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Nitro fatty acids (NFAs) are endogenously generated lipid mediators deriving from
reactions of unsaturated electrophilic fatty acids with reactive nitrogen species.
Furthermore, Mediterranean diets can be a source of NFA. These highly electrophilic
fatty acids can undergo Michael addition reaction with cysteine residues, leading to post-
translational modifications (PTM) of selected regulatory proteins. Such modifications are
capable of changing target protein function during cell signaling or in biosynthetic
pathways. NFA target proteins include the peroxisome proliferator-activated receptor g
(PPAR-g), the pro-inflammatory and tumorigenic nuclear factor-kB (NF-kB) signaling
pathway, the pro-inflammatory 5-lipoxygenases (5-LO) biosynthesis pathway as well as
soluble epoxide hydrolase (sEH), which is essentially involved in the regulation of vascular
tone. In several animal models of inflammation and cancer, the therapeutic efficacy of well-
tolerated NFA has been demonstrated. This has already led to clinical phase II studies
investigating possible therapeutic effects of NFA in subjects with pulmonary arterial
hypertension. Albeit Michael acceptors feature a broad spectrum of bioactivity, they
have for a rather long time been avoided as drug candidates owing to their presumed
unselective reactivity and toxicity. However, targeted covalent modification of regulatory
proteins by Michael acceptors became recognized as a promising approach to drug
discovery with the recent FDA approvals of the cancer therapeutics, afatanib (2013),
ibrutinib (2013), and osimertinib (2015). Furthermore, the Michael acceptor, neratinib, a
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dual inhibitor of the human epidermal growth factor receptor 2 and epidermal growth
factor receptor, was recently approved by the FDA (2017) and by the EMA (2018) for the
treatment of breast cancer. Finally, a number of further Michael acceptor drug candidates
are currently under clinical investigation for pharmacotherapy of inflammation and cancer.
In this review, we focus on the pharmacology of NFA and other Michael acceptor drugs,
summarizing their potential as an emerging class of future antiphlogistics and adjuvant in
tumor therapeutics.
Keywords: covalent drugs, electrophilic fatty acids, Michael acceptor, nitroalkylation, post-translational modifications
INTRODUCTION

Compounds possessing Michael acceptor units feature a broad
spectrum of bioactivity. However, they have been largely
excluded from drug discovery endeavors because of their
presumed unselective reactivity and toxicity. Nevertheless, the
recent FDA approval of several cancer drugs has demonstrated
that covalent modifications via Michael addition can be a
powerful tool to develop new drugs (Bauer, 2015; Ghosh
et al., 2019).

Covalent modifications of proteins via post-translational
modifications (PTMs) are a rather effective strategy to modulate
protein function and activity. Such modifications include
phosphorylation, acetylation, glycosylation, oxidation, and
hydroxylation. Among all amino acids, cysteine plays a
particularly important role in covalent modifications and is
susceptible to phosphorylation, acetylation as well as oxidation.
Such modifications can affect the cellular localization of the
protein, its interaction with other binding partners as well as its
function or activity. PTMs of proteins are of regulatory significance
in almost all cell types and functional systems, including the
immune system, the cardiovascular system, and the
gastrointestinal system (Bürkle, 2002; Ehrentraut and Colgan,
2012; Liu et al., 2016; Fert-Bober et al., 2018).

The majority of research studies had focus on protein
phosphorylation. Methylation of lysine or arginine residues,
acetylation, nitrosation of thiol groups and tyrosine residues as
well as alkylation of cysteines or other nucleophilic amino acids
have received less attention. Alkylation of nucleophilic amino
acids, including cysteine, is achieved either by reaction with
alpha-halocarbonylation, aminoethylation, or by Michael
addition to a molecule containing a Michael acceptor. In this
review, we will focus on the Michael addition as an important
reaction of approved drugs or drug candidates to induce PTMs
that alter protein function.

The Michael reaction is defined as a conjugate addition of a
nucleophile (Michael donor) to an electron-deficient olefin, such
as an a,b-unsaturated carbonyl compound (Michael acceptor)
(Figures 1A, B). However, instead of the carbonyl group, the
substituent can also be a nitro group or another strongly
electron-withdrawing group. Cellular nucleophiles, e.g. the
thiol group of cysteine, the imidazole of histidine, or the
ϵ-amino group of the amino acid lysine have also been
described to be Michael donors. Well-recognized Michael
in.org 2
acceptors that play a major part in the resolution process of
inflammation are endogenously generated anti-inflammatory
electrophilic lipids called nitro fatty acids (NFAs) (Rubbo,
2013). Other electrophilic species, which are formed during
inflammatory reactions, are cyclopentenone prostaglandins
(i.e., 15D-PGJ2). In this review, we will focus on NFA as
representatives of lipid-derived electrophilic species, discuss
other Michael acceptor-containing drugs engaged in clinical
trials or already approved, and show the emerging therapeutic
potential of this class of drugs.
NITRO FATTY ACIDS AS NATURALLY
OCCURRING MEDIATORS CONTAINING A
MICHAEL ACCEPTOR MOIETY

Unsaturated fatty acids can be metabolized under inflammatory
conditions to reactive products to act as pro- or anti-
inflammatory mediators (Grimble and Tappia, 1998)
(Figure 1C). A special group of those lipid mediators
are electrophilic alkenes, like NFA. They are generated
endogenously and can be detected in the plasma of human
blood. Besides their endogenous generation, NFAs can also be
dietary supplemented as natural ingredients of olives or native
olive oil (Fazzari et al., 2014). Moreover, evidence has shown that
dietary supplementation with nitrate (NO3

−), nitrite (NO2
−), and

conjugated linoleic acid (cLA) can have an obvious effect on
NFA plasma levels (Delmastro-Greenwood et al., 2015). High
concentrations of reactive oxygen and nitrogen-derived species
generated within inflamed tissue promote the formation of NFA.
Hereafter, the nitrogen-derived species react with unsaturated
fatty acids, yielding electrophilic NFA (Freeman et al., 2008).
NFAs engage in cell signaling, among others, through Michael
addition reactions showing distinct anti-inflammatory actions
(Rubbo, 2013). The most studied NFAs are nitro-oleic acid
(NO2-OA), nitro-linoleic acid (NO2-LA), nitro-conjugated
linoleic acid (NO2-cLA), and nitro-arachidonic acid (NO2-
AA). Through Michael addition, NFAs can adduct intracellular
glutathione (GSH) as well as susceptible protein cysteine and
histidine residues, inducing changes in protein structure,
functionality, and subcellular distribution. PTM of cysteine
residues by NFA has been shown to be reversible (Batthyany
et al., 2006; Baker et al., 2007).
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THERAPEUTIC EFFECTS OF NFA

The protective and beneficial effects of NFA could be demonstrated
in a number of in vivo animal disease models. Thus, therapeutic
effects were proposed for the following diseases:

Classical Inflammatory Diseases
Inflammation is part of the body’s immune defense responses.
However, inflammatory processes require complex regulation to
warrant a local and temporal restriction of inflammation and avoid
chronification potentially triggering some types of cancers,
rheumatoid arthritis, periodontitis, asthma, and Crohn’s disease.
NFAs have been shown to modulate directly the activity of a
number of pro-inflammatory enzymes or factors involved
in the acute phase of inflammation, such as nuclear factor-
kB (NF-kB, see section NF-kB), 5-Lipoxygenase (5-LO, see
Frontiers in Pharmacology | www.frontiersin.org 3
section 5-Lipoxygenase), and Prostaglandin endoperoxide H
synthases 2 (COX-2, see section Prostaglandin endoperoxide H
synthases 1 and 2). However, NFA mediated effects not only might
contribute to symptom relief but also to active enhanced resolution
of inflammation. Resolution of inflammation includes abrogation
of immune cell recruitment at sites of inflammation, removal of
activated immune cells, and suppression of production of pro-
inflammatory mediators. NFAs affect resolution by triggering
activation of the resolution factor transcriptional factor
peroxisome proliferator-activated receptor g [PPARg, see section
PPARg and for overview on the factors role in resolution see
(Croasdell et al., 2015)]. The direct covalent binding of NFA to
functionally important amino acid residues of inflammatory target
proteins might facilitate strong and sustained pharmacological
impacts. Furthermore, reactions with amino acids which are
poorly conserved among closely related proteins and embedding
A

B

C

FIGURE 1 | (A) General structure of Michael acceptors and Michael donors. Michael acceptor moiety: electron withdrawing group (EWG) adjacent to an olefin
structure forming an electrophilic, electron-deficient olefin. Examples of EWGs: aldehyde, keto, ester, amide, cyano, or nitro groups. Michael donor: nucleophiles
such as enolates, b-diketones, thiols of cysteines, imidazoles of histidines, or ϵ-amino groups of lysines. (B) Mechanism of Michael addition reaction. The Michael
addition reaction is exemplified by the attack of a cellular nucleophile to the electrophilic b-carbon (*) of a nitroalkene moiety. After the addition of the thiolate anion a
protonation step takes place to form a nitroalkylated protein. (C) Formation and known biological effects of nitro fatty acids (NO2-FA). NO2-FA can be endogenously
generated during inflammation by a reaction of nitric dioxide (NO2) with unsaturated fatty acids. Nitric dioxide can derive from different reactive nitrogen species (i.e
nitric oxide, peroxynitrite) or precursor molecules like nitrate (NO3

−) and nitrite (NO2
−). NO2-FA can also be directly supplemented as natural ingredients of olives, olive

oil and plants NO2-FA engage in cell signaling processes via the post-translational modification (PTM) of nucleophilic protein targets such as 5-LO, PPARg, sEH, or
NF-kB (proteins highlighted in green: activated/increased activity/expression; proteins highlighted in red: inhibited/decreased activity/expression). These PTMs induce
profound changes in protein function and distribution and are therefore the leading cause for numerous biological effects. For a comprehensive overview on NFA
targets and therapeutic effects see (Schopfer and Khoo, 2019). 5-LO: 5-lipoxygenase; NF-kB: nuclear factor-kB; NRF-2: nuclear factor erythroid 2-related factor 2;
PPARg: peroxisome proliferator–activated receptor g; sEH; soluble epoxide hydrolase; I/R: ischemia/reperfusion.
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of the target amino acids into specific clefts can increase selectivity
of binding of covalent drugs to an exclusive set of proteins (Singh
et al., 2011) which might potentially also apply to NFA. This might
allow targeting a unique set of regulatory key proteins in
inflammation. The known target proteins mediating the anti-
inflammatory effects of NFA are listed in section Nucleophilic
Targets Susceptible to Michael Addition by NFA to Explain Their
Therapeutic Effects.

Several in vivomodels have shown a therapeutic effect of NFA in
preclinical models of inflammation, e.g., pretreating mice with NFA
in a model of LPS-induced inflammation resulted in a reduced
severity of multiorgan dysfunction compared to LPS alone.
Expression of inflammatory mediators in the NFA-treated group
was also reduced compared to the LPS group (Wang et al., 2010). In
a model of inflammatory bowel disease, the addition of NFA
resulted in attenuated colonic inflammation and improved the
clinical symptoms of this disease. The activation of PPARg played
an important role in this protection (Borniquel et al., 2010).
However, the route of NFA administration seems to be important
as demonstrated byMather et al. They showed in a model of allergic
contact dermatitis (ACD) that the administration of NFA
subcutanously induced an immunosuppressive responses,
including an increased activity of regulatory T cells (Mathers
et al., 2017). In contrast, a topical administration of NFA in the
same mouse model exacerbated the inflammatory response,
including the infiltration of neutrophils, inflammatory monocytes,
and gd T cells (Mathers et al., 2018).

Cardiovascular Diseases
By 2030, it is expected that cardiovascular disease (CVD) will
account for 25 mil l ion deaths worldwide. Even in
underdeveloped countries, CVD surpasses infectious diseases,
indicating a high medical need for new treatment options
(Okwuosa et al., 2016). CVDs including hypertension,
coronary heart disease, and atherosclerosis are potentially
associated with an elevated generation of reactive oxygen
species (ROS) and nitric oxide (NO) and compromised
endogenous antioxidant defenses (Mann et al., 2009),
suggesting that NFA could be important players in CVD.
Indeed, a number of publications indicate that NFAs possess
protective effects against CVD. Exemplified, NFA-induced
endothelium-independent vasorelaxation, which possibly
involves release of NO (Freeman et al., 2008). Furthermore, in
animal models of atherosclerosis, NFAs have been shown to
reduce infarct size, decrease neutrophil infiltration into the
infarct zone to prevent myocyte apoptosis (Rudolph et al.,
2010b), reduce lipid accumulation, and promote plaque
stability (Rudolph et al., 2010a). Finally, antihypertensive
effects of NFAs have been reported, e.g., nitro-oleic acid
inhibits angiotensin II-induced hypertension (Zhang et al.,
2010; Charles et al., 2014; Klinke et al., 2014).

Cancer
Globally, cancer is the second leading cause of death.
Inflammatory processes are crucially involved at all stages of
tumor development, starting from tumor initiation, promotion,
malignant transformation, tumor invasion, and tumor
Frontiers in Pharmacology | www.frontiersin.org 4
metastasis. Furthermore, some targets of NFA are well-
recognized players in tumorigenesis, and oxidative stress
modulates these different stages of inflammation-induced
carcinogenesis. Thus, a role of NFA in tumorigenesis has been
proposed. Recently, it has been demonstrated that NFAs
suppress the growth of breast cancer by diminishing cancer
cell viability along with tumor cell migration and invasion
(Woodcock et al., 2018). Furthermore, NFAs have been shown
to enhance the cytotoxic activity of DNA-damaging agents on
growth of triple-negative breast cells and might therefore
function as adjuvants in therapy of such types of cancers (Asan
et al., 2019). Finally, NFAs suppress tumor growth by causing
mitochondrial dysfunction and activation of the intrinsic
pathway of apoptosis in colorectal cancer cells. Inhibition of
the pro-inflammatory proteins, NF-kB and 5-lipoxygenase,
which are involved in tumorigenesis, is considered a possible
mode of action for NFAs, explaining their chemopreventive
effects (Kühn et al., 2018).

Fibrosis
Fibrosis is characterized as the overgrowth and hardening of a
connective tissue in response to an injury or damage. The precise
pathophysiological mechanism of generation of fibrosis is rather
complex and still unknown; however, there seems to be a
connection between fibrotic events and chronic inflammation
(Wynn, 2008). In 2014, Reddy et al. reported that nitro fatty acids
abolished pulmonary fibrosis and reduced disease severity in a
mouse model with a possible role of NFA-mediated activation of
PPAR (Reddy et al., 2014). Recently, NFAs have been
demonstrated to protect against steatosis and fibrosis during
development of non-alcoholic fatty liver disease in mice fibrosis
(Rom et al., 2019). Moreover, NFAs have been reported
suppressing angiotensin II-mediated fibrotic remodeling and
atrial fibrillation with mechanisms that still need further
investigation (Rudolph et al., 2016). NFAs might therefore be a
novel lipid-based therapeutic strategy against different types of
fibrotic processes with molecular mechanisms that need to be
addressed in future studies.
NUCLEOPHILIC TARGETS SUSCEPTIBLE
TO MICHAEL ADDITION BY NFA TO
EXPLAIN THEIR THERAPEUTIC EFFECTS

NFAs are potent electrophiles that alkylate susceptible thiols of
multiple transcriptional regulatory proteins, affecting
downstream gene expression and modulating metabolic as well
as inflammatory signaling pathways (Trostchansky et al., 2013).
In a study done by Khoo and Li et al., the effects of different NFA
derivatives on the NF-kB and Nrf2 signaling pathways were
investigated to better understand NFA structure–function
relationships. This study demonstrated that NFA derivatives
having varying carbon chain lengths and different positions of
the nitroalkene group and show different potencies in affecting
the above-mentioned signaling pathways (Khoo et al., 2018).
Moreover, Gorczynski and Smitherman et al. demonstrated that
September 2020 | Volume 11 | Article 1297
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the potency of NFA to activate PPAR-g may vary according to
the position of the NO2 group, where the position of nitration
plays an important role in optimal PPAR-g activation
(Gorczynski et al., 2009). A number of protein targets of NFA
have already been identified, which might explain some of the
therapeutic effects of NFA (Figure 1C).

PPAR g
The transcriptional factor PPARg is a nuclear receptor regulating
lipid homeostasis, inflammatory signaling, and adipocyte
differentiation. PPARg activation in myeloid cells suppresses
the expression of pro-inflammatory mediators, like interferon-g
(IFNg) and nitric oxide synthase (iNOS or NOS2) (Tontonoz
and Spiegelman, 2008). PPARg has also been associated with
neutrophil apoptosis along with clearance and resolution of
inflammation (Konopleva et al., 2004). NFAs are partial
agonists of PPARg. For that reason, they can restore insulin
sensitivity in vivo. Furthermore, unlike Rosiglitazone they cause
no weight gain while reducing the insulin and glucose levels in
Lepob/ob mice. Therefore, this feature is considered as an
advantage that highlights its beneficial actions and potentially
reduces the adverse effects associated with full PPARg agonists
(Schopfer et al., 2010; Lamas Bervejillo et al., 2020). They are also
weaker agonists of PPAR-a and b/d (Baker et al., 2005; Schopfer
et al., 2005). It has been shown that PPARg agonists appear to
have direct neuroprotective actions in several different animal
models, like Alzheimer’s disease (AD), stroke, multiple sclerosis
(MS), Parkinson’s disease (PD), and amyotrophic lateral sclerosis
(Sundararajan et al., 2006). Therefore, activation of PPARg
could explain some of the anti-inflammatory and possible
neuroprotective actions of NFAs. NFAs used as drugs might
therefore be useful for the therapy of these diseases.

NF-kB
Nuclear factor-kB (NF-kB) plays a significant part during
inflammatory responses and is involved in the initiation,
development, metastasis, and resistance to the treatment of
cancer. In unstimulated cells, NF-kB dimers are sequestered in
the cytoplasm by the inhibitor of kB proteins, I-kB (canonical/
classical NF-kB pathway). Upon activation, I-kB releases NF-kB,
allowing it to translocate into the nucleus where it activates
the transcription of pro-inflammatory cytokines and other
inflammatory mediators. NF-kB is comprised of two subunits,
i.e. p50 and p65 (Mitchell et al., 2016). NFAs can specifically
nitroalkylate the p65 subunit of NF-kB and, to a lower extent, the
p50 subunit. Alkylation inhibits the translocation and DNA-
binding affinities of NF-kB and, in consequence, inhibits its pro-
inflammatory activities (Cui et al., 2006; (Khoo et al., 2018). This
causes the repression of NF-kB dependent target gene expression
and cytokine production such as tumor necrosis factor a
(TNFa), interleukin-6 (IL-6), monocyte chemoattractant
protein 1 (MCP-1) and the vascular cell adhesion molecule 1
(VCAM-1) that plays an important role in monocyte rolling and
adhesion which is essential for the inflammatory process (Cui
et al., 2006; Villacorta et al., 2018). In line with these findings,
NFAs were reported to suppress the growth of aggressive breast
cancer cells by inhibiting NF-kB transcriptional activity, thereby
Frontiers in Pharmacology | www.frontiersin.org 5
suppressing downstream NF-kB target gene expression
(Woodcock et al., 2018). Furthermore, NFAs are able to
interfere with the initial toll-like receptor-4 (TLR4) signaling
upstream of the NF-kB cascade by disrupting the recruitment of
the receptor into lipid rafts and assembly of the adaptor protein
TRAF6/IKKb/IkBa complex in vascular cells. However, the exact
mechanism still remains to be defined (Villacorta et al., 2013).
Inhibition of NF-kB could therefore play a certain role in NFA-
induced anti-tumorigenic effects as well as in some of the NFA-
induced anti-inflammatory effects.

Nrf2-Keap1
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a
transcription factor that regulates the expression of genes
encoding for proteins that counteract oxidative stress triggered
during cell and tissue injury and inflammation. Under basal
conditions, the transcription factor Nrf2 is suppressed by
cytosolic Keap1 (Kelch-like ECH-associated protein 1), which
promotes rapid ubiquitination and proteasomal degradation of
Nrf2 (Kobayashi and Yamamoto, 2005). NFA activate Nrf2-
dependent antioxidant gene expression by nitroalkylation of the
thiol residues of critical cysteines, such as Cys273 and 288, in the
Nrf2 regulatory protein, Keap1, thus facilitating the translocation
of Nrf2 into the nucleus (Kansanen et al., 2011). The expression
of Nrf2-dependent genes, including heme oxygenase-1 (HO-1),
glutathione peroxidase (GPx), glutathione reductase, glutathione
S-transferase, or superoxide dismutase then promotes
cell protection by attenuating the inflammatory response
(Zhu et al., 2008; Dreger et al., 2010). Glutathione (GSH)
itself is a tripeptide synthesized from glutamate, cysteine,
and glycine. GSH is catalyzed by two cytosolic enzymes, which
are g-glutamylcysteine synthetase and GSH synthetase. GSH
metabolism plays a crucial role in the defense against oxidative
stress, nutrient metabolism, and regulation of cellular events
essential for whole-body homeostasis (Wu et al., 2004).
Regarding HO-1, nitrolinoleic acid was able to induce its
activity in a cell culture model of pulmonary epithelial cells as
well as in the lungs of rats (Iles et al., 2009). The therapeutic
effects of activating Nrf2 through NFA could be useful for
treatment of oxidative stress- and Nrf2-dependent diseases,
such as cancer and several types of inflammatory and
neurodegenerative diseases.

5-Lipoxygenase
Lipoxygenases (LO) catalyze the generation of reactive lipid
mediators derived from arachidonic acid, such as leukotrienes
and 5-HETEs. These oxidized products support inflammatory
processes by acting as chemotactic and chemokinetic agents as
well as bronchioconstrictive factors (Haeggström and Funk,
2011). Our own studies have demonstrated that nitro-oleic
acid is a potent inhibitor of 5-LO in vitro and in vivo. This
effect is because of a nitroalkylation of catalytically relevant
cysteine residues, C416 and C418, resulting in a loss of enzyme
activity (Hörnig et al., 2012; Awwad et al., 2014). Blocking 5-LO
was a major mechanism responsible for the suppression of
lipopolysaccharide-induced pulmonary inflammation in mice
dosed with NFA (Awwad et al., 2014). The 5-LO-inhibitory
September 2020 | Volume 11 | Article 1297
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potency of NFA could be beneficial for the treatment of
pulmonary diseases, such as bronchial asthma, but also for
cardiovascular diseases and cancer with the well-documented
pathophysiological role of this enzyme (Steinhilber et al., 2010).
In this sense, treatment of pulmonary hypertension could be a
promising target.

Soluble Epoxide Hydrolase
Another enzyme that possesses a reactive cysteine, which is
essential for catalytic functioning, is soluble epoxide hydrolase
(sEH). sEH catalyzes the hydration of epoxides which is crucial
for the regulation of blood pressure by the modulation of
epoxyeicosatrienoic acid (EET) levels and their influence on
blood vessel relaxing tonus through the named endothelial
hyperpolarization mechanism. The conserved cysteine residue,
C521, which resides proximal to the catalytic center of sEH can
be alkylated by electrophilic lipids, leading ultimately to the
inhibition of the enzyme (Charles et al., 2011). In a C521S sEH
redox-dead knock-in mouse model, it was shown that treatment
with NFA protects mice from hypertension only with sEH
wildtype C521. Mice with an sEH C521S mutation did not
benefit from NFA treatment, suggesting an underlying Michael
reaction of NFA with this cysteine (Charles et al., 2014).

Figure 1 summarizes the nucleophilic targets of NFA and
their potential role in disease.

Microsomal Prostaglandin E2 Synthase-1
Microsomal prostaglandin E synthase 1 (mPGES1) is a terminal
enzyme of the cyclooxygenase pathway which catalyzes the last
step of the synthesis of the pro-inflammatory mediator
prostaglandin E2 (PGE2). The isoprostane 15-deoxy-D12,14-
prostaglandin J2 (15d-PGJ2) is a naturally occurring degradation
product of prostaglandin D2 which is another bioactive product
of the cyclooxygenase pathway. Notably, 15d-PGJ2 is not
a member of the class of nitro fatty acids as the Michael
acceptor moiety consist of a cyclopentenone motif lacking a
nitro group. Interestingly, Prage and Jakobsson et al. could
demonstrate that 15d-PGJ2 can inhibit mPGES1 by covalent
modification of residue C59 and by noncovalent inhibition
through binding at the substrate (PGH2) binding site which can
potentially explain some anti-inflammatory actions of 15d-PGJ2
(Prage et al., 2012).

Prostaglandin Endoperoxide H Synthases
1 and 2
Prostaglandin endoperoxide H synthase is an important enzyme
that catalyzes the conversion of arachidonic acid (AA) to
prostaglandin G2 (PGG2) and its subsequent reduction to
prostaglandin H2 (PGH2), which is expressed during
inflammation. PGHS exists in two isoforms, PGHS-1 and -2,
which are found in mammalian tissues. Trostchansky et al.
demonstrated that nitration of the carbon chain of AA yields
novel nitroarachidonic acid isomers with new biological
properties and causes the diversion of arachidonic acid from
its normal metabolizing pathways. Nitroarachidonic acid
inhibited peroxidase activity in PGHS-1 and -2 (COX-1 and
2) as well as oxygenase activity in PGHS-1. In addition, both
Frontiers in Pharmacology | www.frontiersin.org 6
isoforms, PGHS-1 and -2, were unable to use nitroarachidonic as
a substrate for oxygenase or peroxidase activity. These effects
suggest their potential pharmacological relevance during
inflammation (Trostchansky et al., 2011).

CD36
The membrane protein CD36 is the latest protein, identified as
direct NFA target in macrophages (Vazquez et al., 2020). The
CD36 protein is expressed on the surface of various cell types
including immune cells and mediates long-chain fatty acid and
cholesterol ester uptake among other functions. Binding of NFA
to CD36 reduced mLDL (modified low density lipoprotein)
uptake and both cholesterol and cholesteryl ester accumulation
in macrophages potentially providing an explanation for the
NFA-mediated athero-protective effects animal models.
FURTHER APPROVED OR CLINICALLY
DEVELOPED THERAPEUTIC DRUGS
CONTAINING MICHAEL ACCEPTORS

Examples of further synthetic and naturally occurring Michael
acceptors that target noncatalytic cysteine thiols are described
subsequently. Structures of drugs or structural scaffolds with the
Michael acceptor moiety highlighted in red are shown in
Figure 2.

Approved Drugs
Ibrutinib
Ibrutinib is an inhibitor of Bruton’s tyrosine kinase (BTK) with
well-recognized antineoplastic activity. For BTK inhibition, the
drug uses a Michael acceptor moiety for irreversible binding to
the target cysteine (Herman et al., 2011). Such inhibition induces
a modest cancer cell apoptosis, abolishes proliferation, and
prevents both B-cell activation and B-cell-mediated signaling.
Ibrutinib was FDA-approved in 2013 for mantle cell lymphoma
and later for chronic lymphocytic leukemia (CLL, 2014) and B-
cell lymphoma-like Waldenström macroglobulinemia (Castillo
et al., 2016). In 2017, ibrutinib was approved as a second-line
chronic graft versus host disease (cGVHD) (Miklos et al., 2017).
In addition, ibrutinib has also been shown to have potential
effects against autoimmune arthritis (Akinleye et al., 2013). Some
patients have had reported relapse during ibrutinib therapy,
which was based on an acquired resistance to this drug, based
in most cases of cytogenetic abnormalities (Byrd et al., 2020).
Functional studies indicate that the C481S mutation in BTK is
the reason for resistance to ibrutinib by preventing irreversible
drug binding (Woyach et al., 2014).

Neratinib
Neratinib is an irreversible tyrosine-kinase inhibitor of
epidermal growth factor receptor (EGFR)/human epidermal
growth factor receptor 1 (HER1), HER2, and HER4. Neratinib
comprises a quinolone core that reacts through a Michael
addition with the same reactive substituents as afatinib (see
the following) but with an affinity and pharmacological potency
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that is lower (Feldinger and Kong, 2015). The inhibition of
tyrosine kinases lead to a G1-S phase arrest, which results in
inhibition of tumor cell proliferation (Rabindran et al., 2004). It
has been shown that neratinib is less potent in inhibiting
proliferation of EGFR-positive cells compared to HER2-
positive cells (Canonici et al., 2013). Furthermore, it has been
demonstrated that neratinib can reverse membrane-bound
ATP transporter-mediated multidrug resistance (Zhao et al.,
2012). Neratinib was approved in 2017 as adjuvant treatment
for patients with early-stage HER2-overexpressed/amplified
breast cancer. Neratinib is further being evaluated in clinical
trials for advanced/metastatic breast cancer and solid tumors,
including HER2-mutated tumors (Feldinger and Kong, 2015).

Osimertinib
Osimertinib is a third-generation EGFR tyrosine kinase inhibitor
that was marketed in 2017 to treat advanced or metastatic non-
small-cell lung cancer (NSCLC) carrying a specific mutation. The
drug targets cancer cells that contain the T790M mutation in
the gene coding for EGFR but spares cancer cells with wildtype
EGFR (Lategahn et al., 2019). However, within a time period
of approximately 1 year, cancer cells can become resistant
through various mechanisms, such as amplification of cMet
Frontiers in Pharmacology | www.frontiersin.org 7
and HER2. Nevertheless, the main mechanism of resistance
to osimertinib is the mutation of the non-catalytic cysteine
(C797S), representing the target amino acid of the drug for
the Michael reaction (Patel et al., 2017). Therapeutic strategies
to overcome osimertinib resistance are described elsewhere
(Tang and Lu, 2018).

Afatinib
Afatinib is a protein kinase inhibitor that was approved in 2013
for the treatment of NSCLC. The chemical drug contains an
electrophilic group capable of a Michael addition reaction to
conserved cysteine residues inside the catalytic domains of
EGFR, HER2, and HER4. This reaction inhibits irreversible
enzymatic activity (Solca et al., 2012). Afatinib has also been
investigated for breast cancer because of its additional activity
against HER2 (Minkovsky and Berezov, 2008). However, a
clinical phase II trial has indicated there is no benefit from
afatinib alone or when combined with the microtubule assembly
inhibitor vinorelbine (Jim Yeung, 2005) compared with
treatment of the investigator’s choice in women suffering from
HER2-positive breast cancer with progressive brain metastases
during or after therapy with trastuzumab, lapatinib, or both
(Cortés et al., 2015).
FIGURE 2 | Chemical structures + of different approved and (pre-) clinically developed therapeutic drugs containing Michael acceptors. The Michael acceptor moiety
is highlighted in orange. Compounds marked with # are currently studied in clinical trials. CDDO, 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid; DMF, dimethyl
fumarate; MA, Michael acceptor; HMC, hesperidin methyl chalcone.
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Dimethyl Fumarate (DMF)
DMF is the ester of the unsaturated dicarboxylic fumaric acid. A
number of in vitro and in vivo studies have shown a potent anti-
inflammatory effect of DMF in a variety of diseases, e.g., MS
(Kappos et al., 2008), psoriasis (Nieboer et al., 1989; Reich et al.,
2009), and asthma (Seidel et al., 2009). Currently, oral DMF is
approved for MS (2013) and psoriasis (2017). The results of two
large phase III trials testing DMF in remitting MS led to its
rapid regulatory approval, first by the US Food and Drug
Administration (FDA) in 2013 and then by the European
Medicines Agency (EMA) in spring 2014 (Fox et al., 2012;
Gold et al., 2015). In 2017, EMA approved an oral formulation
of DMF for the treatment of adult patients with moderate-to-
severe chronic plaque psoriasis (Mrowietz et al., 2018).

Similar to NFA, DMF can alkylate Keap1, which leads to a
stabilization and translocation of Nrf2 (Seidel et al., 2009; Linker
and Haghikia, 2016). Induction of Nrf2-mediated gene
expression is considered the major mode of action responsible
for suppression of neurodegenerative processes of MS.
Additionally, Gillard et al. showed that DMF treatment led to
significant inhibition of the nuclear translocation of p65
(canonical/classical NF-kB) and p52 (non-canonical NF-kB)
signaling (Gillard et al., 2015) with a therapeutic relevance that
requires further evaluation.

Michael Acceptors in Pre-Clinical and
Clinical Development
Bardoxolone Methyl (Also Known as CDDO-Methyl
Ester or RT-402)
CDDO-methyl ester (CDDO-Me), a semi-synthetic triterpenoid
derived from oleanolic acid, is a promising chemotherapeutic and
anti-inflammatory agent in clinical development (Couch et al.,
2005; Celentano et al., 2019; Rossing et al., 2019; Tian et al., 2019).
The structure of CDDO is comprised of two a, b-unsaturated
carbonyl moieties, which are accessible for nucleophilic addition.
An essential factor for potency is not the triterpenoid skeleton but
the cyanoenone group whose absence greatly reduces the activity of
CDDO-Me. This Michael acceptor structure can generate
reversible adducts with cysteine residues in target proteins like
Keap1 and IkB kinase, leading consequently to an activation of the
NRF2/Keap1 pathway and inhibition of NF-kB signaling (Wang
et al., 2014). Interestingly, the selective binding of CDDO-Me to
cysteine residues of different proteins seems to be both context-
dependent and dose-dependent. It has been shown that low
concentrations of CDDO-Me protect cells against oxidative stress
whereas higher concentrations are known to induce apoptosis
(Wang et al., 2014). CDDO-Me and the related analog inhibit
inflammatory responses and tumor growth in vivo and have also
been considered for use in patients (Place et al., 2003). In particular,
CDDO-Me underwent phase III clinical trials for chronic kidney
disease (CKD) as well as phase I/II clinical trials for malignant
diseases (Wang et al., 2014). However, it was discontinued for CKD
owing to an increased risk of heart failure (de Zeeuw et al., 2013).
Nevertheless, it is still being tested in clinical trials for treatment of
obesity in adult men (NCT04018339, phase I), pulmonary
hypertension (NCT03068130, phase III), chronic or diabetic
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kidney diseases (NCT03749447, phase III, and NCT03550443,
phase III, respectively), Alport Syndrome, (NCT03019185, phase
II/III) and autosomal dominant polycystic kidney disease
(NCT03918447, phase III). Omaveloxolone (N-(2-Cyano-3,12-
dioxo-28-noroleana-1,9(11)-dien-17-yl)-2,2-difluoropropanamide;
CDDO- DFPA) is being further tested for the treatment of patients
with Friedreich’s Ataxia (NCT02255435, phase II).

Polyphenols
Polyphenols are major constituents of many herbal remedies
exhibiting anti-inflammatory activities (González et al., 2011).
They are characterized by the presence of multiple phenol
structural units. Different types of polyphenols also contain a
Michael acceptor unit within their structure. In addition, the
oxidation of the parent polyphenol can lead to the formation of
a reactive olefin, such as in the oxidation of a hydroquinone to a
quinone. Over the last decade, there has been abundant
attention to the possible health benefits of dietary plant
polyphenols as antioxidants (Pandey and Rizvi, 2009). It has
been reported that a number of polyphenolic extracts suppress
tumor cell proliferation and reduce pro-inflammatory processes
by inhibiting 5-LO (Leifert and Abeywardena, 2008), NF-kB,
and mitogen-activated protein kinase signaling (Santangelo
et al., 2007). The inactivation of NF-kB by polyphenols is
thought to be mediated by their interaction with cysteine
residues in either IkB kinase or the DNA-binding domain of
NF-kB, particularly the Cy38 of the p65 subunit (Wang and
Dubois, 2010). However, the beneficial effects of polyphenols
have been mainly demonstrated by in vitro studies. Several
factors, like low bioavailability, poor solubility, and high
metabolism of some of the polyphenols, may account for the
poor and difficult clinical translations of these compounds
(Christensen, 2018). Chalcones, an example of polyphenols,
are discussed subsequently.

Chalcones
Chalcones demonstrate a broad and versatile spectrum of
pharmacological activities, including immunomodulation, anti-
inflammatory, anticancer, antiviral, and antibiotic properties
(Lee et al., 2015). Recently, a stable topical formulation has
been tested containing the chalcone derivative hesperidin methyl
chalcone (HMC) protecting the skin of mice towards UVB-
induced oxidative stress and inflammation (Martinez et al.,
2017). Other Chalcones have recently been identified as 5-LO
inhibitors and urenyl chalcone derivatives exert a dual inhibition
of cyclooxygenase-2 (COX-2)/5-LO activities (Lee et al., 2015).
Further studies could show that chalcone derivatives inhibit
secretory phospholipase A2, COX enzymes, lipoxygenases, pro-
inflammatory cytokine synthesis, neutrophil chemotaxis,
immune cell phagocytosis, and production of ROS (Bukhari
et al., 2014a; Bukhari et al., 2014b; Lee et al., 2015). Recently, a
novel chalcone derivate (chalcone-O-alkylamine derivate) has
been documented, demonstrating that it might be a
multifunctional anti-AD agent (Bai et al., 2019). Besides all the
promising potential of chalcone derivates, there are no approved
drugs available to date.
September 2020 | Volume 11 | Article 1297

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Piesche et al. Nitro Fatty Acids as Therapeutics
Nitrostyrenes
3,4-Methylenedioxy-b-nitrostyrene has been identified as a NOD-,
LRR-, and pyrin domain-containing protein 3 (NLRP3)
inflammasome inhibitor with a Michael addition as the proposed
mode of action. The activation of the NLRP inflammasome
triggered caspase-1 activation and the release of the cytokine
interleukin-1b, a pro-inflammatory mediator, which is involved
in both acute as well as chronic inflammatory responses. Thus,
NLRP3 has been implicated in the pathogenesis of several human
diseases, such as gout, silicosis, type I/II diabetes, general endothelial
dysfunction, erectile dysfunction, atherosclerosis, and AD (Baldwin
et al., 2016; Pereira et al., 2019; Fais et al., 2019). Furthermore, the
suppression of the inflammasome may efficiently reduce damaging
processes, such as K+ efflux, lysosomal membrane destabilization,
ROS generation, and ubiquitin/deubiquitination post-translational
modifications (Baldwin et al., 2016). Therefore, the NLRP3
inflammasome is an attractive therapeutic target (Baldwin et al.,
2016). Moreover, nitroalkene analog of a-tocopherol have been
designed for the prevention and treatment of inflammation related
diseases (Rodriguez-Duarte et al., 2018).

Quinones
1,4-benzoquinones are recognized for their anti-inflammatory,
antioxidative, and anticancer activities (Schaible et al., 2014). A
popular representative of this group is the active ingredient
thymoquinone, isolated from Nigella sativa (Woo et al., 2012).
Anti-inflammatory effects have been found to be associated with
suppression of leukotriene formation (Werz, 2007) and 1,4-
benzoquinone AA-861 is a well-recognized 5-LO inhibitor
(Yoshimoto et al., 1982). EPI-589, a (R)-troloxamide quinone, is
currently in clinical trials for PD. The estimated completion date
was December 2019, but no results have been published as of yet
(NCT02462603). Mitomycin, a benzoquinone, is used in the clinic
for non-invasive or minimally invasive bladder cancers, and in
combination with 5-fluorouracil (5-FU) as well as radiation during
treatment of stage I-III anal cancer (Milla et al., 2014). Notably,
mitomycin also contains a pharmacologically active aziridine
group that leads to alkylations of target proteins.

Naphthoquinone
Naphthoquinone forms the structural basis of a number of natural
compounds, most pre-eminently the K vitamins. Naphthoquinones
are known for their antibiotic, antiviral, antifungal, antiphlogistic,
and antipyretic properties (Hernández-Pérez et al., 1995; Kobayashi
et al., 2011). The naphthoquinone plumbagin is a naturally
compound in the medicinal herb Plumbago zeylanica. This herb
has been safely used for centuries in Indian Ayurvedic and Oriental
medicine for treating various ailments, including bacterial infections
and allergic processes (Powolny and Singh, 2008). Furthermore,
plumbagin has already been described to suppress NF-kB activation
(Sandur et al., 2006). Plumbagin can also reduce the viability of
human prostate cancer cells by triggering apoptosis. Adding N-
acetylcysteine (NAC) significantly attenuated this effect (Powolny
and Singh, 2008) indicating that the reaction of plumbagin with
cellular proteins containing thiol groups might play an important
role in the pharmacological activity of plumbagin. The
naphthoquinone atovaquone is used to treat or prevent, e.g.,
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pneumocystis pneumonia (PCP) (only mild cases), toxoplasmosis,
and malaria where it is one of the two component drugs along with
malarone (National Institute of Diabetes and Digestive and Kidney
Diseases, 2012).

Unsaturated Carboxylic Acids and Aldehydes
Unsaturated carboxylic acids and aldehydes are a structurally
rather heterogeneous group. Examples are either NFA or
cinnamaldehyde. NFA and their targets are described in detail
above. Cinnamaldehyde is the main constituent of cinnamon.
Cinnamaldehyde is a pleitropic bioactive compound that
attracted lots of interest for its anticancer, anti-inflammatory,
antidiabetic, and antifungal properties. It has also been reported
to be beneficial against neurological diseases, e.g., PD and AD (Rao
and Gan, 2014). Cinnamaldehyde contains an a,b-unsaturated
aldehyde and can act as a Michael acceptor. It is a potent activator
of the transient receptor potential cation channel, subfamily A,
member 1 (TRPA1) (Sandur et al., 2006), a Ca2+ channel that plays
an important role in inflammatory and neuropathic pain, as well as
the pathogenesis of AD (Lee et al., 2016). More detailed
information about cinnamaldehyde and its potential as
therapeutic agent is reviewed in Chen et al. (2017).

Terpenes
Some terpenes, which is the largest group of phytochemicals,
contain a Michael acceptor unit (Butturini et al., 2011), e.g.,
trans-dehydrocrotonin and crotonin. Both compounds originate
from croton plants from the Amazonian region and have been
associated with anti-inflammatory, anti-atherogenic, and anti-
ulcerogenic properties (Hiruma-Lima et al., 2002). Furthermore,
other diseases that affect the cardiovascular system, such as diabetes,
have been shown to have positive effects from aqueous extracts of
the stem barks of Croton cuneatus Klotz, which significantly
reduced blood glucose levels in diabetic rats (Torrico et al., 2007).

A vast number of many other terpenes (Vasas and Hohmann,
2014) and phenolic (Kris-Etherton et al., 2002) compounds
have been shown to possess protective effects regarding the
cardiovascular system, including relaxation in conductance vessels,
antithrombotic properties, lowering low-density lipoproteins (main
cholesterol transporter for atheroma formation), or reduction of
coronary heart disease and cardiovascular risk factors, as well as
reversal of endothelial dysfunction.

These findings could indicate that the Michael acceptor
moiety and reactivity of the drugs with thiols of target proteins
are relevant to the therapeutic effects triggered by terpenes.

Therapeutic Effects of the Endogenous Michael
Donor, GSH, and GSH Inhibitors
GSH is an abundant natural tripeptide found within almost all cells
at concentrations of 0.5 to 10 mM (Lushchak, 2012). Oxidative
stress can lead to chronic inflammation, which in turn could
mediate most chronic diseases (Reuter et al., 2010). GSH is vital
for protecting tissues against the degenerative effects of oxidative
damage through the conjugation of chemically reactive
electrophilic molecules from endogenous or exogenous agents
and thus preventing unwanted reactions with important cell
constituents (Reed, 1986; Lu, 1999). The Michael addition is one
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of the mechanisms how GSH protects nucleic acids and proteins
from these agents. Endogenous agents are described extensively by
Wang and Ballatori (Wang and Ballatori, 1998). One example is
the electrophilic eicosanoids, which contain a,b-unsaturated
ketones and are biosynthesized during the oxidative metabolism
of arachidonic acid. GSH adducts have been observed with
molecules derived from lipoxygenases (Wang and Ballatori,
1998) and with electrophilic fatty acids (Batthyany et al., 2006).

GSH plays also an integral role in the clearance of drugs. The
aforementioned drug, afatinib, undergoes extensive conjugation
with GSH both in buffer and cytosol fractions deriving from liver
and kidney tissues, whereas ibrutinib has exhibited much lower
degree of GSH-dependent conjugation (Shibata and Chiba, 2015).
The importance of GSH in drug clearance can be seen when
patients accidentally take an overdose, e.g., acetaminophen, a
medication used to treat pain and fever, which is generally safe
when used in the recommended dosage. However, when taken in
overdose, it can cause a potentially fatal, hepatic centrilobular
necrosis (James et al., 2003), which accounts for almost one-half of
all patients with acute liver failure in the United States and Great
Britain. At nontoxic doses, the metabolite of acetaminophen is
efficiently detoxified by GSH, forming an acetaminophen-
glutathione conjugate via Michael addition (Jollow et al., 1974).
However, at toxic doses, the metabolite depleted hepatic GSH by as
much as 80–90% (Mitchell et al., 1973; Jollow et al., 1974).
Repletion of GSH using an antidote like N-acetylcysteine was
able to prevent toxicity (Dargan and Jones, 2003).

Another important function of GSH is in the detoxification of
small toxic molecules, thereby rendering them into less toxic
derivatives. This activity accounts for one type of drug resistance,
a key element in the failure of chemotherapy treatment.
GSH can be combined with anticancer drugs to yield less toxic
GSH conjugates with a higher water-solubility. The GSH
conjugates of chemotherapeutics can penetrate out of the cells
by the glutathione S-conjugate export (GS-X) pump or
multidrug resistance-associated protein (MRP). Levels of GSH,
glutathione-related enzymes, and the GS-X pump or MRP have
been demonstrated to be elevated or overexpressed in a number
of drug-resistant tumor cells (Zhang et al., 1998). A number of
inhibitors to block or downregulate GSH to increase tumor
responsiveness to chemotherapy are under investigation in
several clinical trials (Trachootham et al., 2009; Singh et al.,
2012). The most advanced drug is currently undergoing Phase III
trials where the GSH inhibitor APR-246 and azacitidine or
azacitidine alone is being compared in patients with TP53-
mutated MDS (NCT03745716).
THERAPEUTIC OPTIONS FOR MICHAEL
ACCEPTORS FOR
NEURODEGENERATIVE/
NEUROINFLAMMATORY DISEASES

A link between Michael acceptors and neurodegenerative
diseases has largely been established by a variety of sources. As
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Michael acceptors are present in the manufacturing, agricultural,
and polymer industries, human exposure to these compounds is
pervasive. Indeed, acrolein and methylvinyl ketone (MVK) are
environmental pollutants while acrylamide (ACR) and methyl
acrylate are dietary contaminants (reviewed in (Morgan et al.,
2000; Friedman, 2003). Michael acceptors, because of their
metastable and reactive properties, attack synaptic proteins and
form complexes that accumulate at the nerve terminals.
Consistently, elevated levels of acrolein and 4-hydroxy-nonenal
(HNE) have been found in the degenerating neurons of the
substantia nigra of PD patients (Yoritaka et al., 1996), where it
has been hypothesized that they promote a-synuclein
aggregation. Similarly, a,b-unsaturated aldehydes are generated
endogenously as a break-down product of lipid peroxidation of
w-6 polyunsaturated fatty acids and have been thought to be
responsible for synaptotoxicity and nerve terminal dysfunction
in PD (Kehrer and Biswal, 2000; Friedman, 2003; LoPachin et al.,
2008; Lee and Park, 2013; Fecchio et al., 2018). In AD, patients
experienced increases in both a and b secretase levels, which has
been linked to the presence of various lipid peroxidation
products, including MDA, F2-isoprostanes, and HNE. Overall,
elevated levels of Michael acceptor derivatives have also been
detected in amyloid plaques (Markesbery and Carney, 1999).
Evidence of lipid peroxidation was detected in Huntington’s
brain tissues, where, in particular, HNE was found to colocalize
with Huntington inclusions (Lee et al., 2011).

In addition, ACR, acrolein, HNE, and other unsaturated
carbonyl derivatives inhibit NO signaling at the nerve terminal,
triggering neuroinflammatory processes, a common feature
shared by most neurodegenerative diseases (Csala et al., 2015).

Interestingly, Michael acceptors have recently gained interest
for their potential therapeutic properties with respect to
neurodegenerative disease.

In this regard, recent studies have underlined the cytoprotective
effects against oxidative stress that the synthetic triterpenoid
(TP) derivatives of CDDO exert within either in vivo or in vitro
animal model of neuronal deficits (Dinkova-Kostova et al., 2005;
Tran et al., 2008; Dumont et al., 2009; Castellano et al.,
2019). In particular, Dumont et al. found that three-month
administration of CDDO-MA improved cognitive performance
and reduced Ab protein levels, which is the main component of
senile plaques as well as plaque deposition in AD mouse models,
by reducing inflammation, enhancing phagocytosis of the Ab
protein and plaques, and decreasing oxidative stress (Dumont
et al., 2009).

Of note, additional studies pointed on the use of Bruton
tyrosine kinase inhibitors in the treatment of AD as well as in MS
(Montalban et al., 2019; Keaney et al., 2019). In addition,
cysteine-targeting compounds such as ICE-like cysteine
protease inhibitors (caspase I inhibitors) have been recently
suggested as anti-apoptotic and anti-inflammatory agents to
treat AD and PD patients, in which progressive neuronal death
seems to be associated with caspase overactivation (LoPachin
et al., 2008). The rationale of the use of Michael acceptors comes
from the idea of developing compounds selectively targeting
cysteine residues on caspase, thereby taking possible advantage
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of the low occurrence of cysteine residues in the human
proteome (2.3%) and thus potentially lessening off-target
effects. However, as these compounds have multiple biological
activities, the possibility to use them in the treatment of
neurodegenerative diseases is far from clear, thus raising
scepticism in the scientific arena (Parvez et al., 2018; Poganik
and Aye, 2020).
FURTHER DISEASES WITH A POSSIBLE
THERAPEUTIC EFFICACY OF MICHAEL
ACCEPTORS

Beside the therapeutic effects described herein, Michael acceptors
might play a potential role in a number of other diseases.

Recently, antidepressive effects of certain Michael acceptors have
been reported. DHIPC, a 2′-hydroxy-4′,6′-diisoprenyloxychalcone
derivate, exhibits antidepressant effects by increasing serotonin,
noradrenaline, and 5 hydroxyindoleacetic acid levels in the
hippocampus, hypothalamus, and brain cortex of DHIPC-treated
mice (Zhao et al., 2018).

The plant-derived Michael acceptor curcumin possesses
multiple modes of action. The drug is able to suppress liver
fibrosis by modulation of a specific miRNA mediating the
epigenetic regulation of liver fibrosis (Zheng et al., 2014).
Furthermore, it is an effective treatment for idiopathic pulmonary
fibrosis owing to inhibition of collagen secretion, fibroblast
proliferation, and differentiation (Smith et al., 2010).

The Michael acceptor epalrestat is a reversible aldose reductase
inhibitor preventing the conversion of glucose to sorbitol within the
polyol pathway. In Japan, it is an approved drug for treatment of
subjective and objective symptoms of diabetic neuropathy, the most
common long-term complication in patients suffering from
diabetes mellitus (Ramirez and Borja, 2008).

Antiparasitic properties are also benefits of Michael acceptor-
containing drugs. K777 is an irreversible inhibitor of cruzan, a
cysteine protease of Trypanosoma cruzi, which causes Chagas
disease. Hybrid compounds comprising an electrophilic warhead
and Michael acceptor-containing structure motif (e.g., vinyl
sulfone, pyrimidine nitrile group) are effective anti-malaria
agents by targeting the parasitic food vacuole of P. falciparum
within the low nanomolar range (Vale, 2016). Various plant-
derived Michael acceptors also exhibit activity against
leishmaniasis, such as the cyclopentenedione derivate, DCPC,
isolated from Piper carniconnectivum roots or dihydrochalcones
isolated from P. elongate (Paes-Gonçalves et al., 2012).

Furthermore, a number of drugs containing Michael
acceptors exhibit anti-viral properties. Naturally occurring
compounds like 15d-PGJ2, celastrol, curcumin, and rosmarinic
acid have well-documented anti-retroviral activity by targeting
the Cys-rich domain of HIV-1 Tat, leading to inhibition of Tat-
dependent transcription (Narayan et al., 2011). Rupintrivir
(AG7088) was a promising Michael acceptor drug candidate
that inhibits human rhino virus by targeting rhinoviral protease
3CP. Unfortunately, its development was discontinued during
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clinical phase II/III based on lack of efficiency in natural infection
studies (Vale, 2016).
DISCUSSION: FUTURE DIRECTIONS AND
CONCLUDING REMARKS

Over the past decades, the development of inhibitors covalently
binding enzymes or other target proteins via Michael reaction
was deprioritized by the pharmaceutical industry. This was
mainly because of safety concerns about indiscriminate and
unselective reactivity of the covalent-modification drugs with
potentially off-target proteins, thereby causing unpredictable
toxicity. However, recently, several efficient and safe covalently
binding inhibitors of protein kinases have been successfully
approved for cancer treatment, changing the perspective on
this class of drugs. Binding of noncatalytic cysteine residues
with acrylamides and other a, b-unsaturated carbonyl
compounds is currently the preferred strategy used for the
development of Michael acceptor-containing drugs. There is
rising agreement that covalent binding of target proteins using
Michael acceptor moieties can improve pharmacodynamic
properties, such as efficacy, potency, selectivity, and duration of
pharmacological effects. However, to avoid toxicity, the scaffold
encompassing the electrophilic warhead needs rather careful,
prolonged, and sophisticated drug design, including
computational and molecular modelling methods applied. As
such, designed covalent inhibitors might possess significant
advantages over non-covalent inhibitors such that covalent
warheads can target unique residues of selected target proteins
with a higher pharmacodynamic efficacy and less susceptibility to
the phenomenon of drug resistance. Along with biomedical
drugs, covalently binding inhibitors on the basis of Michael
acceptor moieties might therefore play a pivotal role in the
drug market of the 21st century.
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