further processed for degradation, resulting in a
reduction of surface expression of MOR (He et al., 2011). These
effects were attenuated by treatment with an interfering peptide
that disrupted the MOR-DOR heterodimer formation (He
et al., 2011).

MOR-DOR heterodimers are also demonstrated to
distribute in central nervous system and play key roles in the
regulation of pain and opioid analgesia. RedMOR/greenDOR
double knock-in mice were generated to perform dual receptor
mapping throughout the whole brain (Erbs et al., 2015). In the
forebrain, MOR and DOR are mainly detected in separate
population of neurons. In contrast, neuronal co-localization is
detected in subcortical networks, which is essential for eating,
sexual behaviors or response to aversive stimuli (Erbs et al.,
2015). Recently, it was found that MOR and DOR co-expression
is limited to small populations of neurons in the spinal cord.
MOR and DOR co-expression is rare in parabrachial, amygdala,
and cortical brain regions for pain processing (Wang et al.,
2018). By using antibodies selective for MOR-DOR
heterodimers generated by subtractive immunization strategy,
it was found that up-regulation of MOR-DOR heterodimers
were induced by chronic morphine treatment (Gupta et al.,
2010). Tail-flick assay showed that CYM51010 targeting the
MOR-DOR heterodimer demonstrated analgesic activity
comparable to morphine, and chronic administration of
CYM51010 resulted in less analgesic tolerance (Gomes et al.,
2013). Recently, it was found that MOR-DOR heterodimer
expression was up-regulated in injured dorsal root ganglia
neurons and subcutaneous injection of CYM51010 inhibited
neuropathic pain in rats and mice (Tiwari et al., 2020).
Intriguingly, the CYM51010-induced analgesia still persisted
in morphine-tolerant rats and was abolished in MOR knockout
mice (Tiwari et al . , 2020). In addition, intrathecal
administration of a peptide to disrupt the formation of MOR-
DOR heterodimers can enhance morphine analgesia and reduce
analgesic tolerance in mice (He et al., 2011). Together, these
results indicated that targeting MOR-DOR heterodimers may
be a promising strategy to treat chronic pain or to improve
therapeutic effects of opioids.
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MOR-KOR HETERODIMERS

Chakrabarti et al. (2010) found that the expression of MOR-KOR
heterodimer was more prevalent in the spinal cord of proestrous
vs. diestrous females and vs. males. Spinal morphine anti-
nociception in females, but not males, required the
concomitant activation of MOR and KOR in the spinal cord.
Dynorphine was identified as a ligand for female-specific KOR
within the MOR-KOR heterodimer. Co-IP experiments obtained
with anti-KOR antibodies on the spinal cord showed that it is
elevated in proestrus with high estrogen receptor (ER) levels (Liu
N. J. et al., 2011). The gender- and ovarian steroid-dependent
recruitment of MOR-KOR heterodimers may provide a way to
influence the balance between anti-nociceptive and pro-
nociceptive functions of the dynorphin/KOR opioid system in
the spinal cord. Impaired formation of MOR-KOR heterodimers
could be a biological determinant of various types of chronic pain
states that are substantially more common in women than men.
Thus, MOR-KOR may be therapeutic target for pain control,
especial in women.
MOR-GPR139 HETERODIMERS

Recently, Wang et al. (2019) identified a conserved orphan
GPR139 receptor as a novel partner to form MOR-GPR139
heterodimers to negative regulate opioid receptor function and
demonstrated that GPR139 can regulate opioid receptor
signaling and trafficking. Firstly, Wang et al. (2019) established
an ingenious forward genetic platform by using a model
organism, C. elegans to screen mutations that affect opioid
receptor function and signaling. Following the expression of
mammalian MOR in the nervous system of nematodes (tgMOR),
administration of morphine and fentanyl decreased locomotion
in tgMOR nematodes. Based on the drug sensitivity of behavioral
responses, they conducted a large-scale forward genetic
screening of the transgenic nematode, and 900 mutants with
altered opioid sensitivity were observed. By whole genome
sequencing of these mutants, they identified an orphan
receptor FRPR-13 (its homologous protein GPR139 in
mammals) as a negative regulator of MOR function in vivo.

Wang et al. (2019) further investigated the functional interaction
of MOR and GPR139 in transfected HEK cells. In transfected
HEK293T cells, MOR activation causes hyperpolarization of
membrane potential due to opening of the G protein-coupled
inwardly-rectifying potassium channels (GIRKs) and expression
of GPR139 inhibited these abovementioned effects. They showed
that GPR139 and MOR can be co-immunoprecipitated in
artificially overexpressed in a cellular context. When GPR139 is
overexpressed at high amounts, they found that cell surface
expressed MOR was reduced, suggesting that GPR139 may
regulate MOR trafficking to the cell surface or its internalization.
In vitro, GPR139 was further found to bind directly to MOR,
promote the recruitment of b-arrestin 2, and inhibited the
activation of G protein and GIRK channel. In situ hybridization
experiments showed that GPR139 and MOR are expressed in the
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same brain regions, including the medial habenula (MHb) and
locus coeruleus (LC). Wang et al. (2019) further provided
electrophysiological evidence to support the functional interaction
of MOR and GPR139. In cultured brain slices, GPR139 deficiency
reduced the basal firing rate of MHb neurons and increased opioid
sensitivity of LC neurons. Thus, it was concluded that GPR139
regulates the function of MOR in a cell-autonomous manner.

Wang et al. (2019) finally investigated the role of GPR139 in
morphine-induced behavioral changes in mice. They observed
that GPR139 knockout (KO) mice had normal baseline learning,
nociception, locomotor activities, and motor coordination.
However, GPR139 KO mice showed enhanced sensitivity to
morphine-induced analgesia and reward effects. Administration
of GPR139 agonists JNJ-63533054 inhibited morphine-induced
analgesia and morphine-induced reward in mice. GPR139 KO
mice also showed significantly diminished opioid withdrawal
reactions (Figure 1B). Thus, these data indicate that inhibiting
the function of GPR139 enhanced sensitivity to morphine-
induced analgesia and reward effects, but diminished
morphine withdrawal, while facilitating the function of
GPR139 diminished morphine analgesia and rewarding effects.
However, the formation and function of MOR-GPR139
heterodimers were only investigated in vitro. The precise
localization and function of MOR-GPR139 heterodimers in
vivo warrant further validation and investigation. Given
GPR139 was identified as a novel anti-opioid system, brain
regions selective targeting GPR139 or MOR-GPR139
heterodimers may be useful to improve the safety and efficacy
of opioids.
MOR-V1BR HETERODIMERS

Recently, Koshimizu et al. (2018) identified vasopressin 1b
receptor (V1bR) as another partner to form MOR-V1bR
heterodimers in promoting AC superactivation and the
development of morphine tolerance, which is another excellent
example that opioid receptor heterodimers may alter the opioid
receptor signaling and function. Arginine-vasopressin (AVP),
structurally related to oxytocin, are known to regulate
morphine sensitivity and tolerance. However, the underlying
mechanisms are poorly understood. Koshimizu et al. (2018)
first found that V1bR knockout (KO) mice showed enhanced
nociceptive thresholds and greater morphine sensitivity. In
addition, the development of morphine tolerance was
significantly delayed in V1bR KO mice. Next, they found that
administration of selective V1bR antagonist SSR149415 (but not
V1aR antagonist) into lateral ventricle of mice also reduced the
development of morphine tolerance in mice. By using in situ
hybridization analysis, they subsequently found that V1bR and
MOR are co-localized in the rostral ventromedial medulla
(RVM). They further examined the functional interaction
between V1bR and MOR by using HEK cell co-expressing
V1bR and MOR. In a single cell, bioluminescence resonance
energy transfer (BRET) analysis confirmed that V1bR and MOR
were located in close proximity (<10 nm). Binding experiments
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indicate that morphine binding to the MOR is substantially
influenced by forming MOR-V1bR heterodimer in the cellular
environment. AVP enhanced morphine-induced AC
superactivation in the setting of V1bR-MOR heterodimers,
which depends on b-arrestin 2 and extracellular regulated
kinase (ERK) phosphorylation pathways. A leucine-rich
segment in the C-terminal tail of the V1bR is essential for
association with b-arrestin 2. Finally, they showed that deletion
of the leucine-rich segment in the V1bR C-terminal tail by
genome editing increased morphine analgesia and reduced
AVP-mediated AC superactivation (Figure 1C). Altogether, it
was proposed that targeting MOR-V1bR may be a novel
approach for potentiating morphine analgesia with delayed
development of morphine tolerance.
MOR-GALANIN RECEPTOR 1 (GAL1R)
HETERODIMERS

Previous studies showed that a neuropeptide galanin counteracts
the behavioral effects of MOR agonists in vivo. Moreno et al.
(2017) identified the formation of MOR-Gal1R heterodimer in
transfected cells and in neurons in rat ventral tegmental area
(VTA). MOR-Gal1R heterodimer plays a key role in the function
of dopaminergic neurons and mediates the antagonistic
interactions between MOR and Gal1R selective ligands
(Moreno et al., 2017). Cai et al. (2019) further found an
agonist-dependent function of MOR-Gal1R heterodimers and
elucidated the mechanisms underlying opioid-induced
rewarding, suggesting the formation of opioid receptor
heterodimers may alter the pharmacological properties of
opioid receptor. It was showed that MOR-GalR1 heterodimers
in the rat VTA reduced the potency of methadone, but not other
opioids (e.g. morphine and fentanyl), for stimulating dopamine
release and producing euphoria (Figure 1D). Thus, these
pharmacodynamic differences between methadone and
morphine may provide a way to dissociate the euphoric versus
therapeutic effects of methadone-like compounds. Consistently,
patients on methadone maintenance experienced fewer euphoria
compared with those using other opioids (Cai et al., 2019). Thus,
these data indicated MOR-GalR1 heterodimers mediate the
dopaminergic effects of opioids and novel methadone-like
compounds with reduced potency to activate MOR-GalR1
heterodimers may be safer than current opioids. Given the
critical role of MOR-GalR1 heterodimers in the determination
of the potency of opioid-induced activation of rewarding
pathways and restricted distribution of MOR-GalR1
heterodimers in the VTA, MOR-GalR1 heterodimers may be a
promising target to develop safer opioid analgesics or even treat
opioid addiction.
MOR-CB1 HETERODIMERS

CB1 receptor is present in the peripheral and central nervous
system, including primary sensory neurons in the DRGs, the
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spinal cord, and some brain regions related to pain processing
(Bouchet and Ingram, 2020). Early study showed co-localization
of CB1 and MOR in lamina II neurons in the spinal cord (Salio
et al., 2001), and synergistic interactions also existed between
cannabinoid and opioid analgesia (Raehal and Bohn, 2014). By
using biophysical methods, Rios et al. demonstrated that CB1
can form heterodimers with MOR in transfected cells (Rios et al.,
2006). Co-activation of MOR-CB1 leads to cross-inhibition of
neurite outgrowth involving inhibition of the Src-STAT3
pathway, suggesting antagonistic allosteric interactions in CB1-
MOR heterodimers (Rios et al., 2006). Thus, MOR-CB1
heterodimer may be a target to modulate neuronal plasticity.
MOR-CCKBR HETERODIMERS

Previous studies found the antagonism of cholecystokinin
octapeptide (CCK8) to opioid analgesia (Pu et al., 1994), and
studies using L-365,260 (a specific antagonist of CCKBR) showed
that CCK-8 inhibited opioid analgesia through CCKBR (Dourish
et al., 1990). Recently, Yang et al. (2018) demonstrated that MOR
and CCKBR could form heterodimer and MOR-CCKBR
heterodimer may underlie the antagonism of CCK8 to opioid
analgesia. They first validated the co-localization of MOR and
CCKBR in neurons in spinal cord dorsal horn and the DRGs by
using double-labeling immunofluorescence staining. By using
co-IP and FLIM-FRET methods, they further validated that
CCKBR and MOR form heterodimers in transfected HEK293
cells and the transmembrane domain 3 (TM3) domain of MOR
play a key role in the formation of MOR-CCKBR heterodimers.
Further, the formation of MOR-CCKBR heterodimer leads to
decreased MOR affinity and reduced agonist-mediated
phosphorylation of ERK1/2 in transfected HEK293 cells. They
developed a cell-penetrating interfering peptide (TM3MOR-TAT)
by adding the TAT sequence (RKKRRQRRR) to the C terminal
of the entire TM3, in order to disrupt the formation of MOR-
CCKBR heterodimer. Finally, they found that TM3MOR-TAT
enhanced MOR signaling in transfected cells and prevented
CCK8-induced antagonism against morphine analgesia in rats.
Thus, MOR-CCKBR may be a promising therapeutic target for
enhancing morphine analgesia.
MOR-a2AAR HETERODIMERS

Previous study showed that there exists a conformational
antagonistic crosstalk between a2AAR and MORs in their
downstream signaling upon co-activation (Vilardaga et al.,
2008). Yang et al. (2018) demonstrated that these receptors,
either singly or as a heterodimer, activate common signal
transduction pathways mediated through the inhibitory Gai/o.
Using FRET microscopy, they showed that within the MOR-
a2AAR heterodimer, the MOR and a2AAR communicate with
each other through a cross-conformational switch that permits
direct inhibition of one receptor by the other (Vilardaga et al.,
2008). It was also found that morphine binding to the MOR
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triggers a conformational change in the norepinephrine-
occupied a2AAR that inhibits its signaling to Gai and the
downstream MAP kinases (Vilardaga et al., 2008). These data
highlight a new mechanism in signal transduction whereby a G
protein-coupled receptor heterodimer mediates conformational
changes that propagate from one receptor to the other and cause
the second receptor's rapid inactivation. Thus, these results
suggest that activation of MOR-a2AAR heterodimers by
combined agonists for each other could play a role in
counteracting excessive analgesia.

However, early work indicates that combined agonists acting
on a2AAR and opioid receptors have analgesic properties and
act synergistically when co-administered in the spinal cord
(Stone et al., 1997). Norepinephrine (NE) or clonidine
(a2AAR agonists) significantly reduces the evoked release of
glutamate from spinal cord synaptosomes (Kamisaki et al., 1993)
and the release of substance P (SP) and calcitonin gene related
peptides (CGRP) from spinal cord slices (Bourgoin et al., 1993).
In addition, immunostaining data showed that both a2AAR and
MOR was observed in the superficial layers of the dorsal horn of
the spinal cord and the primary localization of the a2AAR in the
rat spinal cord is on the terminals of capsaicin-sensitive, SP-
containing primary afferent fibers (Bourgoin et al., 1993). Thus,
although a2AAR and MOR may co-localized on these primary
afferent fiber terminals, the formation of MOR-a2AAR
heterodimer cannot explain the synergy of agonists of MOR
and a2AAR in analgesia.
MOR1D-GRPR HETERODIMERS

The mouse Oprm gene encodes 16 exons, comprising dozens of
spliced isoforms that primarily differ at C terminus (Pasternak
and Pan, 2013). Liu X. Y. et al. (2011) demonstrated one MOR
isoform MOR1D is co-expressed with GRPR in superficial
layers of the spinal cord in mice. Further, MOR1D was
shown to be associated with GRPR to form MOR1D-GRPR
heterodimer in the spinal cord (Liu X. Y. et al., 2011).
Activation of MOR1D unidirectionally cross-activates GRPR
and its downstream effectors (such as PLC3b and IP3R3) in
neurons of spinal cord. Blocking the formation of MOR1D-
GRPR by a disrupted peptide attenuated morphine-induced
itch, but did not affect morphine-induced analgesia in mice
(Liu X. Y. et al., 2011). Thus, the results indicated that
MOR1D-GRPR may be a promising therapeutic target for
treating morphine-induced itch, which is a remarkable side
effect of morphine.
TARGETING MU OPIOID RECEPTOR
HETERODIMERS AS NOVEL
THERAPEUTIC STRATEGIES

In order to design new opioid analgesics without side effects,
we need to better understand the molecular and cellular
mechanisms underlying the regulation of MOR function. So
Frontiers in Pharmacology | www.frontiersin.org 8
far, it is proposed several different strategies to achieve this goal
(Machelska and Celik, 2018). For example, one strategy is
selective targeting MOR splice variants that are selective
involved in analgesia. Another strategy is the biased
activation of MOR towards analgesia-associated intracellular
signaling pathways. Third strategy is selective targeting MOR
at peripheral nervous system though reducing opioid access to
the central nervous system. Fourth strategy is selective
targeting MOR in peripheral inflamed tissue. Fifth strategy is
identification of compounds that specific target opioid receptor
heterodimers. Heterodimers are defined as a protein complex
composed of two functional receptor units (protomers)
and have different biochemical and pharmacological
properties than individual units. This research highlight will
introduce some recent progress about opioid receptor
heterodimers and discussed the abovementioned fifth
strategy to design new generation of opioid analgesics with
few side effects.

So far, there are several innovation strategies to design new
compounds for targeting opioid receptor heterodimers, aiming at
improving analgesic and reducing side effects. First, bivalent
ligands can be designed for targeting opioid receptor
heterodimers, which may be designed through using a 21-22-
atom spacer to connect MOR agonist and other receptor
antagonist involved in heterodimers. Accordingly, for example,
MMG22 was designed to target MOR-mGluR5 heterodimers,
which consists oxymorphamine (MOR agonist) and metoxy-2-
methyl-6-(phenylethynyl)-pyridine (mGluR5 antagonist)
connected by a 22-atom spacer. Second, monovalent
compounds were also developed to target opioid receptor
heterodimers. For example, N-naphthoyl-b-naltrexamine
(NNTA) with mixed KOR agonist/MOR antagonist was
designed to target MOR-KOR heterodimers, which produced
analgesia, little tolerance, and little withdrawal signs. Third,
multifunctional ligands can also be designed to target opioid
receptor heterodimers. For example, TY027 with MOR/DOR
agonistic and NK1 receptor antagonistic activities produced
analgesia, little tolerance, less reward, less withdrawal signs, no
effects on gastrointestinal transit in preclinical animal models.
Finally, combination of two compounds for targeting opioid
receptor heterodimers is another choice. For example,
combination of MOR agonist and V1bR antagonist (SSR149415)
to target MOR-V1bR heterodimers produced analgesia with little
tolerance. Additionally, combination of Gal1R agonist and MOR
agonist may be used to reduce euphoric effects of opioids.
Thus, bivalent, monovalent, and multifunctional ligands or
combination of two drugs targeting opioid receptor heterodimers
may represent next generation of pain killers with reduced
side effects.
FUTURE PERSPECTIVE

Although scientists have made great progress in promoting our
understanding on the function of opioid receptor heterodimers,
there are many questions that remain to be resolved. First, the
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existence and physiological/pathophysiological function of
opioid receptor heterodimers in vivo remains largely unknown,
including recent identified MOR-GPR139 heterodimers. Second,
the studies on the structure and function of opioid receptor
heterodimers is very challenging and more powerful research
tools need to be developed. Of note, the current methods heavily
rely on the heterologous expressing cells and antibodies, which
often have specificity issues. Importantly, the application of x-ray
crystallography and/or cryo-electron microscopy may be helpful
to provide structural basis for the formation of opioid receptor
heterodimers and the interaction between selective ligands and
heterodimers. Additionally, the generation of mutant mouse
expressing fluorescently tagged MOR and its partners within
heterodimers will be useful to explore the distribution of opioid
receptor heterodimers in vivo, avoiding the specificity issue of
antibodies. Of course, to develop antibodies specific for opioid
receptor heterodimers is another way. Third, the expression of
opioid receptor heterodimers in an endogenous context may be
highly dynamic. Fourth, opioid receptors may form heteromers
with ion channels, such as NMDA receptor (Rodrıǵuez-Muñoz
et al., 2012) and TRPV1 receptor (Scherer et al., 2017), and these
kind of heteromers may have distinct function in physiological
and pathophysiological conditions. However, this topic is out of
the scope of this review. Together, the expression and the
interaction changes of opioid receptor heterodimers in many
pathological conditions (including chronic opioid treatment and
many pathological pain conditions) warrant further
investigation. Finally, in order to identify the compounds with
specific target opioid receptor heterodimers, the high-
throughput screening assays have to be established.
Frontiers in Pharmacology | www.frontiersin.org 9
CONCLUSION

Opioid receptor heterodimers regulate the opioid receptor
function at multiple levels, including pharmacodynamic of
ligands, the receptor trafficking, and intracellular downstream
signaling pathways. Impressively, the list of opioid receptor
heterodimers is growing rapidly. There are also several
innovation strategies or high-throughput screen platform to be
developed in order to targeting opioid receptor heterodimers.
Thus, the identification and characterization of MOR
heterodimers may provide valuable therapeutic targets for
chronic pain and improving opioid analgesics.
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