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The glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide-1
(GLP-1) receptor are important targets in the treatment of both type 2 diabetes mellitus
(T2DM) and obesity. Originally identified for their role in desensitization, internalization and
recycling of G protein-coupled receptors (GPCRs), arrestins have since been shown to act
as scaffolding proteins that allow GPCRs to signal in a G protein-independent manner.
While GLP-1R has been reported to interact with arrestins, this aspect of cell signaling
remains controversial for GIPR. Using a (FRET)-based assay we have previously shown
that yellow fluorescent protein (YFP)-labeled GIPR does not recruit arrestin. This GIPR-
YFP construct contained a 10 amino acid linker between the receptor and a XbaI
restriction site upstream of the YFP. This linker was not present in the modified GIPR-
SYFP2 used in subsequent FRET and bioluminescence resonance energy transfer (BRET)
assays. However, its removal results in the introduction of a serine residue adjacent to the
end of GIPR’s C-terminal tail which could potentially be a phosphorylation site. The
resulting receptor was indeed able to recruit arrestin. To find out whether the serine/
arginine (SR) coded by the XbaI site was indeed the source of the problem, it was
substituted with glycine/glycine (GG) by site-directed mutagenesis. This substitution
abolished arrestin recruitment in the BRET assay but only significantly reduced it in the
FRET assay. In addition, we show that the presence of a N-terminal FLAG epitope and
influenza hemagglutinin signal peptide were also required to detect arrestin recruitment to
the GIPR, most likely by increasing receptor cell surface expression. These results
demonstrate how arrestin recruitment assay configuration can dramatically alter the
result. This becomes relevant when drug discovery programs aim to identify ligands
with “biased agonist” properties.

Keywords: G protein-coupled receptor, arrestin, fluorescence resonance energy transfer, bioluminescence
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INTRODUCTION

Glucose-dependent insulinotropic polypeptide (GIP) and
glucagon-like peptide-1 (GLP-1) are peptide hormones
released from the gut postprandially and act primarily to
potentiate glucose-induced insulin secretion (Kim and Egan,
2008). Together these peptides mediate the incretin effect (i.e.
the larger insulin response elicited by oral administration of
glucose compared to intravenous administration, under
comparable plasma glucose levels) by binding to their
receptors (GIPR and GLP-1R respectively) expressed on
pancreatic b cells (Mcintyre et al., 1964; Nauck et al., 1986).
An early characteristic of type 2 diabetes mellitus is an
impairment of the incretin effect (Holst et al., 2011). However,
at pharmacological concentrations GLP-1 is insulinotropic in
patients with T2DM whereas GIP does not appear to be (Nauck
et al., 1993). As a result, several GLP-1 analogs are currently used
clinically to treat T2DM, but to date, this is not the case for GIPR
agonists (Andersen et al., 2018). Interestingly, peptide agonists
that target both receptors have been investigated and appear to
show greater efficacy in terms of glycemic control and weight loss
and fewer adverse effects than agonists that target GLP-1R alone
(Frias et al., 2018).

GIPR and GLP-1R are closely related members of the secretin
family of G protein-coupled receptors (GPCRs) and share a high
degree of sequence homology (Mayo et al., 2003; De Graaf et al.,
2016). When activated, both receptors couple through Gs,
resulting in an increase in intracellular cAMP (Yabe and Seino,
2011; Al-Sabah, 2016). GLP-1R has also been reported to couple
to other G proteins, including Gq, which has been shown to
mediate receptor internalization (Montrose-Rafizadeh et al.,
1999; Thompson and Kanamarlapudi, 2015). Activation of
GLP-1R also results in the rapid recruitment of arrestin to the
receptor (Jorgensen et al., 2005). However, this remains a
controversial subject with regards to GIPR, with some groups
showing no interaction between GIPR and arrestin and others
who do (Al-Sabah et al., 2014; Ismail et al., 2015; Gabe et al.,
2018). Non-visual arrestins were first identified for their role in
the desensitization, internalization and recycling of GPCRs
(Lefkowitz, 2005; Reiter and Lefkowitz, 2006). Subsequently,
arrestins have been shown to also operate as scaffolding
proteins allowing GPCRs to signal in a G protein-independent
manner, such as via ERK1/2 MAPKs (Luttrell et al., 2001; Xiao
et al., 2010). This has led to the concept of biased agonism or
functional selectivity, where ligands can favor a G protein-
dependent pathway or an arrestin-dependent pathway (Koole
et al., 2010; Reiter et al., 2017). This could potentially lead to new
therapeutics with greater efficacy and fewer adverse effects
(Violin et al., 2014). While there is evidence that arrestins are
involved in mediating GLP-1’s insulinotropic effects on
pancreatic b-cells, G protein biased GLP-1R agonists have been
shown to produce greater long-term insulin release and less
nausea than more balanced agonists (Sonoda et al., 2008; Jones
et al., 2018).

Arrestin recruitment to GPCRs can be monitored by
coimmunoprecipitation or visualization of fluorescently labeled
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arrestin to the plasma membrane by confocal microscopy. These
techniques however are not without their drawbacks. For
example, coimmunoprecipitation requires the use of a cross
linking agent and neither technique is particularly amenable to
quantification. More recently several resonance energy transfer
techniques such fluorescence resonance energy transfer (FRET)
and bioluminescence resonance energy transfer (BRET) have
been developed to study various aspects of GPCR functionality
(Krasel et al., 2005; Pfleger et al., 2006). Both intermolecular
FRET and BRET require the receptor and arrestin to be fused to a
suitable donor/acceptor pair which allows the quantification of
rate of arrestin association/dissociation to the receptor and the
potency of agonists to recruit arrestin to the receptor (Krasel
et al., 2004; Ayoub, 2016). Functional affinity or efficacy of an
agonist for a given pathway are required to calculate a ligands’
bias (Jaeger et al., 2014).

In this study we investigate how assay configuration,
especially modifying receptor cell surface expression and
altering the linker-region between the receptor and fluorescent
protein, can dramatically affect the result of both FRET and
BRET-based arrestin recruitment assays, potentially leading to
false-positive results.
MATERIALS AND METHODS

Construction of cDNA
cDNA encoding the following constructs have been previously
described; wild-type and C-terminally enhanced yellow
fluorescent protein (eYFP)-labeled human GLP-1R and GIPR
(GLP-1R-eYFP, GIPR-eYFP) (Al-Sabah et al., 2014), arrestin3-
cyan fluorescent protein (Arr3-CFP) (Krasel et al., 2005), G
protein-coupled receptor kinase 2 (GRK2) (Krasel et al., 2001).
GIPR- and GLP-1R-labeled at the C-terminus with super yellow
fluorescent protein 2 (SYFP2) (Kremers et al., 2006) were
generated by amplifying the open reading frame of human
GLP-1R and GIPR with primers which added a HindIII
restriction site ahead of the start codon and replaced the stop
codon with an XbaI site. The start codon of SYFP2 was replaced
by PCR with an XbaI site, and a NotI site was inserted behind the
stop codon of SYFP2. The resulting fusion of GIPR-XbaI-SYFP2
was cloned in pcDNA3. Subsequent mutations of the linker
region between receptor and SYFP2 were performed by site-
directed mutagenesis (Q5 site-directed mutagenesis kit, New
England Biolabs, USA). GIPR and GLP-1R both possess a
putative N-terminal signal peptide that is cleaved during
receptor processing and trafficking (Huang et al., 2010;
Whitaker et al., 2012). Hence in order to N-terminally label
the receptors, a FLAG-tag was introduced immediately
downstream of the predicted signal peptide. This was achieved
by replacing the myc-tag of N-terminally labeled GIPR and GLP-
1R with a FLAG-tag (DYKDDDDK) by site-directed mutagenesis.
Myc-tagged GIPR and GLP-1R constructs (previously described
(Al-Sabah et al., 2014)) encode the influenza hemagglutinin signal
peptide (MKTIIALSYIFCLVFAA) in place of the native
signal peptide.
August 2020 | Volume 11 | Article 1271

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Al-Sabah et al. Arrestin Recruitment to GIPR
Nluc-Arr3 has been previously described (Al-Zamel et al.,
2019). The whole construct was subsequently cloned into
pcDNA5-FRT (Invitrogen) in order to generate a stable
isogenic cell line.

mCherry-CAAX was cloned by PCR attaching the codons for
the last 18 amino acids of the small GTPase H-ras to mCherry
(which encode the H-ras palmitoylation site) in the process. The
PCR product was cloned into pcDNA3 using HindIII and NotI.
All constructs were verified through sequencing.

Ligands
Human GLP-1 (7-36) NH2 and human GIP (1-42) were
purchased from Bachem (Bubendorf, Switzerland).

Cell Culture and Transfection
HEK-293 and Flp-In HEK-293 cells (Invitrogen) were cultured
in Dulbecco’s modified Eagle’s media supplemented with 10%
fetal calf serum, 100 U/ml penicillin and 100 µg/ml streptomycin.
Cells were maintained at 37°C in a humidified environment
containing 5% CO2. HEK-293 cells were transiently transfected
using Effectene (Qiagen, Hilden, Germany), following the
manufacturer’s protocol. In order to generate stable cell lines
Flp-In HEK-293 cells were transfected with the pcDNA5.FRT
vector and pOG44 using Effectene. Stable isogenic clones were
selected by the addition of hygromycin at a concentration of 100
µg/ml.

Luciferase Assay
Activation of various GIPR constructs was assessed by a
luciferase reporter gene assay using a previously described
protocol (Al-Sabah et al., 2014). Briefly, Flp-In HEK-293 cells
were transiently transfected with cDNA encoding either GLP-1
or GIP receptor constructs and a reporter gene construct
consisting of a cAMP-response element fused to a reporter
gene encoding firefly luciferase (Cre-luc) using Effectene
(Qiagen, Hilden, Germany), following the manufacturer’s
protocol. Twenty-four hours after transfection, the cells were
seeded into white 96-well plates (Thermo Scientific, Roskilde,
Denmark) at a density of 10,000 cells/well. Twenty-four hours
later, the cells were incubated for 3 h in media containing peptide
ligand and then lysed. Luciferase activity was quantified using
LucLite reagent (PerkinElmer Life and Analytic Sciences,
Wellesley, MA, USA).

Confocal Microscopy
Flp-In HEK-293 cells transiently expressing SYFP2-labeled
receptors and mCherry-CAAX were plated on to a poly-D-
lysin-coated coverslip and mounted on to an “Attofluor”
holder (Molecular Probes, Leiden, The Netherlands). The
cellular location of the labeled receptors was monitored by live
cell confocal microscopy performed on a Zeiss LSM 800 meta
system (Carl Zeiss, Oberkochen, Germany). Zeiss Zen Blue 2
software (2.1) was used for data acquisition and analysis. Images
were taken with an oil-immersion 63× lens using the factory
settings for mCherry and YFP.
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BRET Assays
Flp-INFlp-In HEK-293 cells stably expressing Arrestin3-Nluc
were transiently transfected with SYFP2-labeled receptor as
previously described. For BRET saturation assays increasing
amounts of SYFP2-labeled receptor DNA were transfected (0–
2 µg). Forty-eight hours posttransfection cells were detached and
washed with Hank’s Balance Salt Solution (HBSS). Cells were re-
suspended in HBBS and plated on to white 96-well plates
(PerkinElmer) in suspension at a density of 180,000 cells/well.
Cell were incubated with agonist for 10 min and BRET
measurements were taken using a Victor X4 (PerkinElmer)
plate reader immediately after the addition of coelenterazine h
(final conc. 5 µM). Nluc emission was measured through a 460/
40 nm filter and the resulting SYFP2 emission was read through a
535/25-nm filter. Expression levels of Nluc and SYFP2-labeled
constructs were monitored by measuring luminescence and
fluorescence respectively. Luminescence was measured using a
Victor X4 and factory settings for luminescence. For fluorescence
measurements, cells from the same transfection were plated on to
black 96-well plates and after 1-h incubation in darkness, total
fluorescence was measured with excitation 490/6 nm and an
emission filter at 535/25 nm. For BRET saturation assays raw
data was corrected by subtracting the BRET ratio determined
from cells expressing Nluc only. Data was then plotted as BRET
ratio vs. fluorescence/luminescence and curves were fitted using
“one site-specific binding” function (GraphPad 7.0).

FRET Measurements
HEK-293 cells were cotransfected with either GLP-1R-YFP or
GIPR-YFP and Arr3-CFP. At 24 h posttransfection, the cells
were plated on poly-D-lysine-coated coverslips (25-mm
diameter) in six-well plates. After 24 h, FRET measurements
were performed as previously described (Zindel et al., 2015) with
two modifications: first, the light source was an LED excitation
system (pE-2, CoolLED, Andover, UK); second, ligands were
always applied in FRET buffer supplemented with 0.1% bovine
serum albumin. The fluorescence signal at 535 nm is the sum of
the YFP fluorescence and bleed through of CFP fluorescence into
the YFP channel (approx. 40% of the fluorescence at 480 nm);
therefore the “real” YFP fluorescence was calculated by
subtracting the CFP bleed through from the F535 signal. FRET
was calculated as FYFP/F480. To get information about the
expression of YFP-tagged receptors, cells were excited directly
with 500 nm light and the fluorescence intensity was measured
(dYFP, d for “direct excitation”). The CFP signal before the start
of the experiment is a good indication for the expression level of
the arrestin (as there is no FRET at the beginning of the
experiment), and therefore the ratio FdYFP/FCFP can be used as
an approximation of the stoichiometry between the receptor
and arrestin.

Data Analyses
Dose-response data were fitted to a sigmoidal curve and BRET
saturation experiments were fitted to one-site specific binding
curve using GraphPad 7.0 (GraphPad, San Diego, CA). The
values are expressed as the mean ± standard error of the mean;
August 2020 | Volume 11 | Article 1271
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n = number of independent experiments. Statistical analysis of
significance was calculated with GraphPad 7.0 using a two-tailed,
unpaired Student’s t-test or ANOVA where appropriate.
RESULTS AND DISCUSSION

Arrestin3-Nluc Recruitment to eYFP
Labeled GIPR and GLP-1R
Using a FRET-based assay we have previously reported that
activated GLP-1R tagged at the C-terminus with eYFP and
expressed in HEK-293 cells interacts robustly with both CFP-
tagged GRK2 and arrestin3 (b-arrestin2) whereas similarly
tagged GIPR does not (Al-Sabah et al., 2014). Ismail et al. have
also reported that GIPR does not significantly interact with either
arrestin2 (b-arrestin1) or arrestin3 (Ismail et al., 2015). However,
a recent study by Gabe et al., shows that stimulated GIPR can
recruit both isoforms of arrestin (Gabe et al., 2018). Both groups
used a BRET-based arrestin recruitment assay albeit using
different configurations. In order to investigate this issue
further we measured agonist stimulated recruitment to GIPR
and GLP-1R using a BRET-based assay. Using the same receptor
constructs as in our previous FRET-based experiments (GIPR-
eYFP and GLP-1R-eYFP, C-terminal tail sequence shown in
Figure 1), Flp-In HEK-293 cells stably expressing Arr3-Nluc
were transfected with either GIPR-eYFP or GLP-1R-eYFP and
stimulated with their corresponding peptide. GLP-1 stimulated
Arr3 recruitment to GLP-1R-eYFP in a dose-dependent manner
Frontiers in Pharmacology | www.frontiersin.org 4
(Figure 2A) with a pEC50 value of 7.1 (± 0.3) whereas there was
no significant difference in BRET ratio between unstimulated
cells expressing GIPR-eYFP and those stimulated with 1 µM
GIP (Figure 2B), confirming our previous results from
FRET experiments.

FLAG-GIPR-SR-SYFP2 Can Recruit Arr3
The GIPR-eYFP construct used in the previous RET experiments
contains a 10 amino acid linker between the end of the receptor’s
C-terminal tail and the XbaI restriction-site immediately
upstream of the eYFP (Figure 1). In subsequent FRET
experiments a GIPR construct was employed that used a
brighter version of YFP (SYFP2) and did not include the 10
amino acid linker found in the original construct (GIPR-SR-
SYFP2 Figure 1). This receptor was also tagged at its N-terminus
with a FLAG epitope and the native signal peptide was replaced
with the influenza hemagglutinin signal peptide (FLAG-SR-
GIPR-SYFP2). HEK-293 cells transiently expressing FLAG-
GIPR-SR-SYFP2 and either GRK2-CFP or Arr3-CFP were
observed by FRET microscopy. Stimulation with 1 µM GIP
resulted in an increase in FRET ratio indicating that this GIPR
construct could recruit both GRK2 and arrestin3 (Figures 3A, B).
There are two requirements for arrestin recruitment to GPCRs;
an agonist-induced change in receptor conformation and
phosphorylation of the agonist-occupied receptor by G protein-
coupled receptor kinases (GRKs) (Krasel et al., 2005). It has also
been shown that the affinity of arrestins for a GPCR can be
increased by modifying the receptor so that the number of
phosphorylation sites in the C-terminal tail is increased (Zindel
FIGURE 1 | Sequence of the C-terminal region of GLP-1R and GIPR constructs used in the present study. GIPR-eYFP contains a 10–amino acid linker (shown in
green) between the end of the C-terminal region and the XbaI site (shown in cyan), eYFP is shown in yellow. There is no linker between the end of the C-terminal tail
and the XbaI site in GIPR-SR-SYFP2. However, this results in the introduction of a serine residue (S) at the end of GIPR’s C-terminal region which could potentially
be a phosphorylation site. The SR was subsequently substituted with GG to give GIPR-GG-SYFP2.
A B

FIGURE 2 | Agonist-induced bioluminescence resonance energy transfer (BRET) between receptor and arrestin3. (A) Dose dependent GLP-1 and GIP stimulated
BRET between Nluc-tagged arrestin3 and the corresponding eYFP-labeled receptor. (B) Comparison of agonist (1 µM) stimulated BRET between arrestinand either
GLP-1R or GIPR. The results are expressed as the mean ± standard error of the mean for at least three independent experiments; Stim., stimulated; NS, not
stimulated **P < 0.01.
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et al., 2015; Zhou et al., 2017). By removing the 10 amino acid
linker and moving the XbaI restriction site, which codes for
serine/arginine (SR), to the distal end of GIPR’s C-terminal tail
an additional potential phosphorylation site may have been
introduced to GIPR. When comparing the sequence of GIPR
and GLP-1R’s C-terminal tail it can be seen that not only is GIPR’s
C-terminal tail longer but that it also contains fewer serine and
threonine residues. Furthermore, GLP-1R ends on a serine residue
(Figure 1). To test if this recruitment of arrestin to GIPR was
due to the presence of a potential phosphorylation site, the
serine/arginine coded for by the XbaI site was substituted with
glycine/glycine. The resulting construct, FLAG-GIPR-GG-SYFP,
showed a significantly (P<0.01) reduced ability to recruit arrestin3
with 1 µM GIP in the FRET assay (Figure 3B) but nonetheless
could still recruit arrestin3. Importantly there was no significant
difference in the stoichiometry between YFP and CFP
fluorescence for arrestin recruitment assays performed with
either FLAG-GIPR-SR-SYFP or FLAG-GIPR-GG-SYFP
(Figure 3C). Therefore, the amplitude of the FRET signal may
be compared.
Frontiers in Pharmacology | www.frontiersin.org 5
GLP-1R-SYFP2, but Not GIPR-SR-SYFPR,
Recruits Arrestin in a BRET Saturation
Assay
To further investigate arrestin recruitment to the incretin
receptors we performed BRET saturation assays. In these
experiments receptors were labeled with SYFP2 at the C-
terminus (Figure 1) but were not tagged at the N-terminus
and retain their native signal peptides. Flp-In HEK-293 cells
stably expressing Arr3-Nluc were transfected with increasing
amounts of either GIPR-SR-SYFP2 or GLP-1R-SYFP2 and
stimulated with 1 µM of their corresponding agonist. Data
were fitted to a single binding-site equation by non-linear
regression. Stimulation with 1µM resulted in a BRET signal
between GLP-1R-SYFP2 and Arr3-Nluc that reached saturation
(BRETmax 0.22 ± 0.01) whereas the BRET signal between non-
stimulated GLP-1R-SYFP2 and both stimulated and unstimulated
GIPR-SR-SYFP2 and Arr-NLuc increased in a quasi-linear
fashion, suggesting a non-specific interaction between receptor
and arrestin (Figure 4). These results suggest that an additional
potential phosphorylation site at the distal C-terminus is not
A B C

FIGURE 3 | Agonist-induced fluorescence resonance energy transfer (FRET) between FLAG-GIPR-SYFP2 and GRK2 and arrestin3. (A) 1 µM GIP stimulated GRK2
recruitment to both FLAG-GIPR-SR-SYFP2 and FLAG-GIPR-SR-SYFP2 was detectable by FRET microscopy. The traces are the mean ± standard error of seven
(SR) or eight (GG) independent experiments. (B) 1 µM GIP stimulated arrestin3 recruitment to FLAG-GIPR-SR-SYFP2 to a significantly (**P < 0.01) greater extent 180
s after addition of agonist than to FLAG-GIPR-GG-SYFP2. The traces are the mean ± standard error of the mean of 10 independent experiments. (C) Receptor
(dYFP) and arrestin (CFP) expression of the experiments shown in (B) were quantified by measuring the CFP intensity after excitation at 430 nm and the YFP
intensity after excitation at 500 nm (dYFP). The ratio of dYFP/CFP is a measure for the relative expression of the two constructs and is not significantly different
between FLAGGIPR-SR-SYFP2 and Flag-GIPR-GG-SFYP.
FIGURE 4 | Bioluminescence resonance energy transfer (BRET) saturation experiments for agonist-induced interaction between receptor and arrestin3. Increasing
amounts of SYFP2-labeled receptors were transiently expressed in Flp-In HEK-293 stably expressing Arr3-Nluc. Stimulation of GLP-1R-SYFP2 with 1 µM GLP-1
produced an exponential curve increasing and reaching an asymptote, consistent with a saturable BRET signal. All other curves increased in a quasi-linear fashion
consistent with nonspecific bystander effects. Data are pooled results from at least three independent experiments performed in triplicate.
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sufficient to permit arrestin recruitment to GIPR, at least to an
extent detectable in a BRET saturation assay.
Addition of an N-Terminal FLAG-Epitope
and Cotransfection of GRK2 Improve
Agonist Stimulated Arrestin Recruitment
to GIPR-SR-SYFP2
As our FRET experiments demonstrated that FLAG-GIPR-SR-
SYFP2 could recruit arrestin upon stimulation we used the same
construct in a BRET saturation assay (Figure 5A). Although we
observed an increase in BRETmax with agonist stimulation this
data set had a poor R square value (0.65) when fitted to a single
binding-site equation and was rejected. However, when additional
GRK2 (200 ng) was cotransfected with the receptor we observed a
BRET signal that was best described by a one-site specific-binding
model (Figure 5B). Furthermore, when the potential
phosphorylation site (SR) was substituted with (GG) agonist-
stimulated arrestin recruitment was abolished. The results of
these BRET saturation experiments are in agreement with the
results of our FRET experiments for FLAG-GIPR-SR-SYFP2.
However, whereas we were unable to detect arrestin recruitment
to FLAG-GIPR-GG-SYFP2 in the BRET saturation assay, we were
able to in the FRET assay. This discrepancymay be due to the FRET
assay’s greater sensitivity or possibly because of the kinetic nature of
Frontiers in Pharmacology | www.frontiersin.org 6
the FRET assay. The BRET assay is an end point assay measured
after a 10 min incubation with agonist whereas the FRET assay
shows a peak in amplitude approximately 3 min after stimulation.

Together these data demonstrate that GIPR can be engineered
to interact with arrestin under certain assay conditions. To achieve
this, an additional serine residue is required at the very end of
GIPR’s C-terminal tail. This was inadvertently achieved by placing
an XbaI restriction site directly between the receptor and the
fluorescent protein. However, the presence of an engineered C-
terminal serine residue was not sufficient to observe arrestin
recruitment to GIPR as demonstrated in our initial BRET
saturation experiments (Figure 4). It was only with the inclusion
of an N-terminal FLAG epitope and replacement of the signal
sequence with that of hemagglutinin that we began to observe
arrestin recruitment (Figure 5A) and even then the BRET signal
could only reliably be fitted to a one-site specific binding curve
with the cotransfection of additional GRK2 (Figure 5B). There are
five non-visual members of the GRK family that are now
understood to regulate cell signaling independent of GPCRs as
well as phosphorylating GPCRs (Gurevich and Gurevich, 2019).
The present study could be extended by investigating the effect of
overexpression of different members of the GRK family on arrestin
recruitment to both GLP-1R and GIPR. It would be interesting to
investigate how the rate of arrestin association to the receptor is
influenced by different GRKs.
A

B

FIGURE 5 | Bioluminescence resonance energy transfer (BRET) saturation experiments for agonist-induced interaction between FLAG-GIPR-SYFP2 and arrestin3.
Increasing amounts of FLAG-GIPR-SYFP2 receptors were transiently expressed in Flp-In HEK-293 stably expressing Arr3-NLuc. (A) Stimulation of FLAG-GIPR-SR-
SYFP2 with 1 µM GIP results in an increase in BRET ratio that appears to produce an exponential curve. However, this data set has a poor R square value (0.65)
when fitted to a single binding-site equation. (B) Cotransfection of 200 ng GRK2 with the receptor results in a BRET ratio that is best described by a one-site
specific-binding model when FLAG-GIPR-SR-SYFP2 is stimulated with 1 µM GIP consistent with a specific agonist-induced interaction between the receptor and
arrestin3. Substitution of the SR linker with GG (FLAG-GIPR-GG-YFP2) abolishes arrestin recruitment. Data are pooled results from at least 3 independent
experiments performed in triplicate.
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Substitution of GIPR’s Native Signal
Peptide With the Influenza Hemagglutinin
Signal Peptide Increase Receptor
Expression at the Plasma Membrane
The influenza hemagglutinin signal peptide has been shown to
enhance the surface expression of the b2-adrenergic receptor and
is often used for this purpose when studying GPCRs in a
recombinant system (Guan et al., 1992). When expressed in
adipocytes GIPR has been shown to be constitutively trafficked
between the plasma membrane and intracellular compartments
with less than half of the receptors being expressed at the cell
membrane (Mohammad et al., 2014). We investigated the effect of
replacing the native signal peptide with that of the hemagglutinin
signal peptide on GIPR’s cell surface expression further. HEK-293
cells transiently expressing the YFP2-labeled receptor and a
membrane-targeted red fluorescent protein (mCherry) were
observed by confocal microscopy. GLP-1R-SYFP2 appeared to
be expressed predominantly at the plasma membrane whereas
GIPR-SYFP2 appeared to also be located in intracellular
compartments. The addition of a N-terminal FLAG-epitope and
substitution of the native signal peptide with the influenza
hemagglutinin signal peptide appears to enhance the trafficking
of GIPR to the plasma membrane (Figure 6A) and significantly
increased (P<0.001) the receptor’s colocalization with membrane-
targeted mCherry (Figure 6B). This observation may be more
accurately quantified by ligand binding studies. Nonetheless, the
data from the confocal microscopy experiments demonstrate that
the proportion of expressed GIPR that colocalizes with plasma
membrane-targeted mCherry-CAAX is increased when the native
signal peptide is replaced with the hemagglutinin signal peptide.

To test if the addition of the YFP variants to the C-terminus
affects the ability of GIPR to signal through Gs, dose response
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curves were generated using a cAMP-response element-linked
reporter gene assay (Table 1). GIP displayed a similar potency at
all constructs used in the present study except GIPR-SYFP2 (SR)
where GIP was significantly less potent than at wild type
(P<0.01) and FLAG-GIPR-SYFP2 (GG) (P<0.05). This could
possibly be explained by the absence of the hemagglutinin signal
peptide and reduced receptor surface expression. Nonetheless, all
receptor constructs retained their ability to interact with Gs
including those that showed no interaction with arrestin3
(GIPR-eYFP, FLAG-GIPR-GG-SYFP2 and GIPR-SR-SYFP2).
CONCLUSION

GPCRs such as the b3-adrenergic receptor (b3AR) and the
gonadotropin-releasing hormone (GnRHR) are known not to
interact with arrestin (Cao et al., 2000; Jensen et al., 2013). While
GLP-1R has been shown to robustly recruit arrestin, the
A B

FIGURE 6 | Visualization of the cellular location of SYFP2-labeled receptors transiently expressed in HEK-293 cells by confocal microscopy. (A) Representative live
cell images of HEK-293 cells transiently cotransfected with plasma membrane targeted mCherry-CAAX (red) and SYFP2-labeled receptor (yellow). GLP-1R-SYFP2
appears to be expressed predominantly at the plasma membrane whereas GIPR-SYFP2 appears to be located not only at the plasma membrane but also in
intracellular compartments. The addition of a N-terminal FLAG-epitope and substitution of the native signal peptide with the influenza hemagglutinin signal peptide
appears to enhance the trafficking of GIPR to the plasma membrane. The images are representative of at least 3 independent experiments. Scale bar = 10 µm.
(B) Colocalization of the SYFP2-labeled receptors with plasma membrane-targeted mCherry. Replacement of GIPR’s native signal peptide with the influenza
hemagglutinin signal peptide significantly (****P < 0.001) increases the receptor’s colocalization with membrane-targeted mCherry. GLP-1R-SYFP2 with its native
signal peptide colocalizes with membrane-targeted mCherry to a significantly (****P < 0.001) greater extent than GIPR-SYFP2 with its native signal peptide. Data are
the mean ± SEM from values measured in n = 11.
TABLE 1 | Activation of GIPR constructs used in this study by Glucose-
dependent insulinotropic polypeptide (GIP).

Receptor pEC50

Wild Type GIPR 10.8 ± 0.35(3)
GIPR-eYFP 9.7 ± 0.19(3)
FLAG-GIPR-SR-SYFP2 9.9 ± 0.03(3)
FLAG-GIPR-GG-SYFP2 10.1 ± 0.51(3)
GIPR-SR-SYFP2 8.6 ± 0.19(3)a, b
August 2020 | Volu
The mean ± SEM shown are from at least three independent experiments (the number of
experiments is shown in parentheses). pEC50 refers to the –log EC50/M. (a) P<0.01, (b)
P<0.05 significantly different from wild type GIPR and FLAG-GIPR-GG-SYFP2 (GG)
respectively. Statistical analysis tests were performed using Graph Pad 7.0 and analysis
of variance was followed by a post hoc test (Turkey).
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literature regarding GIPR’s ability to bind arrestin is contradictory
(Al-Sabah et al., 2014; Ismail et al., 2015; Gabe et al., 2018). The
results presented here demonstrate how arrestin recruitment assay
configuration can dramatically alter the result. Substitution of the
native signal peptide with the influenza hemagglutinin signal
peptide influences the outcome of the experiment, most likely
by enhancing cell surface expression of the receptor. Our results
also highlight the importance of the linker between receptor and
fluorescent protein in BRET and FRET-based arrestin recruitment
assays. The use of an XbaI restriction site may introduce an
additional potential phosphorylation site, resulting in false
positive results. GPCRs are also commonly tagged at their C-
terminal tails with a 1D4 epitope (TETSQVAPA) (Cai et al.,
2017). This epitope also adds potential phosphorylation sites to
the receptors’ C-terminal tail and may also affect the results of
arrestin recruitment assays. With the advent of the concept of
“biased agonism” and “functional selectivity” these observations
become pertinent to drug discovery programs.
Frontiers in Pharmacology | www.frontiersin.org 8
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