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Background: The transcriptional factor peroxisome proliferator–activated receptor g
(PPARg) is an important therapeutic target for the treatment of type 2 diabetes.
However, the role of the PPARg transcriptional activity remains ambiguous in its
metabolic regulation.

Methods: Based on the crystal structure of PPARg bound with the DNA target of PPARg
response element (PPRE), Arg134, Arg135, and Arg138, three crucial DNA binding sites
for PPARg, were mutated to alanine (3RA), respectively. In vitro AlphaScreen assay and
cell-based reporter assay validated that PPARg 3RA mutant cannot bind with PPRE and
lost transcriptional activity, while can still bind ligand (rosiglitazone) and cofactors (SRC1,
SRC2, and NCoR). By using CRISPR/Cas9, we created mice that were heterozygous for
PPARg-3RA (PPARg3RA/+). The phenotypes of chow diet and high-fat diet fed PPARg3RA/+

mice were investigated, and the molecular mechanism were analyzed by assessing the
PPARg transcriptional activity.

Results: Homozygous PPARg-3RAmutant mice are embryonically lethal. The mRNA levels
of PPARg target genes were significantly decreased in PPARg3RA/+ mice. PPARg3RA/+ mice
showed more severe adipocyte hypertrophy, insulin resistance, and hepatic steatosis than
wild type mice when fed with high-fat diet. These phenotypes were ameliorated after the
transcription activity of PPARg was restored by rosiglitazone, a PPARg agonist.

Conclusion: The current report presents a novel mouse model for investigating the role of
PPARg transcription in physiological functions. The data demonstrate that the
transcriptional activity plays an indispensable role for PPARg in metabolic regulation.
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INTRODUCTION

Obesity is a growing worldwide risk factor for many
complications in health, such as type 2 diabetes (T2D) and
non-alcoholic fatty liver disease (NAFLD) (Wild et al., 2004;
Golay and Ybarra, 2005; Esser et al., 2014; Byrne and Targher,
2015). Peroxisome proliferator-activated receptors (PPARs) are a
family of ligand-activated transcription factors that belong to the
nuclear hormone receptor superfamily. There are two
isoforms of PPARg, g1, and g2. Both of the isoforms are
transcribed from the same gene under the control of different
promoters leading to a longer N-terminus in PPARg2 (Fajas
et al., 1997) (Supplementary Figure 1). PPARg1 is expressed in
various tissues and highly enriched in adipose tissues, while the
expression of PPARg2 is restricted to adipose tissues (Tontonoz
et al., 1994). PPARg is enriched in both white adipose tissue
(WAT) and brown adipose tissue (BAT) (Tyagi et al., 2011). Like
many nuclear receptors, PPARg contains five functional regions:
an N-terminal activation function-1 (AF-1) domain (A/B
domain), a DNA-binding domain (DBD, domain C), a ligand-
binding domain (LBD, domain E), a hinge region that links the
DBD and the LBD (domain D), and a C-terminal AF-2 domain
in LBD (Jin and Li, 2010). Upon the binding with ligands by its
LBD, PPARg locates to the specific PPAR response element
(PPRE) via its DBD as a heterodimer with retinoid X receptor
(RXR), and recruits cofactors to regulate the transcription of
many direct downstream target genes (Larsen et al., 2003; Jin and
Li, 2010; Seale, 2010; Ahmadian et al., 2013). These target genes
include glucose transporter type 4 (Glut4), phosphoenolpyruvate
carboxykinase (PEPCK) (Tontonoz et al., 1995), fatty acid
translocase (FAT/CD36) (Teboul et al., 2001), aquaporin 7
(AQP7, also named AQPap) (Kishida et al., 2001), adipocyte
fatty acid binding protein (aP2) gene (Rival et al., 2004), stearoyl-
CoA desaturase 1 (SCD1) (Miller and Ntambi, 1996), and
uncoupling protein 1 (UCP1) (Petrovic et al., 2010), etc., that
are involved in a variety of processes including adipocyte
differentiation, glucose metabolism, and insulin sensitivity
(Larsen et al., 2003; Jin and Li, 2010; Seale, 2010; Ahmadian
et al., 2013). Therefore, PPARg has been a primary
pharmacological target for drug discovery for the treatment of
obesity and T2D.

Rosiglitazone (Avandia) and pioglitazone (Actos) belong to
an anti-diabetic drug class that targets PPARg, called
thiazolidiniones (TZDs) (Larsen et al., 2003; Karak et al., 2013).
As full agonists of PPARg, TZDs induce the transcription and
expression of hundreds of genes by activating PPARg. Some of
these activated genes enhance insulin sensitivity, leading to the
therapeutic effects; while activation of some other genes are
thought to be the causes of adverse effects of TZDs including
weight gain, fluid retention, congestive heart failure, and bone
fractures (Ahmadian et al., 2013; Wright et al., 2014). These
adverse effects caused by PPARg full agonists might override the
glycemic benefits in T2D patients. In fact, rosiglitazone has ever
been suspended by the European Medicines Agency and
restricted by the U.S. FDA.

The concept of a disconnect between the agonism potency of
PPARg agonists and their therapeutic property has been
Frontiers in Pharmacology | www.frontiersin.org 2
proposed years ago (Jones, 2010). Much evidence show that
partial agonists of PPARg, also called selective PPARg
modulators (SPPARM) with poor agonist activities, such as
MRL24, INT-131, and MBX-102, exert good anti-diabetic
property with fewer adverse effects (Acton et al., 2005;
Gregoire et al., 2009; Taygerly et al., 2013). Actually, ligands
that do not possess transcriptional agonism can potentially
exhibit anti-diabetic property with little adverse effect by
blocking Cdk5-mediated phosphorylation of PPARg (Choi
et al., 2011). Therefore, the characterization of PPARg
transcriptional activity in drug discovery remains unclear
till now.

The controversy over TZD drugs as diabetic treatment has
weakened confidence in developing drugs that target the PPAR
family of nuclear receptors. Reports have demonstrated that
heterozygous PPARg-deficient mice exhibit improved insulin
sensitivity (Kubota et al., 1999; Miles et al., 2000), supporting
the negative role of PPARg. However, there are also other reports
suggesting that PPARg bearing mutations in DBD or LBD are
associated with lipodystrophy (Barroso et al., 1999; Freedman
et al., 2005; Agostini et al., 2006; Jeninga et al., 2007). Therefore,
there is a dire need to create an applicable model to clarify the
role of the transcriptional activity of PPARg in metabolism.
Based on the crystal structure of the PPARg–RXRa complex
bound to PPRE (Chandra et al., 2008), we identified three crucial
residues (Arg134, Arg135, and Arg138) on PPARg that control
the binding ability of PPARg with PPRE and the subsequent
transcriptional activity of PPARg. Therefore, we created a
transgenic mouse model containing the three point mutations
(R134/135/138A, 3RA) to study the role of PPARg transcription
in metabolism.
MATERIALS AND METHODS

Protein Purification
Human PPARg containing domains from DBD to the C-terminus
(CDE domains, residues 103–477) was expressed as an N-terminal
6×His fusion protein (H6-PPARg CDE) from the expression
vector pET24a (Novagen, Germany). 3RA mutant plasmid was
constructed by site-directed mutagenesis with forward primer:
AGGATGCAAGGGTTTCTTCGCGGCAACAA

TCGCATTGAAGCTTATCTATGACAG, and reverse
primer: CTGTCATAGATAAGCTTCA

ATGCGATTGTTGCCGCGAAGAAACCCTTGCATCCT,
using Pfu DNA polymerase (Thermo Fisher Scientific, USA).
BL21(DE3) cells transformed with the expression plasmids were
grown in LB broth at 25°C to an OD600 of approximately 1.0
and induced with 0.1 mmol/L isopropyl 1-thio-b-D-
galactopyranoside (IPTG) at 16°C. Cells were harvested and
sonicated in 100 ml of extract buffer (20 mmol/L Tris pH8.0,
150 mmol/L NaCl, 10% glycerol, and 25 mmol/L imidazole) per
2 liters of cells. After sonication, the lysate was centrifuged at
20,000 rpm for 30 min, and the supernatant was loaded on a 5-ml
NiSO4-loaded HiTrap HP column (GE Healthcare, PA, USA).
The column was washed with extract buffer, and the protein was
eluted with a gradient of 25 to 500 mmol/L imidazole. The
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PPARg CDE was further purified with a SP-Sepharose column
(GE Healthcare, PA, USA).

AlphaScreen Assay
The binding of H6-PPARg CDE wild-type (WT) or H6-PPARg
CDE 3RA mutant protein with biotin-labeled PPRE was
determined by AlphaScreen assay using a hexahistidine
detection kit from Perkin-Elmer. PPRE was prepared by
annealing biotin-PPRE-F: AGGGGACCAGGACAAAGGTCA
CGTTCGGGA and biotin-PPRE-R: TCCCGAACGTGAC
CTTTGTCCTGGTCCCCT, both of which with 5’ end biotin-
labeled. The assay was performed in a buffer containing 50
mmol/L MOPS, 50 mmol/L NaF, 0.05 mmol/L CHAPS, and
0.1 mg/ml bovine serum albumin, all adjusted to a pH of 7.4. The
binding assay was performed with 100 nM of protein with
gradient doses of biotin-PPRE, or 1 nM of biotin-PPRE with
gradient doses of H6-PPARg CDE with or without 1 µM of
rosiglitazone. For the binding of PPARg CDE with cofactors
peptide motifs in response to rosiglitazone, AlphaScreen assay
was performed with 100 nM of PPARg CDE, 100 nM biotin-
labeled peptides with gradient doses of rosiglitazone. The
sequences of the peptides: SRC1-2, SPSSHSSLTERHKILHRL
LQEGSP; SRC2–3, QEPVSPKKKENALLRYLLDKDDTKD; and
NCoR-2, GHSFADPASNLGLEDIIRKALMGSF.

Dual Luciferase Report Assay
HEK-293T cells (ATCC, USA) were maintained in DMEM
containing 10% fetal bovine serum (FBS) and were transiently
transfected using Lipofectamine 2000 reagent (Thermo Fisher
Scientific, USA). 24-well plates were plated 24 h prior to
transfection (5 x 104 cells per well). 200 ng of pcDNA3.1-Flag-
PPARgWT or 3RA mutant plasmid was co-transfected with 200
ng of PPRE-luc reporter plasmid into cells (Zheng et al., 2013).
Renilla was co-transfected as an internal control. 1 µM of
rosiglitazone or DMSO was added 5 h after transfection. Cells
were harvested 24 h later for the luciferase assays. Luciferase
activities were analyzed as the instruction of CheckMate™

Mammalian Two-Hybrid System (Promega, USA).

Generation of PPARg3RA/+ Mice
A PPARg BAC clone was screened and isolated from BAC
library, mapped by restriction digests and sequenced. The
arginine 134, 135, and 138 residues in exon 5 were all
paralleled mutated to alanine (3RA) using overlap PCR, and
the fragment was cloned into a targeting vector that contains
exon 5 homology arm. Meanwhile, the vector contains cassette
with a floxed pGK-neor. The vector was then delivered to
embryonic stem (ES) cells (C57BL/6) via electroporation,
followed by G418 selection, PCR screening, and Southern blot
confirmation. Targeted lines were expanded and electroporated
with a Cre recombinants expression vector to delete the neor-
cassette. Some correct targeted ES clones were selected for
blastocyst microinjection, followed by chimera production in
C57BL6 background. These mice were then interbred to obtain
different genotypes littermate mice for experiments. Mice were
maintained under environmentally controlled conditions with
free access to diet and water. Animal experiments were
Frontiers in Pharmacology | www.frontiersin.org 3
conducted in the barrier facility of the Laboratory Animal
Center, Xiamen University, approved by the Institutional
Animal Use and Care Committee of Xiamen University,
China. The methods were carried out in accordance with the
approved guidelines.

Mice Treatment
8 week-old male PPARg3RA/+ and WT littermates were fed with a
high-fat diet (HFD, 60% kcal fat, D12492, Research Diets Inc,
USA). The body weight of mice were weighed weekly and the
food intake was assessed every 4 weeks. Blood samples were
obtained by the tail-cut method for small samples every 4 weeks
for detecting blood glucose and insulin levels. After 15 weeks of
HFD, mice were euthanized after 6 h of fasting. For rosiglitazone
treatment study, mice were divided into two groups after a 15-
week HFD, and intraperitoneally (i.p.) injected once daily with
vehicle (40% of 2-hydroxypropyl-b-cyclodextrin, HBC, Sigma,
USA) or 3 mg/kg of rosiglitazone for 6 days. Mice were
euthanized after 6 h of fasting. For all mice research, part of
liver and fat tissues was fixed in 4% paraformaldehyde for
hematoxylin and eosin (H&E) staining by standard procedures.
Other tissues were collected and frozen in liquid nitrogen for use.
Serum was collected for the measurement of metabolic
parameters. Animal experiments were conducted in the barrier
facility of the Laboratory Animal Center, Xiamen University,
approved by the Institutional Animal Use and Care Committee
of Xiamen University, China.

Metabolic Parameters
Serum glucose level was analyzed using glucose oxidase method
(Applygen, Beijing, China) (Wang C. et al., 2016). Serum insulin
level was determined by ELISA using an ultra-sensitive mouse
insulin kit (Crystal Chem, USA) (Ding et al., 2016). Serum levels
of total cholesterol, triglycerides, LDL-C, HDL-C, and free fatty
acids (FFA) levels were assayed using the calorimetric kits from
Nanjing Jiancheng Bioengineering Institute (Nanjing, China)
(Jiang et al., 2016; Wang et al., 2019; Liu et al., 2020). Liver TG
was analyzed using Tissue triglyceride assay kit (Applygen,
Beijing, China) (Wang C. et al., 2016).

GTT and ITT
Glucose tolerance test (GTT) and insulin tolerance test (ITT)
were performed in mice before and after a 15-week HFD feeding.
For the GTT, mice were fasted for 16 h with free access to water,
and then orally gavaged with 1 g/kg body weight of glucose.
Blood glucose level was assessed with the Accu-Check Performa
(Roche Applied Science, Mannheim, Germany) at 0, 15, 30, 60,
90, and 120 min. For the ITT, mice were fasted for 6 h with free
access to water, and then i.p. injected with 1 U/kg of recombinant
human insulin (Novolin 30R; Novo Nordisk, Bagsvaerd,
Denmark). Blood glucose level was measured at 0, 15, 30, 60,
and 120 min after insulin injection.

Gene Expression
The protein level of PPARg in inguinal WAT (iWAT) was
assessed by western blot using mouse monoclonal anti- PPARg
(Santa Cruz, Cat. No. sc-7273, 1:1000) (Chakraborty et al., 2019;
August 2020 | Volume 11 | Article 1285
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Jung et al., 2019) and mouse monoclonal anti-b-actin (Protein
Tech, Cat. No. 60008-1-Ig, 1:2000). Total RNA was isolated from
liver and fat tissues using Tissue RNA kit (Omega Bio-Tek, GA).
The first strand cDNA was reverse-transcribed using TAKARA
reverse transcription kit. Real-time quantitative PCR reactions
were performed with SYBR Premix Ex TaqTM (TAKARA) on a
CFX96™ Real-Time PCR Detection System (Bio-Rad). Relative
mRNA expression levels were normalized to b-actin levels. The
sequences of the primers used were listed in Supplementary
Table 1.

Statistical Analysis
Values were expressed as mean ± standard error of mean (SEM).
Statistical differences were calculated by one-way ANOVA
followed by the Dunn’s test or Student’s t test. Statistical
significance was shown as *p<0.05, **p<0.01 or ***p<0.001.
RESULT

R134/135/138A Mutations Abolish the
PPRE-Binding Ability and the
Transcriptional Activity of PPARg
To evaluate the role of the transcriptional function of PPARg on
metabolism, we attempted to create a mouse model that is
deficient in the transcriptional activity of PPARg while the
DBD-independent actions of PPARg are intact. Because PPARg
needs to bind to PPRE to activate the downstream transcription,
we searched for crucial sites in PPARg to destroy its binding on
PPRE. Based on the crystal structure of the PPARg–RXRa
complex bound to PPRE (Chandra et al., 2008), we found that
the Arg134, Arg135, and Arg138 residues in PPARg form six
hydrogen bonds in the major groove of the PPRE double helix
(Figures 1A–C). However, if the three arginine residues were
mutated into alanine, the six hydrogen bonds will not form
(Figure 1D). The absence of the hydrogen bonds is predicted to
abolish the binding between PPARg and PPRE while sparing
other functions crucial for the transcriptional activity of PPARg
including the zinc finger structure of PPARg DBD and the
ligand-binding LBD (Chandra et al., 2008).

Therefore, we mutated the three arginine residues at Arg134,
Arg135, and Arg138 of PPARg to alanine (named PPARg-3RA).
The binding ability of PPAR-3RA with PPRE was studied by
using AlphaScreen assay. 6 × His tag- PPARg WT or PPARg-
3RA that contains the domains ranging from DBD, hinge, and
the C-terminus LBD of PPARg (H6-PPARg CDE) was expressed
in BL21 (DE3) and purified for the assay. As expected, the
binding signal of the H6-PPARg CDE WT increased in a
PPRE concentration-dependent manner (Figure 1E). In
contrast, H6-PPARg CDE 3RA did not show any binding
signal with increasing concentration of PPRE. We obtained
similar results when a gradient concentration of H6-PPARg
CDE WT or H6-PPARg CDE 3RA was used to bind PPRE
(Figure 1F). Additionally, the same result was produced with the
treatment of rosiglitazone, an agonist for PPARg (Figures 1E, F),
due to the ligand-independent nature of the binding ability of
Frontiers in Pharmacology | www.frontiersin.org 4
DBD domain to DNA, which is distinct from LBD (Rastinejad
et al., 2013). These data confirmed that the PPARg-3RA mutant
lost the binding ability toward PPRE. Next, we tested the
transcriptional activity of the PPARg-3RA mutant. WT or 3RA
mutant pcDNA3.1-Flag-PPARg was co-transfected with PPRE-
luc plasmid into HEK-293T cells for luciferase reporter assay.
The result showed that the transcriptional activity of PPARg
dramatically decreased after 3RA mutation. Rosiglitazone
treatment significantly induced the transcriptional activity of
WT PPARg, but failed to activate PPARg-3RA (Figure 1G).

To test if the 3RA mutations affect the binding ability of
PPARg with ligands and cofactors, we performed an
AlphaScreen assay using PPARg CDE WT or 3RA protein and
biotin-labeled cofactors peptides in response to rosiglitazone.
The results showed that both WT and 3RA mutant of PPARg
CDE can recruit co-activators SRC1 and SRC2 and release co-
repressor NCoR in response to rosiglitazone (Figures 1H–J).
Our data demonstrate that although PPARg 3RA mutant cannot
bind with PPRE (Figures 1E, F), the mutant is still able to bind
ligands and cofactors such as SRC1, SRC2, and NCoR.

Together, these results demonstrate that the PPARg-3RA lost
the binding ability toward PPRE and further the DBD-dependent
ligand-regulated transcriptional activity of PPARg, while
maintains the ability to bind ligands such as rosiglitazone and
cofactors, such as SRC1, SRC2, and NCoR.

Decreased Transcriptional Ability of
PPARg in Heterozygous PPARg3RA/+ Mice
We mutated codons for amino acids 134, 135, and 138 of the
mouse PPARg gene from CGA (arginine), AGA (arginine) and
CGA (arginine) to GCA (alanine), respectively, via gene targeting
in mouse ES cells and created genetically modified mouse carrying
the 3RA mutations (Figures 2A–C). In 74 progenies born from
PPARg3RA/+ intercrosses, no PPARg3RA/3RA homozygous mice
were obtained. WT and PPARg3RA/+ littermates were born at the
expected Mendelian ratio (26:48 ≈ 1:2) (Figure 2D), indicating
that the PPARg 3RA mutations cause embryonic lethality due to
the loss of PPARg transcriptional activity. These results suggest
that the transcriptional function of PPARg is essential for
embryonic development.

To confirm the decreased transcriptional ability of PPARg in
heterozygous PPARg3RA/+ mice, we analyzed gene expression in
iWAT from WT and PPARg3RA/+ mice. The expression level of
total PPARgwas higher in iWAT from PPARg3RA/+ thanWTmice
(Figure 2E) which might be the compensatory expression due to
the loss of transcriptional activity for PPARg 3RA mutation in
vivo. Our in vitro reporter assay indicated that co-existence of
PPARg 3RA mutant significantly reduced the transcriptional
activity of WT PPARg (Figure 2F), further supporting the
decreased transcriptional activity in heterozygous PPARg3RA/+

mice. As expected, the mRNA levels of genes that are directly
downstream of PPARg, such as FAT/CD36, PEPCK, and AQPap,
were significantly lower in iWAT of PPARg3RA/+ mice compared
to those of WT littermates (Figure 2G). The differential mRNA
expression level of PPARg downstream genes in WT and
PPARg3RA/+ mice confirmed the impaired transcriptional activity
of PPARg in the PPARg3RA/+ mice.
August 2020 | Volume 11 | Article 1285
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PPARg 3RA Mutations in Mice Exacerbate
HFD-Induced Obesity and Adipocyte
Hypertrophy
Under chow diet, the WT and PPARg3RA/+ littermates showed
similar phenotypes in body weight, liver/body weight ratio, fat/
Frontiers in Pharmacology | www.frontiersin.org 5
body weight ratio, as well as the histological analysis of the
brown adipose tissue (BAT), WATs and the liver tissue (Figure
3A and Supplementary Figure 2). The similarity in these
parameters suggests that the transcriptional activity of one
PPARg allele is enough for maintaining basic metabolism in
A B

D

E F
G

IH J

C

FIGURE 1 | R134/135/138A mutations abolish the PPRE-binding ability and the transcriptional activity of PPARg. (A) The structure of PPRE and PPARg interaction
shows that Arg134, Arg135 and Arg138 locate into the major groove of PPRE. PPRE is colored in light orange, and PPARg DBD is in sky blue. (B) Binding model of
PPARg DBD on PPRE. Zinc finger domains of PPARg DBD and Arg134, Arg135 and Arg138 are shown in the sequence of PPARg DBD. (C, D) The binding of wild
type (WT) PPARg with PPRE (C) and the predicted binding model of R134/135/138A (3RA) mutant PPARg with PPRE (D). Hydrogen bonds are indicated
by dotted yellow lines. PPRE is colored in light orange, and the helix 1 of PPARg DBD is in blue. The different groups of arginine and alanine are shown. The
structure images in Figures 1A, C, D were generated by open source software PyMOL 099rc6 (www.pymol.org) and the chemical structures were drawn by
chemdraw2014. (E) Dose response curve of biotin-PPRE with 100 nM of WT or 3RA mutant PPARg CDE by AlphaScreen assay. (F) Dose response curve of WT or
3RA mutant PPARg CDE with 1 nM of biotin-PPRE by AlphaScreen assay. Rosiglitazone (1 mM) does not affect the binding affinity of both WT and 3RA mutant
PPARg in (E, F). (G) Transcriptional activity of WT or 3RA mutant PPARg by rosiglitazone. HEK-293T cells were co-transfected with WT or 3RA mutant pcDNA3.1-
Flag-PPARg plasmid together with PPRE-luc reporter plasmid. Renilla was co-transfected as an internal control. 1 µM of rosiglitazone or DMSO was added 5 h after
transfection. Cells were harvested 24 h later for the luciferase assays. (H–J) 3RA mutation does not affect the interaction of PPARg CDE with rosiglitazone and co-
factors. Dose curves of the interaction between PPARg CDE WT/3RA and biotin-labeled cofactors: coactivator peptides SRC1-2 (H) and SRC2-3 (I), and
corepressor peptide NCoR2 (J), in response to rosiglitazone by AlphaScreen assay. For (E–J), experiments were performed in triplicate and repeated three times
with similar results. Data show a representative experiment. Values are means ± SEM, ***p < 0.001 by one-way ANOVA followed by the Dunn’s test.
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the absence of external stimuli. Interestingly, when fed HFD,
PPARg3RA/+ mice gained significantly more body weight than
WT mice did (Figure 3A) even though food intake was similar
(Supplementary Figure 3). After 15 weeks of HFD feeding, the
WATs and livers of PPARg3RA/+ mice weighed significantly
more than those of WT mice, while the BAT of PPARg3RA/+

mice weighed significantly less than that of WT mice (Figures
3B, C). Histological analysis by H&E staining showed larger
Frontiers in Pharmacology | www.frontiersin.org 6
adipocytes size in the sections of iWAT, gonadal WAT
(gWAT), and BAT from PPARg3RA/+ mice than those of WT
mice (Figures 3D, E). These results indicate that heterozygous
PPARg deficiency leads to more severe hypertrophy in
white adipocytes and more whitening in brown adipocytes
in mice under HFD. Notably, there was also visible
inflammatory infiltration in iWAT of PPARg3RA/+ mice
(Figure 3D). Additionally, histological examination showed
August 2020 | Volume 11 | Article 1285
A

B

D

E

F
G

C

FIGURE 2 | Generation of PPARg 3RA mutant mouse model. (A) Schematics of the targeting strategy. Top: WT allele. Middle: recombinant allele. Bottom:
constitutive knock-in allele after Cre recombination. (B) Genotyping. Genomic DNA extracted from mouse tail was used for PCR with primer pair F1/R1. The PCR
product with one band of 348 bp represents the WT PPARg, and PCR product with two bands (348 bp and 461 bp) represents the heterozygotes. (C) Sequencing
analyses of PCR product using primer pair F2/R2 verified the mutations in PPARg gene. Heterozygotes show two peaks in the codes of Arg134, Arg135 and
Arg138, where one peak indicates the allele of wild-type (CGAAGA and CGA), the other is 3RA mutant (GCAGCA and GCA). The mutated nucleotides were
indicated by arrows. (D) Homozygous PPARg 3RA mutant (PPARg3RA/3RA) mice are embryonic death. Heterozygous pregnant (mate with a heterozygous male) was
dissected, about a quarter of the fetal mice in the womb were absorbed by the mother, leaving only the placenta. The ratio of newborn cubs (homozygote/
heterozygote) is about 1/2 when we calculated total 74 cubs (n=74). (E) The protein level of PPARg in the fat tissues of WT and PPARg3RA/+ mice. (F) In vitro reporter
assay. HEK-293T cells were co-transfected with indicated quantity of WT and 3RA mutant pcDNA3.1-Flag-PPARg plasmid together with PPRE-luc reporter plasmid.
Empty pcDNA3.1-Flag vector was the control. Renilla was co-transfected as an internal control. 1 µM of rosiglitazone was added 5 h after transfection. Cells were
harvested 24 h later for the luciferase assays. Experiments were performed in triplicate and repeated three times with similar results. Data show a representative
experiment. Values are means ± SEM, #p<0.001 versus vector control, ***p < 0.001 versus WT 200 ng, one-way ANOVA followed by the Dunn’s test. (G) Relative
mRNA level of PPARg direct target genes in fat tissues of WT and PPARg3RA/+ mice by quantitative RT-PCR. Experiments were repeated three times with similar
results. Data show a representative experiment. Values are means ± SEM, n=6 per group. *p < 0.05 by Student’s t test.
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that heterozygous PPARg deficiency leads to more lipid
accumulation in the liver of mice under HFD (Figure 3F),
which was further confirmed by the biochemical analysis of the
hepatic triglycerides level (Figure 3G). As the results shown,
Frontiers in Pharmacology | www.frontiersin.org 7
the fasting plasma levels of total cholesterol (TCHO) (Figure
3H), triglyceride (TG) (Figure 3I), LDL-C, and FFA (Figures
3J, K) of PPARg3RA/+ were all significantly higher than those of
WT littermates, whereas the level of HDL-C (Figure 3L) was
A B

D E

F
G

I

H

J K L

C

FIGURE 3 | PPARg 3RA mutations in mice exacerbate HFD-induced obesity and adipocyte hypertrophy. (A) Body weight of PPARg3RA/+ and WT littermates during
a 15 weeks HFD feeding or normal chow diet. Data from the final time point were compared. Samples were collected from 15-week HFD-fed mice for assays.
(B) Weights of white adipose tissue (inguinal white fat, iWAT; gonadal white fat, gWAT), brown fat (BAT) and (C) liver mass from PPARg3RA/+ and WT littermates.
(D) Representative histological analysis of iWAT, gWAT and BAT from PPARg3RA/+ and WT littermates under a HFD by H&E staining. Inflammatory infiltration was
labeled by red arrows. Original magnification, 200×. (E) Quantitative statistics of adipocyte size in (D). (F) Representative images of H&E stained liver sections of
PPARg3RA/+ and WT littermates. Original magnification: top, 100×; bottom, 200×. (G) Hepatic triglyceride level of PPARg3RA/+ and WT littermates. (H, I) Fasting
serum levels of total cholesterol (TCHO) (H), triglycerides (TG) (I), free fatty acids (FFA) (J), LDL-C (K) and HDL-C (L) of PPARg3RA/+ and WT littermates. Values are
means ± SEM, n=12 per group, *p < 0.05, **p < 0.01 and ***p < 0.001 by Student’s t test. For (G–L), measurement were repeated three times with similar results.
Data show a representative experiment.
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significantly lower. These results demonstrate that PPARg 3RA
mutations exacerbated HFD–induced obesity and adipocyte
hypertrophy in mice.

PPARg 3RA Mutations in Mice Exacerbate
HFD-Induced Insulin Resistance
Chow diet-fed PPARg3RA/+ and WT littermates showed similar
fasting blood glucose level, glucose tolerance, and insulin
tolerance (Figures 4A, B). When fed HFD, PPARg3RA/+ and
WT mice maintained similar fasting blood glucose levels (Figure
4C). However PPARg3RA/+ mice showed significantly higher level
of fasting blood insulin from 8 weeks after HFD-feeding (Figure
4D). Furthermore, PPARg3RA/+ mice showed impaired glucose
tolerance and insulin tolerance compared to their WT
counterparts, suggesting that PPARg 3RA mutations in mice
exacerbate HFD-induced insulin resistance (Figures 4E, F).
Taken together, our data demonstrate that the decreased
transcriptional activity of PPARg in PPARg3RA/+ mice led to
impairment of lipid and glucose metabolism under HFD.

Metabolic Disorders in HFD-Fed
PPARg3RA/+ Mice Were Improved by
Rosiglitazone Treatment
Next, we aimed to investigate whether or not themetabolic disorders
induced by HFD in PPARg3RA/+ mice could be reversed by
increasing the transcriptional activity of PPARg. Rosiglitazone was
administered at 3 mg/kg once daily for 6 days to PPARg3RA/+ and
WT littermates that had been fed HFD for 15 weeks. Metabolic
parameters were studied after the treatment. As shown in Figure 5,
rosiglitazone treatment significantly reduced or showed the
Frontiers in Pharmacology | www.frontiersin.org 8
tendency to reduce the levels of cholesterol, triglyceride, FFA,
LDL-C, and glucose in the serum, while increased the level of
HDL-C in the serum of both PPARg3RA/+ and WT littermates
(Figures 5A–F). Histological examination further showed that after
HFD feeding, both WT and PPARg3RA/+ mice administrated with
rosiglitazone showed less fat vacuoles in BAT and smaller adipocyte
size inWAT (Figures 5G,H). Notably, rosiglitazone administration
significantly improved the inflammation in WAT of HFD-fed
PPARg3RA/+ mice (Figure 5G). Additionally, rosiglitazone
treatment not only efficaciously improved the hepatic steatosis in
WT mice, but also in PPARg3RA/+ mice (Figure 5I).

We further investigated the mRNA levels of PPARg target
genes in the adipose tissue. As the results showed, the mRNA levels
of the target genes of PPARg we tested were significantly decreased
in PPARg3RA/+ mice compared to those in WT mice (Figure 5J).
Rosiglitazone treatment significantly induced the expression
PPARg target genes in WT mice; in PPARg3RA/+ mice,
rosiglitazone treatment restored the expression level of PPARg
target genes in PPARg3RA/+ mice to levels similar to those of
vehicle-treated WT mice (Figure 5J). Taken the rosiglitazone-
induced metabolic improvement and gene expression restoration
together, our results suggest that increasing PPARg transcriptional
activity could overcome the HFD-induced obesity and adipocyte
hypertrophy in PPARg3RA/+ mice.
DISCUSSION

In this study, based on the structural analysis of PPARg/PPRE
complex (Chandra et al., 2008), the roles of arginine at 134, 135,
A
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F

C

FIGURE 4 | PPARg 3RA mutations exacerbate HFD-induced insulin resistance in mice. Oral glucose tolerance test (OGTT) (A) and intraperitoneal insulin tolerance
test (IPITT) (B) of 8-week old PPARg3RA/+ and WT littermates with chow diet. From 8 weeks age, mice were fed with HFD for 15 weeks. Fasting blood glucose
(C) and insulin (D) levels of mice fed with HFD. OGTT (E) and IPITT (F) of mice fed with HFD for 15 weeks. For (C, D), values are means ± SEM, n=6 per group,
*p < 0.05, **p < 0.01 by Student’s t test.
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and 138 residues of PPARg in binding PPRE, ligand (rosiglitazone)
and cofactors (SRC1, SRC2, and NCoR) were verified by in vitro
biochemical AlphaScreen and cell-based reporter assays. PPARg
may also possess regulatory mechanisms independent of DBD,
such as PPARg Ser273 phosphorylation mediated by CDK5 (Choi
et al., 2011). Because previous reports have demonstrated that the
regulation of PPARg Ser273 phosphorylation can be detected by in
vitro kinase assay in a reaction system including PPARg LBD,
CDK5, and ATP (Choi et al., 2011; Zheng et al., 2013), and the
Frontiers in Pharmacology | www.frontiersin.org 9
results from in vitro assay are consistent with that from in vivo
assay, these results suggest that the post-translational
phosphorylation of PPARg at Ser273 by CDK5 is not rely on the
existence of PPARg DBD. Thus, the phosphorylation mediated by
CDK5may also be preserved in the 3RAmutant, although this has
not been confirmed experimentally. Together, these data suggest
that DBD-independent PPARg regulations are intact in the PPARg
3RA mutant. Therefore, we created a knock-in mouse model
containing the PPARg 3RA mutations. Homozygous PPARg3RA/
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FIGURE 5 | Metabolic disorders in HFD-fed PPARg3RA/+ mice were improved by rosiglitazone treatment. 8-week old male PPARg3RA/+ and WT littermates were fed with HFD
for 15 weeks, and then i.p. injected with 3 mg/kg of rosiglitazone once daily for 6 days. (A–F) Fasting serum levels of TCHO (A), TG (B) FFA (C), LDL-C (D) HDL-C (E) and
glucose (F). (G) Representative images of H&E stained BAT and iWAT (original magnification, 200×). (H) Quantitative statistics of adipose cell size in (G). (I) Representative
images of H&E stained liver sections (original magnification: top, 100×; bottom, 200×). (J)mRNA levels of PPARg direct target genes involved in glucose and lipid metabolism in
liver tissues of mice. For (A–F, J), measurement were repeated three times with similar results. Data show a representative experiment. Values are means ± SEM, n=6 per
group, *p < 0.05, **p < 0.01 and ***p < 0.001 by one-way ANOVA followed by the Dunn’s test.
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3RA leads to embryonic death, suggesting the necessary role of the
transcriptional activity of PPARg for development. Chow diet fed
PPARg3RA/+ mice showed decreased transcriptional activity of
PPARg, while maintained comparable phenotypes with the WT
littermate mice, suggesting that the one PPARg alleles is sufficient
to maintain the organismal metabolic network without stimuli.
However, due to impaired transcriptional activity, PPARg3RA/+

mice cannot sustain the burden of HFD stimuli, and appeared
more severe insulin resistance and obesity. Accordingly, PPARg
agonist treatment rescued the activity of PPARg, and restored the
metabolic disorders in HFD-fed PPARg3RA/+ mice. These
results would indicate the important role of the transcriptional
activity of PPARg in protecting mice from HFD-stimulated
metabolic disorders.

PPARg plays crucial roles in maintaining the homeostasis of
glucose and lipid metabolism. Over activating or debilitating its
downstream signaling may cause the imbalance of the
homeostasis (Rubenstrunk et al., 2007). For example, a water/
glycerol transporting protein AQP7 regulates adipocyte glycerol
efflux and influences lipid and glucose homeostasis. The deletion
of AQP7 gene in mice leads to obesity and T2D (Rodriguez et al.,
2006). However, it has also been reported that either increased or
decreased AQP7 expression may lead to impaired glycerol
dynamics and adipocyte hypertrophy (Oikonomou et al.,
2018). Another example is that GLUT-4 is necessary for the
insulin-regulated glucose uptake into muscle and fat cells which
keeps the glucose homeostasis (Wu et al., 1998). However, if
GLUT4 is over-expressed, it will send excess glucose into adipose
tissue, leading to increased adipose cell hypertrophy and obesity
(Shepherd et al., 1993). Also, overexpression of SCD1 in humans
may be involved in the development of hypertriglyceridemia,
atherosclerosis, and diabetes (Mar-Heyming et al., 2008). While
inhibiting SCD1 function may also result in the accumulation of
fatty acid metabolites that are deleterious to insulin signaling,
and accordingly, the development of fatty acid-induced insulin
resistance (Pinnamaneni et al., 2006). Thus, disorders of these
genes will result in an imbalance of nutrients distribution and
lead to obesity and diabetes. Rosiglitazone induces the expression
of PPARg target genes, which may provide a potential lighthouse
to explain the adverse effects of long-term administration of TZD
drugs (Rubenstrunk et al., 2007), as well as the metabolic
improvement in HFD-fed PPARg3RA/+ mice.

A number of laboratories have reported metabolic changes
observed in heterozygous PPARg-deficient mice (Barak et al.,
1999; Kubota et al., 1999; Miles et al., 2000). Contrary to our
finding, Kubota and colleagues reported that heterozygous
PPARg-deficient mice were protected from the development of
insulin resistance caused by adipocyte hypertrophy after HFD-
feeding. After administration of pioglitazone, the mice showed
worsened phenotypes. Similarly, another group has reported
improved insulin-sensitivity in an independently generated
heterozygous PPARg-deficient mouse model (Miles et al.,
2000). These reports seem to approbate the negative roles of
PPARg transcriptional activity in metabolic regulation. However,
PPARg is required for adipose tissue development. Barak et al.
Frontiers in Pharmacology | www.frontiersin.org 10
found that the absence of PPARg in mice leads to complete
lipodystrophy (Barak et al., 1999), indicating the necessary role
of PPARg in lipid metabolism. It should be noted that besides
transcriptional regulation, all of the five domains of PPARg are
involved in modulating the PPARg signaling cascades (Wang S.
B. et al., 2016). In this process, except transcriptional regulation
by binding to PPREs, cofactors binding, and post-translational
modifications including phosphorylation, acetylation,
sumoylation, and ubiquitination throughout the full length of
PPARg also contribute to the functions regulated by PPARg (Jin
and Li, 2010; Ahmadian et al., 2013). However, both of the
heterozygeous PPARg-deficient mouse models by groups of
Kubota and Barak eliminate most of the domains of PPARg
from DBD to the C-terminus (Barak et al., 1999), and thus the
PPARg in these models lost not only the transcription activity,
but also other functional regulations. On the contrary, our
PPARg 3RA model is only mutated at three residues in DBD
which contribute to PPARg transcription deficiency, therefore
may represent a suitable tool for the research of the role of
transcriptional function of PPARg in metabolism. The different
phenotypes between PPARg-deficient mice and PPARg 3RA
mutant mice further suggest that PPARg needs to coordinate
its transcriptional activity and its non-transcriptional regulatory
actions for metabolic regulation.

Among the domains in nuclear receptors, the sequence of
DBD shows the highest evolutionary conservation (Jin and Li,
2010; Helsen et al., 2012). Importantly, the three arginine
residues we selected for mutation are conserved from birds to
mammals including rodents and humans (Supplementary
Figure 4), suggesting the conserved function or the PPARg
3RA mutant in evolution, including humans. Additionally, the
PPRE for PPARg binding is also conserved with a direct repeats
of hexameric sequence AGGTCA in different target genes,
although each gene has distinct flanking sequence for its
selective regulation (Khorasanizadeh and Rastinejad, 2001).
Therefore, our PPARg 3RA mutant model is a suitable tool for
the research of PPARg transcription in evolution.

In conclusion, we provide an alternative mouse model for
further research on the transcriptional activity of PPARg, and
also for the drug discovery by targeting PPARg. It should be
noted that more detailed investigation about the DBD-
independent PPARg actions will further improve the
significance of this mouse model. Considering the embryonic
death of the PPARg-3RA mice, future research will focus on
creating homozygous conditional knockout mouse model with
tissue specific PPARg 3RA mutations to completely investigate
the role of PPARg transcriptional activity in specific tissues,
particularly the adipose tissues and liver.
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